MASARYK UNIVERSITY FACULTY OF SCIENCE

HABILITATION THESIS

Solution spaces of almost periodic
homogeneous linear difference
and differential systems

Brno 2015 Michal Vesel;'f



Preface

In this work, a problem from the qualitative theory of almost periodic difference and
differential equations is solved. More precisely, using special constructions of almost pe-
riodic (and limit periodic) sequences and functions, non-almost periodic solutions of almost
periodic homogeneous linear difference and differential systems are studied. The aim is
to find systems, whose all solutions can be almost periodic, and to prove that, in any
neighbourhood of such a system, there exists a system which does not possess an almost
periodic solution other than the trivial one.

All results presented in this work are due to the author and are taken from papers
denoted as (2)-(5), (7), (9), (13), (18), and (21) on pages 168-169. Note that four of
the papers have a co-author, namely P. Hasil. In all cases, the contributions of the both
authors are equivalent. Certain parts of this work are also taken from the Ph.D. thesis of
the author (see (PhD) or directly papers (2)—(5)).

The history and basic motivation of the treated topic are included at the beginnings
of chapters and sections. For reader’s convenience, the end of each proof, example, and
remark is identified by symbol [J, ¢, and A\, respectively. The used notations are collected
in sections titled Preliminaries. Definitions, theorems, lemmas, corollaries, examples, and
remarks are numbered consecutively within each chapter.

Brno, September 21, 2015

Michal Vesely
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Abstracts

Chapter 1: We introduce the notions of almost periodic and limit periodic sequences in
pseudometric spaces. Especially, we modify the Bochner definition of almost periodicity so
that it remains equivalent with the Bohr one. We present an easily modifiable method for
constructing almost periodic and limit periodic sequences with prescribed properties. We
apply the method to construct an almost periodic homogeneous linear difference system
which does not have any non-trivial almost periodic solution.

Chapter 2: Almost periodic homogeneous linear difference systems are analysed, where
the coefficient matrices belong to a group. The goal is to find such groups that the systems
having no non-trivial almost periodic solution form a dense subset of the set of all considered
systems. A closer examination of the used methods reveals that the problem can be treated
in such a generality that the entries of the coefficient matrices are allowed to belong to any
complete metric field. The concepts of transformable and weakly transformable groups
of matrices are introduced and these concepts enable us to derive efficient conditions for
determining matrix groups with the required property.

Chapter 3: Limit periodic sequences with values in pseudometric spaces are consi-
dered. We construct limit periodic sequences with given values. For any totally bounded
and countable set, we find a limit periodic sequence which attains each value from this set
periodically. For any totally bounded countable set which is dense in itself, we construct
a limit periodic bijective map from the integers into this set. The corresponding results
about almost periodic sequences are explicitly formulated as well. As corollaries, we obtain
new results about non-almost periodic solutions of complex almost periodic transformable
difference systems.

Chapter 4: As in Chapter 2, we study homogeneous linear difference systems, where
the coefficient matrices belong to a bounded group. Now we consider limit periodic systems
and we find groups of matrices with the property that the systems, which do not possess
non-zero asymptotically almost periodic solutions, form a dense subset in the space of all
considered systems. Since the used method is substantially different from the processes
applied in Chapter 2, we obtain new results also for almost periodic systems.



Chapter 5: We introduce almost periodic and limit periodic functions with values
in a pseudometric space X. We mention the Bohr and the Bochner definition of almost
periodicity and the fundamental properties of almost periodic functions. In particular, we
prove the equivalence of the Bohr and the Bochner concept and we briefly describe the
connection between almost periodic functions and sequences. Similarly as in Chapter 1,
we present a modifiable method for constructing almost periodic functions in X.

Chapter 6: We analyse solutions of almost periodic skew-Hermitian and skew-sym-
metric homogeneous linear differential systems. It is known that the systems, whose all
solutions are almost periodic, form an everywhere dense subset in space of all almost pe-
riodic skew-Hermitian or skew-symmetric systems (in the uniform topology). Applying
a construction from Chapter 5, we prove that, in any neighbourhood of an almost periodic
skew-Hermitian system, there exists a different almost periodic skew-Hermitian system
which does not possess a non-trivial almost periodic solution. In addition, using a modifi-
cation of the iterative process presented in Chapter 5, we obtain the same result for almost
periodic skew-symmetric systems as well.

Chapter 7: In pseudometric spaces, limit periodic and almost periodic functions with
given values are constructed. More precisely, for an arbitrary uniformly continuous function
which attains finitely many values on Z and whose range is totally bounded, we construct
an almost periodic function with the same range on Z and R which attains all value
periodically. In addition, if the uniformly continuous function with a totally bounded range
attains a value periodically, then we prove that the resulting function can be constructed
as limit periodic.



Chapter 1

Almost periodic and limit periodic
sequences in pseudometric spaces

In this chapter, we introduce the notions of limit periodicity and (asymptotic) almost
periodicity for sequences in a general pseudometric space. At first, we mention the arti-
cle [65] by K. Fan which considers asymptotically almost periodic sequences of elements
of a metric space (based on the Fréchet concept from [74, 75]) and the article [177] by
H. Tornehave about almost periodic functions of the real variable with values in a metric
space. In these papers, it is shown that many theorems which are valid for complex valued
sequences and functions are no longer true. For continuous functions, it is observed that
the important property is the local connection by arcs of the space of values and also its
completeness.

However, we do not use their results or other theorems and we introduce the con-
sidered generalizations of periodic sequences in pseudometric spaces without any additional
restrictions; i.e., the definitions are similar to the classical ones, only the modulus being
replaced by the distance. We can also refer to [88, 131, 132, 147, 186, 189]. We add that the
concept of almost periodic functions of several variables with respect to Hausdorff metrics
can be found in [165] which is an extension of [60] (see also [61], [149]).

In Banach spaces, a sequence {@y}rez is almost periodic if and only if any sequence
of translates of {¢x} has a subsequence which converges and its convergence is uniform
with respect to k in the sense of the norm. In 1933, the continuous case of the previous
result was proved by S. Bochner in [22], where the fundamental theorems of the theory of
almost periodic functions with values in Banach spaces are proved as well (see, e.g., [6], [7,
pp. 3-25] or [111], where the theorems are redemonstrated by the methods of the functional
analysis). We remark that the discrete version of this result can be proved similarly as
in [22] (or see directly papers [156, 179]).

In pseudometric spaces, it is easy to show that the above result is not generally true.
Nevertheless, by a simple modification of the Bochner proof of this result, one can verify
that a necessary and sufficient condition for a sequence {¢y}rez to be almost periodic is
that any sequence of translates of {¢}} has a subsequence satisfying the Cauchy condition
uniformly with respect to k.
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In this chapter, we also analyse systems of the form
Tpr1 = Ax -z, k€Z (or k €Ny,

where {A;} is almost periodic. The aim is to prove that there exists a system of the
above form which does not have an almost periodic solution other than the trivial one (see
Theorem 1.38 below). A closer examination of the method used in our construction reveals
that the problem can be treated in possibly the most general setting:

almost periodic sequences attain values in a pseudometric space;
the entries of almost periodic matrices are elements of an infinite ring with a unit.

Note that many theorems about the existence of almost periodic solutions of general almost
periodic difference systems are published in [21, 83, 87, 163, 182, 186, 187, 189] and several
these existence theorems are proved there in terms of discrete Lyapunov functions. Here,
we can also refer to the monograph [183] and [190, Theorems 3.6, 3.7, 3.8]. For linear
systems with & € Ny, see [5, 168].

This chapter is organized as follows. In the first section, we mention the notation which
is used throughout the whole chapter. Section 1.2 presents the definitions of (asympto-
tically) almost periodic and limit periodic sequences in a pseudometric space, the above
necessary and sufficient condition for the almost periodicity of a sequence {@y}rez, and
some basic properties of almost periodic sequences in pseudometric spaces.

In Section 1.3, we show a way one can construct limit periodic and almost periodic
sequences with given properties. We remark that our process is comprehensible and easily
modifiable and that methods of generating almost periodic sequences are mentioned in [138,
Section 4] as well.

Finally, in Section 1.4, we use results from the second and the third section to obtain
a theorem which plays an important role in Chapter 2, where it is proved that the almost
periodic homogeneous linear difference systems which do not have any non-zero almost
periodic solution form a dense subset of the set of all considered systems. Using our
constructions, we obtain generalizations of results from the paper of the author denoted
as (1) and from [176], where unitary and orthogonal systems are studied.

1.1 Preliminaries

As usual, RT denotes the set of all positive reals, Ry the set of all non-negative real
numbers, and Ny the set of all natural numbers including the zero. Let X # () be an
arbitrary set and let d : X x X — R{ be a pseudometric on X. For given £ > 0 and
r € X, in the same way as in metric spaces, we define the e-neighbourhood of x in X as
the set {y € X; d(x,y) < €}. The e-neighbourhood is denoted by O.(x).

We consider sequences in X. The scalar (and vector) valued sequences are denoted
by the lower-case letters, the matrix valued sequences by the capital letters (X is a set
of matrices in this case), and each one of the scalar and matrix valued sequences by

symbols {@}, {¥x}, {Xx}-
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1.2 Generalizations of pure periodicity

Now we introduce the concept of (asymptotically) almost periodic and limit periodic
sequences in the pseudometric space X'. We remark that the approach is very general and
that the presented theory of almost periodic sequences does not distinguish between x € X
and y € X if d(z,y) = 0.

1.2.1 Almost periodic sequences

We begin with a “natural” generalization of almost periodicity.

Definition 1.1. A sequence {¢y} is called almost periodic if for any € > 0, there exists
a positive integer p () such that any set consisting of p (¢) consecutive integers (non-ne-
gative integers if £ € Ny) contains at least one integer [ with the property that

d(r+i, pr) <&, keZ (or keNy).

The number [ is called an e-translation number of {¢y}. For any ¢ > 0, the set of all
e-translation numbers of a sequence {¢y} is denoted by T'({px}, ).

Remark 1.2. If X is a Banach space, then a necessary and sufficient condition for a
sequence {@y}rez to be almost periodic is it to be normal; i.e., {py} is almost periodic if
and only if any sequence of translates of {(,} has a subsequence, uniformly convergent for
k € Z in the sense of the norm. This result and Theorem 1.3 below are not valid if {¢} is
defined for k € Ny and if we consider only translates to the right (consider X =R, ¢y = 1,
and ¢, = 0, k € N). But, if we consider translates to the left, then the both results are
valid for k € Ny as well. JAN

It is seen that the result mentioned in Remark 1.2 is no longer valid if the space of
values fails to be complete. Especially, in a pseudometric space (X, d), it is not generally
true that a sequence {@y}rez is almost periodic if and only if it is normal. Nevertheless,
applying the methods from any one of the proofs of the results [7, Statement ({)], [46,
Theorem 1.10], and [72, Theorem 1.14], one can easily prove that every normal sequence
{¢k }rez is almost periodic. Further, we can prove the next theorem (a generalization of
the theorem called the Bochner concept) which we will need later. We add that its proof
is a modification of the proof of [46, Theorem 1.26].

Theorem 1.3. Let {¢y}rez be given. For an arbitrary sequence {hy }nen C Z, there exists
a subsequence {hy}nen C {hy }nen with the Cauchy property with respect to {¢}, i-e., for
any € > 0, there exists M = M (e) € N for which the inequality

d(Ppihr Prrh;) <€

holds for alli,j, k € Z, i,5 > M, if and only if {p}rez is almost periodic.
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Proof. If any sequence of translates of {¢} has a subsequence which has the Cauchy
property, then {¢x} is almost periodic. It can be proved similarly as [46, Theorem 1.10],
where it is not used that X is complete. To prove the opposite implication, we assume that
{¢r} is almost periodic and we use the well-known method of the diagonal extraction.

Let {hp}nen € Z and 9 > 0 be arbitrary. By Definition 1.1, there exists a positive
integer p such that, in any set {h, — p,h, —p+ 1,..., h,}, there exists a ¥-translation
number [,,. We know that 0 < h,, — [,, < p for all n € N. We put &k, := h, —[,, n € N.
Clearly, k, = ¢ = const. (a constant value from {0,1,...,p}) for infinitely many values
of n. Since

A (Prthns Phitbn) = A (Pothn—tn)+1ns Phthntn) <V, k€L,

there exists a subsequence {h}} of {h,} and an integer ¢; such that
d (gok+h%, gpk+cl) <v, keZ neN (1.1)

Consider now a sequence of positive numbers ¢; > ¥y > --- > 9, > ... converging
to 0. From the sequence {yy1s, }, We extract a subsequence {1 } which satisfies (1.1)
for ¥ = 1;. From this sequence, we extract a subsequence {52 } for which an inequality
analogous to (1.1) is valid. Of course, ¢ is not same, but it depends on the subsequence.
We proceed further in the same way. Next, we form the sequence {@pipn fnen. Assume
that ¢ > 0 is given and that we have 2¢,, < ¢ for m € N. As a result, for i¢,j > m, i,j € N,
we obtain

d (@k—i—h;ﬁa ka+h§> <d (@k—i—h;ﬁ (PkJrcm) +d <¢k+0m7 @k+h§) <g, ke Z>

where ¢, is the number corresponding to the sequence {ppipm fnen and 9,,. O

Corollary 1.4. Let p € N be arbitrarily given and let {py}rez be almost periodic. For
any € > 0, the set {lp; | € N} NT({pr},¢e) is infinite.

Proof. 1t suffices to apply Theorem 1.3 for h,, := pn, n € N. Indeed, it holds
sup d (Greshis Prtny) = supd (Prsn—n, o), 1,5 € N.
keZ keZ

]

In Chapter 2, we consider almost periodic sequences in complete metric spaces. Thus,
we also need the following consequence of the so-called Bochner theorem.

Corollary 1.5. An arbitrary sequence {¢xtrez in a complete metric space is almost pe-
riodic if and only if, from any sequence of the form {{@rin, }rez}ien, where {h;}ien C Z,
one can extract a subsequence converging uniformly for k € Z.

Many results about almost periodic sequences with values in C are extendable to se-
quences with values in a complete metric space (or in a pseudometric space). We mention
the following results which we will need later and which can be easily proved using methods
from the classical theory of almost periodic functions (see [7, 46] for the classical cases and,
e.g., [13] for generalizations). We also refer to [134, 189).
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Theorem 1.6. Let X\, Xy be arbitrary pseudometric spaces and ® : X1 — Xy be a uni-
formly continuous map. If {pr} C Xy is almost periodic, then the sequence {P(¢x)} is
almost periodic as well.

Proof. Taking € > 0 arbitrarily, let d(¢) > 0 be the number corresponding to ¢ from the
definition of the uniform continuity of ®. Now, Theorem 1.6 follows from the fact that the
set of all e-translation numbers of {®(yx)} contains the set of all §(¢)-translation numbers
of {¢x}, i.e., from the inclusion

T ({er}.0(e)) €T ({P(er)} €)-

Theorem 1.7. For every sequence of almost periodic sequences

{enhs - Aeid, -

the sequence of lim ), is almost periodic if the convergence is uniform with respect to k.
1—00

Proof. The proof can be easily obtained by a modification of the proof of [46, Theo-
rem 6.4]. O

Theorem 1.8. Let (X,d) be a complete metric space. For an almost periodic sequence
{ortrez and an arbitrary sequence of integers hy,... hy, ..., there exists a subsequence
{hi}ieN of {hz’}ieN such that

i (Jiney g, ) = o
Proof. Since {p;} is normal, we know that there exists {h;}iexn € {hi}ien for which
the sequence {{@y 5, }rez}ien converges uniformly to an almost periodic sequence (see
Theorem 1.7), denoted as {¢x}. Applying Corollary 1.5 again, we obtain a subsequence
{h;Yien C {hi}ien with the property that the sequence H{%y_#, ez fien is uniformly con-
vergent. We denote the limit as {x;}.

Now we choose € > 0 arbitrarily. We have

€ €
0 (wk—;h’xk) < 57 0 <wk7gpk+}~bj> < 57 k c Z,

ifi,7 > n (i,j € N) for some sufficiently large n = n(e) € N. Thus, for all k£ € Z, it is true
0 (e xk) < 0 (erspi,) + 0 (Vri» xa) <€
Because of the arbitrariness of € > 0, we get the identity {¢x} = {x&} O

Remark 1.9. It is possible to prove that a sequence {y }rez is almost periodic if and only
if every pair of sequences {h;}ien, {l;}ien € Z have common subsequences {h; }ien, {l; }ien
with the property that

]lg?o (ili)r&(pk%ﬁl}) = }H?OQOH’%H} pointwise for k € Z. (1.2)
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In fact, condition (1.2) is necessary and sufficient in each one of the two modes of the
convergence; i.e., in the strongest version, this condition is necessary in the uniform sense
and sufficient in the pointwise sense. For almost periodic functions defined on R with values
in C, the above result is due to S. Bochner and it can be found in [23]. The proof from the
paper can be generalized for complete metric spaces (see [142, 143]). If this necessary and
sufficient condition is applied only to the case {l;} = {—h;} (as in Theorem 1.8), then one
gets a different class of sequences called almost automorphic sequences (for more details,
see [56, 151]; concerning the linear systems treated in Chapter 2, see [35, 126]). A

Taking n € N and using Theorem 1.3 (and Remark 1.2) n-times, one can easily prove
the corollaries below.

Corollary 1.10. Let sequences {¢i},...,{¢R} be given. Then, the sequence {1y} which
is defined by '
Yy = goz»ﬂ for all considered k,

where k = jn+1, j € Z, i € {0,...,n — 1}, is almost periodic if and only if all sequences
{er}, - {pr} are almost periodic.

Corollary 1.11. Let (X1, d1),..., (X, d,) be pseudometric spaces and {3}, ..., {0t} be
arbitrary sequences with values in Xy, ..., X,, respectively. The sequence {1y}, with values
n Xy X -+ X X, given by

(IIES (gp,{;, . ,cpZ) for all considered k,

is almost periodic if and only if each one of sequences {¢i},...,{¢k} is almost periodic.

Corollary 1.12. Let € > 0 be arbitrary and let the sequences {©i kez, - - -, {©F tren be
almost periodic. Then, the set

T({gi}e) - NT({ei}e)
15 relatively dense in Z.
We remark that it is possible to use Corollaries 1.10, 1.11, and 1.12 to obtain more

general versions of Theorems 1.23, 1.27, and 1.29 below.

1.2.2 Asymptotically almost periodic sequences

Now we mention the definition of asymptotic almost periodicity in pseudometric spaces.

Definition 1.13. A sequence {py}rez € X (or {@k}ren, C X) is asymptotically almost
periodic if for every € > 0, there exist positive integers r(¢) and R(e) such that any set
consisting of r(e) consecutive integers contains at least one number [ for which

d((pk-l-la@k) <§g, kak+l > R<6)7 k€ N.

Directly from Definition 1.13, we obtain the following theorem.
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Theorem 1.14. The range of any asymptotically almost periodic sequence is totally boun-
ded.

The Bochner theorem for asymptotically almost periodic sequences reads as follows.

Theorem 1.15. Let {pi},c;, © X or {@r}ren, € X be given. The sequence {y} is asymp-
totically almost periodic if and only if any sequence {l,,}, .y € N satisfying lim,, o I, = 00
has a subsequence {l,}nen C {1} such that, for any € > 0, there exists L(¢) € N with the
property that it holds

d (Spk+l_i7§0k+l_j) <g, Z?j > L(€)7 ke N.
Proof. See [65, Part 2]. O

Remark 1.16. In Banach spaces, a sequence is asymptotically almost periodic if and only
if it is the sum of an almost periodic sequence and a sequence vanishing at infinity (see,
e.g., [184]). A

1.2.3 Limit periodic sequences

Finally, we define limit periodicity in X.

Definition 1.17. A sequence {¢g}trez € X (or {pgtren, € X) is called limit periodic if
there exists a sequence of periodic sequences {¢}}rez € X (or {¢} }ren, € X) for n € N
such that lim, . ¢} = ¢k uniformly with respect to k € Z (or k € Ny).

Remark 1.18. Of course, the periods of sequences {¢}} in Definition 1.17 do not need to
be the same for considered n. A

Remark 1.19. In fact, limit periodic sequences coincide with the so-called semi-periodic
sequences. We refer to [17] (and to [8] in the continuous case). A

Remark 1.20. In the literature, it is possible to find another definition of limit periodicity
which leads to a larger class of sequences. See, e.g., [59, 130]. We consider Definition 1.17
because it is the standard one in the theory of almost periodic functions (and we obtain
the strongest results in this case). See, e.g., [18, 46]. A

Theorem 1.21. There exists an almost periodic sequence { fi }rez C C (with respect to the
usual metric) which is not limit periodic.

Proof. Tt suffices to consider, e.g., the sequence {e*},cz (or also [46, Theorem 1.27]). [

Theorem 1.22. Any limit periodic sequence is almost periodic and any almost periodic
sequence is asymptotically almost periodic.

Proof. 1t suffices to consider Theorems 1.3, 1.7, and 1.15 together with Definitions 1.1,
1.13, and 1.17. O
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1.3 Constructions of almost periodic and limit pe-
riodic sequences

In this section, we prove several theorems which facilitate to find almost periodic and
limit periodic sequences having certain specific properties. In Theorem 1.23, we consider
sequences for k € Ny; in Theorem 1.25 and Corollary 1.26, sequences for k € Z obtained
from almost periodic sequences for £ € Ny; and, in Theorems 1.27 and 1.29, sequences
for k € Z.

Theorem 1.23. Let ¢, ..., om € X and j € N be arbitrarily given. Let {r,},en be an
arbitrary sequence of non-negative real numbers such that

irn < 00. (1.3)
n=1

Then, any sequence {@x tren, € X, where
YK € Orl ((pkf(erl)) ) k€ {m+1772m+1}7
Pk € Oh (gok—2(m+1)) ) k€ {2(m + 1)7 SR 73<m + 1) - 1}7

Pk € Oh (Spk—j(m-i—l)) ) ke {j<m + 1)7 SR (J + 1)<m + 1) - 1}7
¢k € Or, (Pr—(rnymsn) » K e{(G+1)(m+1),...,2(j +1)(m+1) — 1},
¢k € Op, (Pr2041)m+1) » kK €{2(+1)(m+1),...,3(j +1)(m+1) — 1},

YK € Orz (Sokfj(j+1)(m+1)) ) k€ {j<] + 1)(7’71 + 1)a SRR (] + 1)2(m + 1) - 1}7

ok € O, (Pr—(+1y—1men) » ke {(G+1)"(m+1),
2 1) — 1,

or € Or, (Ch-2(+1-10men)) » k€ {20+ 1" (m+ 1),
30+ D) m+1) — 1),

o € O, (Gr—j1y-1min) » k€ {jG+1)" (m+1),
LD (m 1) -1},

1 almost periodic.
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Proof. Consider an arbitrary ¢ > 0. We need to prove that the set of all e-translation
numbers of {¢,} is relatively dense in Ny. Using (1.3), one can find n(e) € N for which

- 5
<= 1.4
> ne wa
n=n(g)
We see that
Ph4(+1)& =1 (m+1) S Orn<€>(90k)a
Pra2(j+1)nE©=1(m+1) € Orn(5>(¢k)7
(1.5)
Prtj(+1)m©-1(m+1) € Oryioy (9k)
if
0<k<(G+1)"O(m+1).
Next, from (1.5) it follows (consider i € {(j +1)",...,(j +1)"™ — 1}, n € N)
Pt (141) (G411 mt 1) € Ory ey (90),
Prr (412 -1) (1)1 m41) € Orpioy 4oy 1 (P,
Pri(j+1)2E© -1 (mt1) € OTn(a)+Tn<e>+1+"'+7’n<e)+nWk)?
for k€ {0,...,(j +1)"~Y(m + 1) — 1}. Therefore (consider (1.4)), we have
We put
q(e) = (7 +1)"O 7 (m + 1) (1.7)
Any p € Ny can be expressed uniquely in the form
p=k(p) +1(p)g(e) for some k(p) € {0,...,¢q(e) — 1} and I(p) € Ny.
Applying (1.6), we obtain
d (9010’ 90p+lq(€)) =d (90k(p)+l(p)q(€)> SOk(p)Jrl(p)q(s)Hq(s)) (18)

g E
< d (Pr) 1) Prw) + 4 (Prw): Pr+ane)ee) <5+ 5 =&

where p,l € Ny are arbitrary; i.e., lg(¢) is an e-translation number of {p,} for all [ € Ny.
The fact that the set {lg(¢);] € Ny} is relatively dense in Ny proves the theorem. O
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Remark 1.24. From the proof of Theorem 1.23 (see (1.7) and (1.8)), for any € > 0 and
any sequence {yy} considered there, we get the existence of n(¢) € N such that the set of
all e-translation numbers of {¢y} contains {I(j + 1)"©)~1(m + 1);1 € N}; i.e., we have

T ({en} n(e)) = {1 + )" m + 1); L € N} € T ({9}, ) (1.9)

for every € > 0. A

From Remark 1.24 (see (1.9)), we immediately obtain that the resulting sequence {4}
in Theorem 1.23 is actually limit periodic.

Theorem 1.25. Let {¢y}ren, be an almost periodic sequence and let {r,}nen C Ry and
{ln}nen € N be such that
Tnl, — 0 as n — oo. (1.10)

If for any n € N, there exists a set T(r,) of some r,-translation numbers of {pr}
which is relatively dense in Ny and, for every non-zero | = I(r,) € T(ry,), there exists
i=1i(l)e{1,...,l, + 1} with the property that

Pi—1)1+k S Ornln (Spil—k) ) ke {Oa cee >l}a (111)
then the sequence {1 trez, given by the formula
¢k = Pk fO’f‘ ke No, bek =Pk fO?" keZ\ No, (112)

15 almost periodic. N
If for any n € N, there exists a set T(r,) of some r,-translation numbers of {py}

which is relatively dense in Ng and, for every non-zero m = m(r,) € T(ry,), there exists
i=1i(m)e{l,...,1l,+ 1} with the property that

Oi-1ym+k € Oruty (Pim—i-1), k€{0,...,m—1}, (1.13)
then the sequence {xx}rez, given by the formula
Xk = for k € Ny; Xk = Q—(k+1) Jor k € Z ~ N, (1.14)
1 almost periodic.

Proof. We prove only the first part of Theorem 1.25. The proof of the second case (the
almost periodicity of {y,}) is analogous. Let £ > 0 be arbitrarily small. Consider n € N
satisfying (see (1.10))

Paln < % (1.15)

We want to prove that the set T'({1x}, ) of all e-translation numbers of {1} contains the
numbers {£l;1 € T'(r,)}; i.e., we want to obtain the inequality

d(wk;wkil) <e, le T(Tn), k €7, (116)

which proves the theorem because {£(; [ € T'(r,,)} is relatively dense in Z.
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First of all we choose arbitrary [ € T'(r,,). From the theorem, we have i = i(l). Without
loss of generality, we can consider only +I. (For —I, we can proceed similarly.) Because of
l, € Nand [ € T(r,), from (1.12) and (1.15) it follows

€
d(wlwwk—&-l) < §7 kgé {_l7"'7_1}7 ke Z. (117)
Let k € {—I,...,—1} be also arbitrarily chosen. Evidently, we have
E+(1—dle{—i,...,—(i—1)—1}

and

d (Vr, Yrt) < d (Y, Vrr—int) + d (Vi Yt
=d (Sp—k, 90(1'71)171@) +d (90(171)171{, 901+k) .

The number (i — 1)l is an (¢/3)-translation number of {¢x}. It follows from (1.15) and
from ¢ <[, + 1. Therefore, we have

(1.18)

€
d (QD—k, Sp(i—l)l—k) < 3 (1.19)
Using (1.11) and (1.15), we get
€
d (90(1'—1)1—1@, %0u+k) < Tl < 3
Thus, it holds
2e
d (Ql—1)i—ks Pr4k) < 3 (1.20)

Indeed, (i — 1) is an (g/3)-translation number of {¢x} (consider again (1.15) and the
inequality i — 1 < [,,).
Altogether, from (1.18), (1.19), and (1.20), we obtain

e 2¢

d (Vr, Vi) < 3 + 3¢ (1.21)

Since the choice of k, [ is arbitrary (see (1.17)), (1.21) gives (1.16). O

Corollary 1.26. Let m € Ny, j € N, the sequence {@g}ren, be from Theorem 1.23, and
M > 0 be arbitrary.
If for alln > M, n € N, there exists at least one 1 € {1,...,j} satisfying

QiG+1)"(mt)+k = La+1)G+) me)—k> kB € {0, (7 +1)"(m + 1)}, (1.22)

then the sequence {Vy}rez given by (1.12) is almost periodic.
If for alln > M, n € N, there exists at least one i € {1,...,7} satisfying

Ci(j+1)m (m41)+k = P+ G+ (meD) k-1, K€ {0,..., (G +1)"(m+1) — 1}, (1.23)

then the sequence {xx}rez given by (1.14) is almost periodic.
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Proof. We put
1
n 7

l,:=1, T(r,) =T ({gpk},n (%)) for all n € N,

Tp 1=

where T ({¢r},n(e)) is defined in (1.9). Since we can assume that n(1/2) > M — 1, it
suffices to consider Theorem 1.25 and Remark 1.24 (using (1.22) and (1.23), we get (1.11)
and (1.13), respectively). O

Theorem 1.27. Let @y, ...,p, € X and j € N be given and let {r;}ien C Ry satisfy
D ri< o0, (1.24)
i=1

Then, every sequence { ¢ trez for which

S Om (kaf(nJrl)) ) ke {77, + 17 s ,2(71 + 1) - 1}7

YK € Om (gpk—j(n—&-l)) ) k€ {j(?’b + 1)a sy (] + 1)(” + 1) - 1}7
Yk € Or‘z (¢k+(j+1)(n+1)) ’ k€ {_(] + 1)(” + 1)7 SR _1}7

o € O, (Sok+j(j+1)(n+1)) )
ke{—jG+D)n+1),....—G -G +1)(n+1) -1},

¢ € Oy (Pr-(412(n41)) -
ke{(+1D)n+1),. . .,G+D)n+1)+G+1)3*n+1)—1},

1 € Oy (0r—jGr12(m11)) 5
Ee{(+D)n+D+G -G +D*(n+1),...,
G+Dn+1)+50+1)>2n+1) -1},

or € Oy, (@k+(j+1)3(n+1)) )
ke{-(G+1>n+1)—jG+Dn+1),...,—j(i+1(n+1)—1},

¢ € O, (@k+j(j+1)3(n+1)) )
ke{—jG+1*n+1)—4(G+1)(n+1),...,
=D+’ +1) =G+ Dn+1) -1},
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¢k € Oy (Phi(r12i-1(nt)) 5
ke{—(G+1)* "+ 4G+ +4iG+1)(n+1),...,
— GG+ PG+ )P G+ D))+ 1) — 13,

¢r € O, (90k+3 (G+1)%-t n+1))
Ee{-GG+D* ' 4 4G+ 1P +5G+ 1)) (n+ 1), ...,
—(G=-DE+D* -+ G+ 1P+ G+ 1)) (n+1) =13,
Ok € Oy (on—(j-i-l)zi(n-*-l)) )
Ee{G+D)n+D)+iG+1D*n+1D)+--+5G+D*2(n+1),...,
G+Dn+1)+5G+1)>*n+1)+--
+iG+ D" 2 (n+ 1)+ (G+ 1)*(n+1) =1},

Ok € Oryipy (Prmj1)2i(ne1)) »
Ee{+D)n+D)+G+1D*n+1)+---
+iG+D)* P+ D+ G -G+ D*n+1),. ..,
G+Dn+1)+iG+D*n+1)+-+5(G+1)*n+1) -1},

s limat periodic.
Proof. Let ¢ > 0 be arbitrarily given and let the number i(¢) € N satisfy the condition
(see (1.24))

o0

> i<
Lt 2
i=i(e)
One can easily show that
{lG+ DO+ 1); 1€ Z) CT({pr}e).
Of course, this inclusion proves the theorem. n

For n = 0, 7 = 1, we get the most important case of Theorem 1.27 which reads as
follows.

Corollary 1.28. Let ¢y € X and {g;}ien C Ry satisfying
Y ei< oo (1.25)
i=1

be arbitrary. Then, every sequence {1y }rez for which

wk € Oal (¢k—20)7 ke {1} = {2 - 1}7
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Uk € Oc, (Yry21), ke {-2,-1},
Ur € Oy (Yp_92), k€{2,...,24+22 -1},
U € Op, (Ypyes), ke{-2°—2,... —2—1},
U € O, (Vp_g), ke{24+2%...,2+22 42— 1},

Ur € Oy, (Vpyopin), ke {=2%1—...28 2. ... 2% 3 ... 925 9 1}
Uk € Ogyyy (Vp02i), keE{2+422 4 42772 2422 4. 422422 1}

18 limit periodic.
Theorem 1.29. Let @y, ..., 0m € X be given, {r;}ien C Ry, {Jjitien C N, and n € Ny be
arbitrary such that m +n s even and

o0

> riji < 0. (1.26)

i=1

For any ©mi1, - @man, if one puts

m+n m+n
¢k = SOkerTJrnv ke {_ }a

5 Ty
M::m;—n’ N:=m+n
and arbitrarily chooses
Uk € Oy (Yryny1), k€{-N-M-1,...,—M -1},
Up € Op (Urgny1), ke{-aN-M-1,...,—(1 —1)N — M — 1},

U € Op, (Vp-n_1), ke{M+1,.... N+ M+1},

wk € 07‘1 (¢k—N—1)7 k€ {(]1 - 1)N+M+177JIN+M+ 1}7

Yr € Op, Wkgp), k€{—Di—Dic1— - —P1y.vos—Dic1 — - — D1},

Uk € O, (Ukip,)s k€{—Jivi—Dici— - —p1y-oo,—(Ji — V)pi = Dic1 — -+ — 1},
e € Op, (Vk—p,), k€{pia+--+p1,....,0i+pic1 +-- -+ 01},
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Yk € O, (Vr—py), ke{(i—Vpi+pici+--+p1,...,Jipi +Dica + -+ 1},

where
pri=((N+M+1)+1,  p:=2(hHiN+M+1)+1,
p3 = (2ja+Up2, ... pii= (200 + pica, -,
then the resulting sequence {1 trez is limit periodic.
Proof. Consider arbitrary € > 0 and a positive integer n(e) > 2 for which (see (1.26))

N 7"<6
( ’L]’L 4

i=n(e)

One can show that
{lpn(s); le Z} - T({,@Z)k}a 5)
which completes the proof. ]

1.4 Application related to almost periodic difference
systems

Let m € N be arbitrarily given. We analyse almost periodic systems of m homogeneous
linear difference equations of the form

Tpy1 = Ap - Tk, ke Z (OI‘ ke Ng), (127)

where {Ay} is almost periodic. Let X denote the set of all systems (1.27).

An important characteristic property of linear difference systems, which makes them
simple to treat, is the well-known superposition principle (see, e.g., [1, 108, 115]). In
particular, since we study homogeneous systems, we obtain that every solution of a system
G € X can be expressed as a right linear combination of m solutions of &; i.e., any
solution {zx} of & can be written as

xp = Py - 2y, kel (Ol" ke No), (128)
for some matrix valued sequence {P;} and some | € Z (I € Ny). Conversely, for any
considered ry, ..., r,, the sequence {z;} defined by the formula

1
rp=DP- | |, keZ(orkeNy,
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is a solution of &. For given & € X determined by { A}, the sequence {P;} is called the
principal fundamental matrix if Fj is the identity matrix. We immediately obtain

k—1
Py =[] Aicn  forallkeN;
o (1.29)
Po=]]4" for all k € Z ~ N.
i=k

Our aim is to study the existence of S € X which does not have any non-trivial almost
periodic solution. We treat this problem in a very general setting and this motivates our
requirements on the set of values of matrices Ay.

We need the set of entries of A, to be a subset of a set R with two operations and
unit elements such that R with them is a ring, because the multiplication of matrices Ay
has to be associative (consider the natural expression of solutions of (1.27), i.e., consider
(1.28) and (1.29)). We also need the set of all considered Ay to form a set X which has
the below given properties (1.33); and we need that there exists at least one of the below
mentioned functions Fy, Fy : [—1,1] — X (see (1.34), (1.35)). The conditions (1.34) are
common. However, the main theorem of this chapter (the existence of the above system
G e X) is true, e.g., for many subsets of the set of unitary or orthogonal matrices which
contain matrices having eigenvalue A = 1. Thus, we also consider the existence of F5.

Let R = (R,®,®) be an infinite ring with a unit and a zero denoted as e; and ey,
respectively. Symbol M (R, m) denotes the set of all m x m matrices with elements from R.
If we consider the i-th column of U € M(R,m), then we write U;; and R™ if we consider
the set of all m x 1 vectors with entries attaining values from R. As usual, we define the
multiplication - of matrices from M(R, m) (and U-v, U € M(R,m), v € R™) by @ and ©.
Let d be a pseudometric on R and assume that

operations @ and ©® are continuous with respect to d. (1.30)

In particular, we have pseudometrics on R™ and M(R,m), because M(R, m) can be
expressed as R™*™; ie., d in R™ and M(R,m) is the sum of m and m? non-negative
numbers given by d in R, respectively. For simplicity, we also denote these pseudometrics
as d.

The vector v € R™ is called non-zero (or non-trivial) if d (v, (eo, ..., €9)T) > 0. We
say that a non-zero vector (rq,... ,rm)T, where 71,...,7r, € R, is an ej-eigenvector of
Ue M(R,m) if

1 T
altv- 1,1 : =0,
7n?TL Tm
and that V € M(R,m) is regular for a non-zero vector (ry,...,r,)T € R™ if
1 €o
al{v-l:1],]: > 0. (1.31)
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Next, we denote

€1 € ... €
€hp €1 ... €

T=|. 7 |l eMRBRm).
€ € ... €1

If for given U € M(R,m) and X C M(R,m), there exists the unique matrix V' € X (we
put V =W if d(V, W) = 0) for which

U-V=V-U=1I,

then we define U1 := V and we say that V is the inverse matrix of U in X.
For any function H : [a,b] = X (a <0< b, a,b € R) and s € R, we extend its domain
of definition by the formula

) H(o)- (H(b)" for s> 0;
H(s) = {(H(a))l “H(o) fors<0ifa<0, (1.52)

where s = lb+ o for | € Ny, 0 € [0,0) or s =la+ o for | € Ny, 0 € (a,0]. Hereafter, we
restrict coefficients Ay, in (1.27) to be elements of an infinite set X C M(R,m) such that

TeX; UVeX = U-VeX, U’ existsin X; (1.33)
and either
there exists a continuous function F} : [—1,1] — X satisfying
Fi(0) = TZ; Fi(t) = FY(—t), te]o,1]; (1.34)

and matrix F7(1) has no ej-eigenvector
or

there exist continuous Fy : [—1,1] — X, ty,...,t, € (0,1], 6 > 0 such that

Fy(0) = Z; Fy <i8i) :ﬁFg (si)s  S1-..,8p € [—1,1]; (1.35)

and, for any v € R™, one can find j € {1,..., ¢} for which v is not an e;-eigen-
vector of Fy(t), t € (max{0,t; — ¢}, min{¢; +9,1}).

Remark 1.30. A function F; satisfying (1.34) exists, e.g., if the considered pseudometric
d: X x X — R{ is such that the map U + U~! is continuous on X and if there
exists a continuous function G : [0,1] — X which satisfies that at least one of matrices
G71(0)G(1), G(1) G71(0) does not have an e;-eigenvector.

Similarly, the conditions in (1.35) are realized if the map U + U~ is continuous on X
and if there exist continuous functions Gy, ..., Gy : [0, 1] — X such that

p

G;(0) - G, (Z SZ) ot § KR ORAE
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and
(G] ( sz> ~Gj(o)) =[G '0)- G (s:)
G; (Z Sz) -G7H(0) = H Gj(s:) - G7H(0)
and »
(Gj(o) 'Gj (Z )) =116 (-7 0,
where

je{l,....q}, peN, s1,...,5,€][0,1];
for all j1,jo € {1,...,q}, one can find r = r (41, j2) € (0,1] with at least one property from

G;,1(0) - Gy, (1) = G3(0) - Gpp(r),  G31(0) - Gp,(1) = G3(0) - Gju(r)

J1 J2 J2 J1

or
Gjl(l) ’ G_]_ll (0) = sz (7’) ' G]_Ql (0)7 sz(l) ' Gj_gl (O) = Gjl (7’) ' Gj_ll (O>7
and the condition on arbitrary v € R™ is the same as in (1.35), where
Fy(t), te (max{0,t; — ¢}, min{t; +9,1}),

is replaced by

We recall that, for Uy, ..., U, € X (p € N), we define
1
Up=U-Us--Uy,  []Ui=0U, Upa-- Ui
=1 i:p
For the above function H, we also use the conventional notation
(H(s))°:=Z, H7'(s):=(H(s))™" for all considered s € R.

Actually, a closer examination of our process reveals that the pseudometric d can be defined
“only” on the set

{Fj(s1)--- Fj(sn)-v;v€R™ s1,...,8, € [-1,1]}

and the set {Fj(t); t € [—1,1]} can be countable for each j € {1,2}.
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Remark 1.31. Now we comment our assumptions on R and X. Because of (1.30), the
requirement about the existence of § > 0 (in (1.35)) can be omitted. Note that R does not
need to be commutative. Thus, the set of all solutions of (1.27) is not generally a modulus
over R with the scalar multiplication given by

1 1
Ty, (N OF

T r©
where {(x},...,z7)T} is a solution of (1.27), 7 € R, k € Z (k € Ny). Indeed, the expression

1
Lo

P, - :x(l)'(Pk)1+"'+$81'(Pk)m

m
)

does not need to hold for considered k and a solution {x)} of (1.27) (see (1.28)).

For the main requirements, consider two results concerning the existence, the uniqueness
(and the uniform asymptotic stability) of an almost periodic solution of the almost periodic
real (non-)homogeneous linear system (1.27) for k € Z in [188] or directly the following
simple example. Let R := R, m := 2, and

0 10
s {0 W)zl
0 10 100 0
Xg._{<10_l 0),ZGZ}U{(O 10_1),ZGZ}

with the usual metric on R. For X, every & € X has all solutions almost periodic; at the
same time, for Xy, it is easy to find a system from X which has only one almost periodic
solution—the trivial one. A

To prove the announced result, we need a sequence {ay}ren, of real numbers, which
has special properties (mentioned in the below given Lemmas 1.32-1.35). We define the
sequence {ag tren, by the recurrent formula

1
ap:=1, a;:=0, Qgnih 1= Ak =~ 5o k=0,...,2"—1, neN. (1.36)
For this sequence, we have the following auxiliary results.
Lemma 1.32. The sequence {a;} is almost periodic.

Proof. The lemma follows from Theorem 1.23, where it suffices to put ¢ = ax (k € N)
and

X=R, m=0, j7=1 ¢y=1, r,=—, nelN

on

Lemma 1.33. The identity
Aon+2_1_; = —Agn+14; (137)

holds for any n € Ny and i € {0,...,2" — 1}.
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Before proving this lemma, observe that (1.37) is equivalent to

ont2_1—4
Z ar =0, neNy, ie{0,...,2"—1};
k=2n+144
ie., to
2n 1144 2" 21—
Z ap = Z ag, nGNO,iG{O,...,2"—1}.
k=0 k=0
Proof of Lemma 1.33. Obviously, (1.37) is true for n € {0, 1}, because
1 3 1
= — — — — — — — ar = — —_ -
a2 as 9 a4 ar 1’ 5 a6 4’
ie.,

1 3 7 4 6
7
ST ST PRI SO Sy
k=0 k=0 k=0 k=0 =0
Suppose that (1.37) is true also for 2,...,n — 1. We choose i € {0,...,2" — 1} arbitrarily.
(We have 22 — 1 — ¢ > 21 4+ 27) From (1.36) and the induction hypothesis, it follows

that

Qon+2_1_; + Qon+1y9ny; = —2%, Qon+14; — Qont+lyon; = 2in
Summing up the above equalities, we get (1.37). ]
Lemma 1.34. We have .
Y ap>1, neN,. (1.38)
k=0

Proof. Evidently, ag = ag + a; = 1. It means that (1.38) is true forn = 0 and n = 1 =
2! — 1. Let it be valid for arbitrarily given 2 — 1 and all n < 2P — 1, i.e., let

> ap>1, n<2’—1 neN,.
k=0

Considering the definition of {a}, we obtain

2P 4j—1 201 2P+j5—1 Jj—1 1
Yooa=> a+ > akz1+zak—j2—pzl+1—1=1
k=0 k=0 k=2p k=0
for any j € {1,...,2P}. Lemma 1.34 follows from the induction principle. O
Lemma 1.35. We have
on_1
> =1, (1.39)
k=0
antipon_q 1
Y a=2- = (1.40)
k=0

where n € Ny, 1 € N.
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Proof. 1t is possible to prove this result by means of Lemma 1.33, but we prove it directly
using (1.36) and the induction principle. We have

(10:1, a0+a1:1, a0+a1+a2—|—a3:1.

If we assume that

211
>t
k=0
then we get (see (1.36))
2n—1 | 2n—1
dom= ) at )
k=0 k=0 k=on—1
27L71_1 27L71_1 1 on 1_1
=Y at ¥ (wopm) -2 X a1
k=0 k=0 k=0
Therefore, (1.39) is proved. Analogously, applying (1.36) and (1.39), one can compute
2ntipon—1 anti_g antipon—1
2 m= ) at Y
k=0 k=0 f=2n-+i
on_1
1 1
+ Z (ak 2n+z) + ( 21)
k=0
which gives (1.40). O

Applying matrix valued functions F}, F3, we obtain the next lemma.

Lemma 1.36. For each j € {1,2}, any n € Ny, and each i € {0,...,2" — 1}, it holds

Fj(a2n+2_1_i) = Fj_l (a2n+1+i)

and, consequently,

2nt+2_1—4 2ntlyg
II Faw= ][ Flaw=1
k=2n+14q k=2n+2_1—{

Proof. Obviously, this lemma is a corollary of Lemma 1.33. Consider (1.34) and (1.35)
with the fact that the multiplication of matrices is associative. O

From Lemma 1.35 (see (1.35)), we obtain the following formulas for F5.

Lemma 1.37. The equalities

2m—1 antiyon—] 1
;Ho Fy (ai) = Fy(1), BO Fy(ay) = F (2 — 2—)

hold for alln € Ny and v € N.
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Now we can prove the main result of Chapter 1.

Theorem 1.38. There exists a system of the form (1.27) which does not possess a non-zero
almost periodic solution.

Proof. First we suppose that the coefficients A; belong to X so that there exists a func-
tion F; from (1.34). Using Theorem 1.6, we get the almost periodicity of the sequence
{F\(ax) }ren,, where {ay} is given by (1.36). We want to show that all non-zero solutions
of the system &; € X determined by {F(ax)} are not almost periodic.

By contradiction, suppose that there exist ¢q,..., ¢, € R such that the vector valued
sequence
(&1
{fiy =P | 1 | ¢, keN, (1.41)
Cm

where { Py }ren, is the principal fundamental matrix of &1, is non-trivial and almost pe-
riodic; i.e., suppose that &; has a non-trivial almost periodic solution {f;}. Since {f} is

almost periodic, (cy,...,¢n)T is non-zero, and it holds
C1
Li=U-Fi(1)- | for any 7+ € N and some U; € X, (1.42)
Cm
we know that (see (1.31))
Fi(1) is regular for ¢ := (c1,...,cm)". (1.43)

Considering (1.36), the uniform continuity of F} and the continuity of the multiplication
of matrices (see (1.30)), Lemma 1.36, and (1.41), from the first part of Theorem 1.25 (see
the proof of Corollary 1.26 and again Lemma 1.36), one can obtain that the sequence

{9k } ez, where
9k = fr, k€ Np; Ok = f-k, Kk €Z Ny, (1.44)

is almost periodic as well. Now we use Theorem 1.3 for {pr} = {gx} and {h,}neny =
{2"},en (we can also consider directly {¢r} = {fx} and use Remark 1.2). Theorem 1.3
implies that, for any € > 0, there exists an infinite set N(g) C N such that the inequality

d(gryom, Grepone) <€, k€L, (1.45)

holds for all ny,ny € N(e).
Using (1.34), we get d (¢, F1(1) ¢) > 0 and (consider (1.43))

V=d(Fi (1) ¢, Fi(1l)- Fi(1)-¢) > 0. (1.46)
From Lemma 1.36 (for i = 0), (1.41), and (1.44) (see also (1.42)), we have

g=c¢ g=F1)-¢c ..., gm=F(1)-c (1.47)
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where n € N is arbitrary. Hence, considering (1.36), it holds
d(gaiyon, Fi(1) - Fi(1)-¢) -0 as n — oo (1.48)

for every ¢ € N, because F} is uniformly continuous and the multiplication of matrices is
continuous. We also have

¥
d(gzravzm, F1(1) - ) < 5 (1.49)

for all ny,ny € N (9/2). Indeed, put k = 2" in (1.45) and consider (1.47) for n = ny + 1.
If we choose n; € N (¥/2) and put i = ny in (1.48), then there exists ng € N such that, for

any n > nyg, it holds
v
d (gamiq2n, F1(1) - F1(1) - ¢) < 5
Thus, for arbitrarily given ny > ng, ne € N (9/2), we obtain
vV

d<g2n2+2n1,F1(]_> . F1<].) . C) < 5 (150)

Finally, applying (1.46), (1.49), and (1.50), we have
9 S d(Fl(l) - C, ggn2+2"1> + d(ggn2+2n1,F1(1) . Fl(l) : C) < 1.

This contradiction gives the proof when we consider (1.34) for k € Ny.
Let k € Z. Then, we can consider the system &; determined by the sequence

B, = Fl(ak)u ke No, B, = Fl(—a,k,l), k ez~ No. (151)

Since the sequence {| a |}ren, is almost periodic (see Theorem 1.6) and has the form of
{©k tren, from Theorem 1.23 and since it is valid (see (1.37))

|a2n+2,1,i| = ‘a2n+1+i ‘, n e No, 1 € {0, .. .,2” — 1},

the fact that { By} is almost periodic follows from the second part of Corollary 1.26, from
Corollary 1.10, and Theorem 1.6. Next, the process is same as for k € Ny. Let { Py }rez be
the principal fundamental matrix of &; and Ok := fr, k € Z. Also now we have (1.45) and,
consequently, we get the same contradiction.

Let the coefficients Ay belong to X so that there exists a function Fy from (1.35).
Consider the numbers ¢y,...,¢, € (0,1] and § > 0 from (1.35). Without loss of generality,
we can assume that

d<t;<---<t, and t,<1-04. (1.52)
Indeed, if ¢; = 1, then we can put ¢; :== 1 — /2 and redefine §. We repeat that any
vector v € R™ determines some j € {1,...,q} (see again (1.35)) such that v is not an

ep-eigenvector of Fy(t) for t € (t; — 0,t; + 6).

From Theorem 1.6 it follows that the sequence {Fy(ax)}ren, is almost periodic. Thus,
it determines a system of the form (1.27). We denote it as G5. Suppose that system S, has
a non-trivial almost periodic solution {xy }xen,. For the principal fundamental matrix { Py}
of &4, we have

xr = B, - xg, k’ENQ,
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where the vector xy is non-zero. Using this fact and taking into account Lemma 1.34
and (1.35), we obtain

T, = Fy(t) - F3(1) -2y for some i € N, ¢t € [0,1), (1.53)

and for arbitrary n € N. From Lemma 1.37, we also get

xon = Fy(1) -y for all n € Ny (1.54)
and .
Ton+igogn = F2 (1 — E) : Fg(l) - To for all n € No, 1€ N. (155)

Analogously as for {f;}, one can extend {z}ren, by the formula
T i=x_p, kéeZ~Ny,

for all k € Z so that the sequence {xy}rez is almost periodic as well. Now we apply Theo-
rem 1.3 for the sequences {xy }rez and {2"},en. For any € > 0, there exists an infinite set
M (e) € N such that, for any ny,ny € M(e), we have

d($k+2n1,$k+2n2) <eg, keZ. (156)

Since Fy is uniformly continuous and the multiplication of matrices is continuous, for
arbitrary i € N and € > 0, we have from (1.36) and (1.54) that

d (Tgiyon, Fo(1) - F5(1) - 29) < e for sufficiently large n € N. (1.57)

Because of the almost periodicity of {zx} and (1.53), the matrix F5(1) has to be regular
for xg. Let ¢ > 0 be arbitrarily small and ny; € M(e) arbitrarily large. From (1.56) and
(1.57), where we choose k = 2"~ and i = 2™~ for j € {0,...,ny}, it follows that, for
given ny, there exists sufficiently large ny € M(e) for which

d($2n1—i+2n1>F2(1) FF3(1) - o) < d(x2"1—.7'+2"17x2”1—f+2"2)

+ d (Tony—syona, Fo(1) - Fo(1) - ) < 2e. (1.58)
Since ¢ (in (1.58)) is arbitrarily small, choosing j = 0, we get
d (zony+1, Fo(1) - F5(1) - 29) =0
which gives (see (1.54)) that Fy(1) xq is an ej-eigenvector of Fy(1), i.e., we have
d (Fy(1) - g, Fo(1) - F5(1) - ) = 0. (1.59)

If we choose j = 1, then we obtain (consider (1.55))

d (F2 (%) - Fy(1) - wo, Fo(1) - Fy(1) -x0> = 0.

Analogously, for any j (the number n; is arbitrarily large), we get

Y

d (F2 <1 _ l) B(1) - 20, Fy(1) - Fo(1) - xo) ~0.
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Thus,
1

1 1 .
d (FQ <2 — 2—]) - X, F2 <2 — 2j—1) . .To) = 0, J € N. (161)
1 1 1 1 1
FQ <2_2_j) :F2 (5"‘2— 2j—1) :F2 (§> ~F2 <2_ Qj_l)

and (see (1.59) and (1.60))

and we have

Because of

from (1.61) it follows

1
d (F2 <_> - Fy(1) - 20, Fy(1) - ;1;0> =0 forall j €N,

27
i.e., F5(1) g is an ej-eigenvector of F»(277) for all j € N.
Since any number ¢ € [0, 1] can be expressed in the form

[e.9]

Z %, where a; € {0, 1},
i=1

for considered 6 > 0, there exists n € N such that, for every ¢t € [0,1], there exist

ai,...,a, € {0,1} satisfying

n

t—Z%

i=1

Thus, F5(1) z is an ej-eigenvector of F5(t; + s;) for some |s; | < 0 and any j € {1,...,q}
which cannot be true. This contradiction shows that {zj }ren, is not almost periodic.

If one considers the system &, obtained from s as in (1.51) (after replacing &; by &,),
then, similarly as for /| and k € Ny, one can prove that ég € X and that any its non-trivial
solution {xj}rez is not almost periodic. O

Remark 1.39. Let a non-zero Fi(1)v € R™ not be an e;j-eigenvector of matrix Fi(1)
from (1.34); i.e., the condition (1.34) be weakened in this way. Then, from the first part
of the proof of Theorem 1.38, we obtain that the sequence {fi}, given by (1.41), is not
almost periodic for (cy,...,¢,)T = v. It means that there exists a system &! € X with
the principal fundamental matrix { P!} such that the sequence { P! v}ren, or { P} v}rez is
not almost periodic.

Analogously, if one requires in (1.35) only that, for a non-zero vector v € R™, there
exists t € (0, 1] for which F»(1)v is not an e;-eigenvector of Fy(t), then there exists a sys-
tem &% € X satisfying that the sequence {P?v}iez (or {P?v}ien,), where {P?}rez (or
{P?}1en,) is the principal fundamental matrix of G2, is not almost periodic. A



1.4 Application related to almost periodic difference systems 31

The condition

p p
£ <Z si> =[[F(s1). s1.....sp€[-1,1], pEN, (1.62)
i=1 =1

in (1.35) is “strong”. For example, from it follows that the multiplication of matrices from
the set {Fy(t); t € R} is commutative. We point out that, for many subsets of unitary or
orthogonal matrices, it is not a limitation and that the method in the proof of Theorem 1.38
can be simplified in many cases. We show it in two important special cases.

Example 1.40. If for any non-trivial vector v € R™, there exists e(v) > 0 with the
property that
Fy(t) -v ¢ O py(v)  forallt >1 (see (1.32)),

then the fact, that the systems G5 and S, from the proof of Theorem 1.38 do not have
non-trivial almost periodic solutions, follows directly from Lemma 1.34 and (1.62). Indeed,
the set T'({zx},e(x)) \ {0} is empty for any non-zero solution {zy}. O

Example 1.41. Let function Fy, in addition to (1.35), satisfy

for some positive irrational number s, (1.52) hold, and p € N be arbitrary. Then, the
system & determined by the sequence {Ax} := {F»(k/p)}, where k € Ny or k € Z, has no
non-trivial almost periodic solution.

The function Fy(t/p), t € R, is continuous and periodic with period ps (see (1.62),
(1.63)). Using the compactness of the interval [0, ps|, (1.62), and Theorem 1.3, we get that
{F3(k/p)}rez is almost periodic. Then, the almost periodicity of {F2(k/p) }ren, is obvious.

Suppose, by contradiction, that {z)} = { P 2o} is a non-trivial almost periodic solution
of &. We mention that there exists 6 > 0 satisfying that, for any non-zero v € R™, one
can find j € N such that there exists a positive number ¥(v) for which

Iv) < d <F2 (j; + t> - U,v) L te(=5,0), (1.64)

because
{Fy(k/p); k € N} is dense in {Fy(t);t € R}. (1.65)

Evidently, (1.65) gives that
{Fy(k/p);k € N} is dense in {Fy(t);t € R} (1.66)

for any set N which is relatively dense in N.

Since the multiplication of matrices is continuous, there exists ¢ > 0 which satisfies
that every vector u with the property d(u, zy) < € determines the same j in (1.64) as zo
and one can find

V(o)

2

I(u) > (1.67)
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From (1.62), we see that

k-1 .
1=0

Let [ be an arbitrary positive (J(x)/2)-translation number of {z;}. Thus, let

d(CL’]H_l,Ik) < @ for all k € N (169)

and let N be the set of all positive e-translation numbers of {x)}. Since
>

— D

1= K3

, keN,

k+l-1 . k-1 .

ko1 -1
NN Gl
p

]
o 2p

for all K € N, we have (see again (1.62))

k—1 . k-1 .

From (1.66), where we replace 1/p by [/p, we get the choice of k € N such that

’ <0 (mods) (1.71)

for j in (1.64) determined by xy. From (1.64), (1.67) (consider the definition of ¢), (1.68),
(1.70), and (1.71), we have
19(1’0)

2

for at least one k € N. But, at the same time, we have (1.69). This contradiction gives that
{z}} cannot be almost periodic. See also the proof of the first part of [176, Proposition 2],
where almost periodic unitary systems are studied. O

d(Tpt1, i) >



Chapter 2

Solutions of almost periodic
difference systems

In this chapter, we study almost periodic solutions of the almost periodic homogeneous
linear difference systems

Our aim is to analyse the systems (2.1) which have no non-trivial almost periodic solution.
We are motivated by paper [176], where unitary systems (determined by unitary matri-
ces Ay) are studied. One of the main results of [176] says that the systems whose solutions
are not almost periodic form an everywhere dense subset in the space of all considered
unitary systems. We remark that important partial cases of the theorem and the process
are mentioned in [169] and [63, 104, 172], respectively.

In the proof of this result, it is substantially used that the group of considered matrices
is not commutative. Thus, e.g., the dimension of the systems has to be at least two. We
use methods based on our general constructions, because we want to generalize the result
also for commutative groups of matrices (especially, for the scalar case). It implies that
we can treat the problem in a general setting. Scalar sequences attain values in a metric
space on an infinite field with continuous operations with respect to the metric similarly as
scalar discrete processes in [45], where the main results are proved only for real or complex
entries.

The almost periodicity of solutions of almost periodic linear difference equations is
studied in [5] and [188] (non-homogeneous systems). We can also refer again to [45].
Explicit almost periodic solutions are obtained for a class of these equations in [83]. For
other properties of (complex) almost periodic linear difference systems, see [15, 110, 148|.
For difference systems of general forms, criteria of the existence of almost periodic solutions
are presented in [26, 162, 186, 189]. The existence of an almost periodic sequence of
solutions for an almost periodic difference equation is discussed in [93] (and [87] as in
[189]). Concerning the existence theorems for almost periodic solutions of almost periodic
delay difference systems, see [70] or [190] (methods and techniques from that paper are
similarly used and developed in [191]).

This chapter is organized as follows. We begin with notations which are used through-
out this chapter. Then we introduce general homogeneous linear difference systems and

33
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a metric in the space of all considered almost periodic systems. To formulate our results
in a simple and consistent form, we introduce the concepts of transformable and weakly
transformable groups of matrices. One of the conditions in the definition of transformable
groups means that it is possible to transform any matrix into any other using finitely
many arbitrarily small “jumps” in the complex case (for usual metrics on the group of
considered matrices). We show that the group of all unitary matrices, the group of all
orthogonal matrices of a dimension at least two with determinant 1, and some their sub-
groups are transformable. In addition, examples of weakly transformable groups (which
are not transformable) are given.

In Section 2.3, we present a condition on weakly transformable groups ensuring that, in
any neighbourhood of every considered system, there exists a system which does not possess
an almost periodic solution other than the trivial one. Analogously, the corresponding
Cauchy problem is explicitly solved as well.

2.1 Preliminaries

We use the following notations: Ny for the set of positive integers including the zero;
R* for the set of all positive reals; R} for the set of all non-negative real numbers; and
symbol i for the imaginary unit. Let F' = (F,®,®) be an infinite field with a unit and
a zero denoted as e; and e, respectively; and let m € N be arbitrarily given. Henceforth,
we consider m as the dimension of difference systems under consideration.

Symbol Mat(F,m) denotes the set of all m x m matrices with elements from F and
F™ the set of all m x 1 vectors with entries attaining values from F. As usual, we define
the identity matrix I and the zero matrix O. Analogously, for the trivial vector, we put
o = leg,€o,...,e0)7 € F™. Since F is a field, we have the notion of the non-singular
matrices from Mat(F,m). For any invertible matrix U, we denote the inverse matrix
as U™, For arbitrary Uj, ..., U1, € Mat(F,m), j € Z, n € N, we define

Jt+n
[10: =0y Uy Uy
i=j
J
H Ui == j+n ” Uj+n—1 ce Uj-
i=j+n

Let o be a metric on F' and assume that the operations & and © are continuous with
respect to ¢ and that the metric space (F, g) is complete. The metric ¢ induces the metric
in F™ and Mat(F,m) as the sum of m and m? non-negative numbers given by ¢ in F,
respectively. We also denote these metrics as p. For any € > 0 and « from a metric space,
the e-neighbourhood of « is denoted by O¢%(«). Note that the continuity of & and ©®
implies that the multiplication - of matrices from Mat(F,m) (and U - v, U € Mat(F,m),
v € F™) is continuous. All considered sequences are defined for k € Z (or i, € N) and
attain values in one of the metric spaces F', I, Mat(F, m) (or C).
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2.2 General homogeneous linear difference systems

We consider m-dimensional homogeneous linear difference equations of the form
Tpy1 = Ap - Tk, ke Z, (22)

where {Ax} is an almost periodic sequence of non-singular matrices from a given infinite
group X C Mat(F,m). We need the set of all considered Ay to form the group X which
has the below given properties (see Definitions 2.1 and 2.14 below). The set of all these
almost periodic systems is denoted by symbol AP (X).

We identify the sequence { Ay} with the system (2.2) which is determined by {Ax}. In
the space AP (X), we introduce the metric

o ({Ax} {Bi}) = sup o (A, Br),  {Ax} {Br} € AP (X).
S
For ¢ > 0, symbol O7({Ax}) denotes the e-neighbourhood of {A;} in AP (X).

2.2.1 Transformable groups

In this subsection, we introduce the concept of transformable groups (cf. [141, Defini-
tion 2.1]) and give illustrative examples of such groups.

Definition 2.1. We say that a group X C Mat(F,m) is transformable if the following
conditions are fulfilled.

(i) For any L € R and ¢ > 0, there exists p = p(L,e) € N with the property that,
for any n > p (n € N) and any sequence {Cy,C1,...,C,} C X, L < o(C;,0),
i€{0,1,...,n}, one can find a sequence {Dy,...,D,} C X for which

D; € O¢(Cy), i€e{l,...,n}, D, - Dy- Dy = C,.

(ii) The multiplication of matrices is uniformly continuous on X and has the Lipschitz
property on a neighbourhood of I in X. Especially, for every ¢ > 0, there exists
n = n(e) > 0 such that

C-D,D-CeQC) if CeXx, DeOJ(I)NX;
and there exist ¢ > 0 and P € R" such that

C-D,D-CeO(C) if CeOI)NX, DeOI)NX, e (0,0).

(iii) For any L € R™, there exists @ = Q(L) € RT with the property that, for every ¢ > 0
and C, D € X \ 0%(0) satisfying C € O2(D), it is valid that

C™'-D,D-C™"e0,().
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For simplicity, in the below mentioned examples, we consider only the complex or real
case and we speak about the classical case. Henceforth, we use known results of matrix
analysis which can be found, e.g., in [80, 82, 94, 106].

Let us consider

((Fv@vG))a Q('7 )) = (((C’_'_a ')7 | T D or <<F7@7®)7 Q('v )) = <<R7+7 )7‘ T |>)

Evidently, the multiplication of matrices satisfies the Lipschitz condition on any set O%(O).
For an arbitrary matrix norm (especially, for the [;-norm) denoted by || - ||, we have

A" E]

-1 -1
HA _<A+E> HS 1—||A—1-E||

| A7 (2.3)

for any matrices A, £ such that A is invertible and || A~* F'|| < 1. If we have a bounded
group X C Mat(C,m), then from (2.3) it follows that the map C' — C~!, C' € X, has the
Lipschitz property as well. Hence, the condition (iii) is satisfied.

Thus, the conditions (ii) and (iii) are fulfilled for any bounded group X C Mat(C,m).
Further, for any bounded group X, there exists € > 0 for which X N1 O2(0) = (). At the
same time, from the condition (i), we know that X N Of(O) = § for any transformable
group X C Mat(C,m). Indeed, it suffices to consider Cy = I and the constant sequence
{C1,...,Cy,} given by a matrix C' such that ||C'|| < 1.

Let € > 0, a bounded group X C Mat(C,m), and Cy, C4,...,C, € X be arbitrarily
given. The uniform continuity of the multiplication of matrices on X implies the existence
of n = n(e) > 0 such that CD,DC € O¢(C) it D € O(I) N &, C € X. We define the
maps Hy, H, on X x X by

H,((C,D)):=C-D-C', H,((C,D)):=C"'-D-C.

Since H;, H, satisfy the Lipschitz condition, there exists R € R* such that the ranges of
{C} x Oy z(I) N X in both of Hy and H are subsets of OF(I) for all C' € X.

If we replace
1 n n

HE@'HCZ‘Q by HEzCz

1n1=n io=1 =1

where
FIZHI((IvEl))7 FZIHI((E1'017E2))7
Fo=H (- -C--Ey1-Cyy, Ey)),

we see that F; € (’)f;/R(I) NA&, i€ {l,...,n}, implies E; € O(I), i € {1,...,n}. Thus,
from the existence of matrices Fy,..., F, € (’)5/3(1) N X for which

1 n
H El ) H C’iz = COa
i1=n ia=1
it follows the existence of matrices Dy, ..., D, € X satisfying

D; € O%(C;y), ie{l,...,n}, D, - Dy Dy = Cl.
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It means that a bounded group X C Mat(C,m) is transformable if, for any sufficiently
small € > 0, there exists p (¢) € N such that, for all n > p(¢) (n € N), any matrix from X
can be expressed as a product of n matrices from O¢(I) N X.

We point out that several processes in the proofs of the below given results can be
simplified in the classical case. For example, one can use that, for any ¢ > 0, K € R*, and
n € N, there exists £ = £(e, K,n) > 0 for which

Q(Ml'M2"'MnaO)<€7 M17M27"'7MHEO§(<O)’

and
o(My-- M, -u,0) <e, M,...,M,ée0%0),uc 0% o),

if we have M; € OZ(O) for at least one i € {1,...,n} and u € Of(0), respectively.
Now we mention important examples of transformable groups.

Example 2.2. The group of all unitary matrices is transformable. Obviously, it suffices to
show that, for every € > 0, any unitary matrix can be obtained as the n-th power of some
unitary matrix from the e-neighbourhood of I for all sufficiently large n € N. To show this,
let e >0, n € N, and a m X m unitary matrix U with eigenvalues exp (i\1), ..., exp (i\n),
where Ay, ..., A\, € [, 7), be arbitrarily given. We have

U=W.J-W* for some unitary matrix W = W (U),

where J = diag (exp (iA1),...,exp (i\,)) and W* denotes the conjugate transpose of W.
We find a unitary matrix V for which V" = U. By

W* VW= (W VW) =,

we obtain

V =W -diag (exp (i\1/n),...,exp (iAn/n)) - W™

Since the multiplication of matrices is uniformly continuous on the set of all unitary ma-
trices, it remains to consider sufficiently large n € N. O

Example 2.3. Let m > 2 and F = R. In this example, we show that the group SO(m)
of m x m orthogonal matrices with determinant 1 is transformable. Analogously as for
unitary matrices, it is enough to prove that any orthogonal matrix U for which det U =1
is products of n > p(e), n € N, orthogonal matrices from the e-neighbourhood of I for
arbitrary € > 0 and some p (¢) € N. Indeed, it is seen that there exists a neighbourhood
of I which contains only orthogonal matrices with determinant 1.

Let m = 2. Observe that a two-dimensional orthogonal matrix has the form

cosa —sina
sin « cosa J’
where v € [—m, 7), if and only if its determinant is 1. It can be easily computed that

cosay —sinag cosas —sinag \ [ cos(a; +ag) —sin(ag + a)
sin o COoS Oy sin ap COS (vy sin (a1 + ap) cos (a1 + az)
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for a;,as € R and that, consequently, any this matrix (for some a € [—m, 7)) can be
obtained as the n-th power of the orthogonal matrix of this type given by the argument
a/n for all n € N.

Now we use the induction principle with respect to m. Assume that the statement is
true for m — 1 > 2 and prove it for m. Let U be an orthogonal m x m matrix which is not

in any one of the forms
1 of V o
<0 V)’ (OT 1)7 (24)

where V is an orthogonal matrix of dimension m — 1, o € F™~!, and suppose that U has
the element on the position (1, m) different from 0 (in the opposite case, we put U := U in
the below given process). We multiply U from the left by an orthogonal matrix U; which
is in the second form from (2.4) and satisfies that Us := U; - U has 0 on the position (1,m).
For U,, we define an orthogonal matrix Us so that the m-th row of Us is the last column
of U, and so that the first column and the first row of Us are zero except the number 1 on
the position (1,1). Obviously, the product Uy := Us - U, is equal to a matrix which has the
second form from (2.4). Summarizing, we get U = U{ - UL - U;. Thus, one can express any
orthogonal matrix U as a product of at most three matrices of the forms given in (2.4).
Further, the matrices of this product can be evidently chosen so that the determinant of
all of them is 1 if the determinant of the given matrix is 1 as well. Now the induction
hypothesis gives the validity of the above statement. O

Example 2.4. Let a unitary matrix S be given. Let Xg be the set of the unitary matrices
which are simultaneously diagonalizable for the single similarity matrix S, i.e., let

Xg = {S_l -diag (exp (i\1),...,exp (i\n)) =S5 Alyov oy A € [—7r,7r)}.

Obviously, X is a subgroup of the m xm unitary group (different from the group if m > 2).
Since diagonalizable (normal) matrices are simultaneously (unitarily) diagonalizable if and
only if they commute under multiplication, X is a commutative group. Analogously as
in Example 2.2, one can show that Xg is transformable. Further, X is transformable also
for arbitrary non-singular matrix S. Especially, a transformable set does not need to be
a subgroup of the m x m unitary group. O

Example 2.5. Now we consider the set of the unitary matrices with the determinant in the
form exp (ir), r € Q or r € Z. Evidently, these matrices form a group as well. Considering
diagonalizations of unitary matrices and the uniform continuity of the multiplication of
unitary matrices, we get that this group is dense in the group of all unitary matrices.
Thus (see Example 2.2), it satisfies (i). Finally, it is transformable. In general, any dense
subgroup of a transformable set is transformable as well. O

Example 2.6. Let a unitary matrix S be given. Analogously as in Examples 2.4 and 2.5,
we can show that the group

{S* - diag (exp (A1), ...,exp (iAn)) - S; A1, ..., Am € Q}

is transformable. In general, the matrices with eigenvalues in the form exp (ir), where r € Q
or r € Z, from a given commutative transformable subgroup of the m x m unitary group
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form a transformable group if it is infinite. Indeed, if complex matrices A, B commute and
have eigenvalues \q,..., A\, and pq, ..., t,, respectively, then the eigenvalues of A B are
Ay, A2fbjys - - - s Amfhj,,, for some permutation ji, ..., j,, of the indices 1,...,m. O

Now we consider a bounded group X C Mat (C,m) or X C Mat (R, m) satisfying
X NO3;(0) =0 for some L >0 and ¢(d) € N for any § > 0 such that, for all C' € X and
[ > q(5), l € N, there exist matrices C,...,C; € X with the property that

C, € 0D, C,e0(Ch), je{l,....1—1}, C;e04C). (2.5)
This implies (see (iii))
Cit-Cin € Ogpy(DNX, je{l,... .11}, C7H-Ce 0, ,(I)NX.
For 0 = ¢/Q(L) > 0, we have
CyeOf(I) COLI), C;1-Cipe0i), jed{l,....1-1}, C'-Ce0Ol).
Finally, since
Cr (Gt Co) - (O3 C) o (G- ) - (G 0) =

the above mentioned condition is fulfilled (if one puts p(e) = q(¢/Q(L)) + 1). Therefore,
the group X is transformable.

Example 2.7. Let us show that the special unitary group SU(m) (the group of all m x m
unitary matrices with determinant 1) is transformable for m > 2, applying the implication
mentioned above (see (2.5)) for arbitrarily given C' # I, C € SU(m).

There exists an unitary matrix U such that

C=U"-D-U, D=diag(\,...,\n),

where Ay -+ A, = 1. Let ¢1,..., 0, € [0,27] be such that \; = €%, j € {1,...,m}. Since

we have o1+ -+, =0 (mod 27), i.e., 1+ -+, = 2km for some k € {1,...,m—1}.
Evidently, for an arbitrarily given § > 0, there exists ¢ > 0 with the property that we can
change ¢;, j € {1,...,m}, into @;(g;) := ¢; + €, where

m
ZSJ' =0, e1,...,ex€1[0,6), €xg1,...,6m € (—¢,0],
j=1

so that
o (U*-D-U,U* - diag (11, elomEm)) L) < 6. (2.6)

Indeed, it suffices to consider that the multiplication of matrices is uniformly continuous
on the m x m unitary group. We obtain the matrix

U* - diag (ei“"l(al), . ,ei“"’”(am)) -U € SU(m),
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because ¢i(e1) + -+ + @mlem) = 2km.
Let n € N be such that n > 27 /e. We put

1 1 1
6% = - 2 — 1), ... 511€ = n (2™ — ), 511€+1 = s Pr+15
2 2 2
E% = E (27T - ()01)7 s Ez = E (27T - 901?)7 ngrl = _ﬁ Pr+1,
n—1 - n—1
=l er o), g =),
1 n—1
€kt1 *— — n Pk+1,

n

._ noo._
& = 2T — i, Eky1 = —Pk41,

Let us consider the matrices

Cy :=U" - diag <ei¢1(€%), . ,ei“"’”<‘571")> -U € SU(m),

CQ — U* . dlag <ei¢1(€%)’ o ’eitpm<€3n)> . U € SU(m)’

1

5%1 = —— Pm,
n
2

Em = T Pmy
n—1

= - Pm,

Ch_1 :=U" - diag (ei“"l(ayil), . ,eiwm(aﬁl)> -U e SU(m),

C, :=U"-diag <ei¢1(€?), .
We have (see (2.6))
Cl - Og(C), CZ S Of (Cl),

i.e., we can choose ¢(d) > 27/e.

,ei@m@%)) U=1

Cn—l & Og (I),

To show the transformability of SU(m), it suffices to consider that the group SU(m)
is connected (path-connected) and compact (totally bounded) for each m (see, e.g., [76]).
Nevertheless, using the above mentioned process, one can show the transformability of
other matrix groups. For example, the group of the unitary matrices with determinant e
for some r € Q is transformable as well. Indeed, for any 6 > 0 and an arbitrary unitary
matrix C' # I with determinant e, where r € Q, there exists a matrix Cj satisfying
Co € 02(C), | Cy | = @) for some r(C) € QN [0, 27) and one can analogously find n € N

and unitary matrices C, ..., (), such that

Cl € Og(CQ), Cz € Og (Cl),

and that

|Cy| = O

n—2

’02’ _ eir(C) w

Cn € 032 (Chv)

Gl =1.
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Example 2.8. We consider Hermitian symplectic matrices of dimension m = 2n, n € N.
At first, we recall that a complex matrix S is said to be symplectic provided

. B (O I
S*-J-S=J, where J—(_[ O)'

The set Sp(n) of the Hermitian symplectic matrices is the intersection of the set of all
2n x 2n symplectic matrices and the set of all 2n x 2n unitary matrices. In fact (see [91]),
the Hermitian symplectic matrices are the matrices of the form

(5 )

A*A+B*B=1, A*B=DBA.

with the property that

It is known (see, e.g., [76]) that Sp(n) is a compact and simply connected group. This fact
implies (2.5), i.e., Sp(n) is a transformable group. O

Example 2.9. Let &; C Mat (F,m;) for j € {1,...,n} be transformable groups. The
direct sum

@Xj:Xl@X2@“’@Xn7

Jj=1

where M € B_, A&j if it is of the form

M, O --- O
O My -+ O
M=\ |, MieX, MyeX,...,M,cX,,

is a transformable group as well. Condition (i) is fulfilled, because we can choose the same
p(L, €) for all X;; condition (ii) is obviously satisfied; to verify condition (iii), it suffices to
take into account that X; N O7 (0) =0, j € {1,...,n}.

The importance of the direct sum of transformable groups lies, i.a., in many isomor-
phisms of groups with applications in physics. For example, the spin group Spin(4) (see,
e.g., [178]) is isomorphic to SU(2) & SU(2), and H. Georgi and S. Glashow use the isomor-
phism of SU(3) & SU(2) @ U(1) to a subgroup of SU(5) for the Georgi-Glashow model
in [81]. 0

Example 2.10. Now we show that the intersection of circulant matrices and unitary
matrices form a transformable group. A complex matrix is called circulant if it has the
form of

a Gz asz --- A,
A ay az -+ Ampm-1
Um—1 Ay A1 - Qp—2

a9 as aq --- aq
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A matrix is circulant if and only if it can be written in the form of 337", a;B'~, where the
permutation matrix B = (by) is given by b1z = by = -+ = bm—1)m = bm1 = 1. Because
of B™ = I, the product of two circulant matrices is a circulant matrix. The multiplication
of circulant matrices is commutative and the Hermitian adjoint of any circulant matrix
is circulant. Therefore, every circulant matrix is normal. A normal matrix is unitary if
and only if all its eigenvalues have the absolute value of 1. Hence, the set of the circulant
matrices, whose all eigenvalues have absolute value 1, is a group. We denote this group
by CU(m).

It is known (see, e.g., [3]) that all circulant matrices have the same eigenvectors. Thus,
there exists a unitary matrix U with the property that any circulant matrix can be ex-
pressed as the product U* DU, where D is a diagonal matrix. It means that circulant
matrices are simultaneously diagonalizable for the single similarity matrix U. (In fact,
normal matrices are simultaneously diagonalizable if and only if they commute.) Further-
more, for every diagonal matrix D, the matrix U* DU is circulant. Altogether, we have
that A € CU(m) if and only if A= U* DU for some

D:diag(dl,dg,...,dm), \dj|:1,]€{1,,m}

The fact that CU(m) is transformable comes from Example 2.4. Indeed, CU(m) = Ay .
Evidently, CU(1) = U(1). The group CU(2) is just formed by symmetric unitary
matrices given by complex numbers a = a; + asi, b = by + bai (aq, ag, by, by € R) in the first
row for which |a|* + [b|> = 1, a;b; = —asby. Obviously, for any a € C satisfying |a| < 1,
one can find b so that the above equalities are fulfilled. It is seen that b can be chosen, in
addition, so that the function a — b is continuous. Directly from this observation, we get
condition (i). We remark that, for m > 2, the symmetric unitary matrices do not form
a group, because the product of symmetric matrices is a symmetric matrix if and only if
they commute under multiplication. O

2.2.2 Strongly and weakly transformable groups

In this subsection, we define modifications of transformable groups—strongly and weakly
transformable groups. Before introducing strongly transformable groups, we mention an
auxiliary result.

Lemma 2.11. If X is transformable, then, for any {L;}ien C R and j > 2, j € N, one
can find {e;}ien = {e:({Li}, J) bien C RT satisfying

o
E £; < 00,
=1

j' > p(Lg(i, i) for infinitely many i € N, some g(i) € N, (2.7)
where g(i) — 00 as i — 0.
Proof. The lemma follows directly from (i). Indeed, one can put
g;:=27% i= f(k) for some k € N;
g:=2" i¢{f(k);keN},ieN
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for arbitrarily given increasing discrete function f : N — N with the property that
]f(k) zp(Lk72ik)a kGN,
whose inverse function is considered in (2.7) as g. O

Of course, inequality (2.7) does not need to be true for all i € N or for a set of ¢ which
is relatively dense in N. This fact motivates the following definition.

Definition 2.12. A group X is strongly transformable if it is transformable and if for any
L € RT, there exist j = j(L) € N and a sequence {¢; }ien = {€i(L) }ien € RT such that

i&i < 00, (28)
=1

j*>p(L,e;) forallieN. (2.9)

Example 2.13. Since we consider only maps which satisfy the Lipschitz condition in the
above examples (in the classical case) and since we can choose

p(L.esm+1) < 3p(L,e,m)

in (i) when we use the induction principle with respect to m (see Example 2.3), all concrete
transformable groups of matrices mentioned in Examples 2.2-2.10 are actually strongly
transformable. O

Example 2.13 shows that several transformable groups used in applications are strongly
transformable. Nevertheless, if we change the metric in the examples above in a neighbour-
hood of —1 (in R or C) so that the [ ~!-neighbourhood of —1 becomes the [~!-neighbourhood
of —1 for all sufficiently large [ € N (and the rest remains unchanged), then all mentioned
groups are still transformable and none of them is strongly transformable.

Since certain matrix groups (important in applications) are not transformable, although
they possess transformable subgroups, we introduce the following generalization of the
transformability.

Definition 2.14. A matrix group X C Mat (F,m) is weakly transformable if there exist
a transformable group Ay C X', matrices X4,...,X; € X, and dx > 0 such that

(I) any U € X can be expressed as U = C(U) - X; for some C(U) € &, j € {1,...,1},
and that
(II) o(C-X;,D-X;)>dxforall C.D € Xy, i #j, 1,5 € {1,...,1}.

Again, we give important examples of the considered type of matrix groups in the
complex and real case.



2.2 General homogeneous linear difference systems 44

Example 2.15. We use the fact that the group SO(m) of all real orthogonal matrices of
a dimension m > 2 with determinant 1 is transformable to prove that the group O(m) of
all real orthogonal matrices is weakly transformable. We put

Xo = SO(m), X1 = [, X2 =
0 0 - 1

If U € O(m)~ SO(m), then U = C(U) X, where C(U) = UX;' € SO(m). Indeed,
|U|=—1,|X,"'| = —1. This gives us condition (I). The mapping C + | C'| is continuous
on O(m). Thus, there exists § > 0 such that

0(C1,C2) >4 if C1,Co € O(m), [Ci] =1, [Ca] =—1,
ie., 0(CXy,DX,) > 6 for any C,D € &j (consider |C Xy | =1, |DX,|=-1). O

Example 2.16. Let X} be a weakly transformable group and let X, be an arbitrary finite
matrix group. We can directly see that the direct sum &) ¢ A, is weakly transformable.
Thus, the group O(2) & O(2), where

On(2)={I,T,..., 7", 8,8T,... . ST ")

2 2w
T cog b sin ). S= 01 7
—sin <% cos ¢ 1 0

and

is weakly transformable for all k € N. For the representation of this group, see [76]; for
collections of finite groups, we refer to [16, 43]. O

Example 2.17. Evidently, any direct sum X; @ X’ is weakly transformable if both X; and
X, are weakly transformable. Especially, the group O(m) @ O(m) is weakly transformable
for m > 2. This group is isomorphic to the perplectic orthogonal group which is denoted
by PO(2m) and defined as

PO(2m)={P € O2m); R-P=P-R},

where
0o --- 0 1
0 10
R :=
1 -+ 0 0

Note that PO(2m) is exactly the set of all centro-symmetric orthogonal matrices.
Let us show that the group PO(3) is weakly transformable. In [58], there is shown that
PO(3) consists of {W(p); ¢ € [0,27]} and the components

0O 0 1 1 0 0
0 ~1 0] -W(ghpelo2ny, 0 ~1 0] -W(ghpeo2ny,
1 0 O 0 0 1
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W) el0,2a] o,

_— o O
O = O
O O =

where
1 cosp + 1 ﬂsincp cosp — 1
W(p):==[—-v2sinp 2cosg —2sing
cosp—1 +/2singp cosp+1
Since (W ()™ = W(—¢p), ¢ € [0,27], we can express PO(3) by the following compo-
nents

PO\(3) = {W(p); ¢ € [0,27]}

0 0 1
PO,3)={W(p)- [0 —1 0| spefo.2n]y,
1 0 0
1 0 0\ "
PO3(3) = W(p)- |0 =1 0] ;pel0,27] 5,
0 0 1
00 1\ "
PO43) = qW(p)- [0 1 0] ;9€](0,27]
100

We put (see Definition 2.14)

0 0 1
Xo:=PO:(3), Xi:==1I, Xo:=[0 -1 0] =X,",
1 0 0
1 0 0 001
X;:=(0 -1 0] =X, Xg:=[0 1 0] =X,"
0 0 1 100

The transformability of PO;(3) follows from the fact that PO;(3) is a connected matrix
subgroup of O(3) (see [58]). Let us explain it in detail. For any ¢ € [0, 2] and sufficiently
large n € N, we consider the sequence

f, 2£, e (n=1)=, o
n n n

Obviously, for every § > 0, there exists ¢ € N satisfying
w () eonn. w(zg)eor(w (7)),

W ((z . 1)?) €0l (W ((z . 2)%)) W ((1 . 1)%) € O (W ()

for all ¢ € [0,27] and [ > ¢. Now it suffices to realize (2.5).

It remains to show that the components have a positive distance. Let ¢, € [0, 27]
and W;(-) € PO;(3), j € {1,2,3,4}. Since the entries of these matrices are continuous
functions defined on the compact set [0, 2], the sets PO;(3), j € {1,2,3,4}, are also
compact. Therefore, it suffices to show that these components are disjoint.
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(1&2) Suppose that there exist ¢, € [0, 27] such that Wi (p) = Wa(¥), i.e.,

cosp+1 2sinp cosp—1 costh—1 —v2siny cosy + 1
—V2sinp  2cosgp  —V2sinp | = | —v2sinyy  —2cosy  —v/2siny
cosp—1 +/2sing cosp+1 cost) +1 —/2sine costp — 1

Considering the entries in the first row and the first column, we have ¢ = =
and ¢ € {0,27}. On the other hand, from entries in the first row and the third
column, we obtain ¢ € {0,27} and 1) = w. This gives a contradiction.

(1&3) Again by contradiction, we suppose that there exist p,1 € [0,2n] such that
Wl(gp) = W?)(w)a i'e'7

cosp+1 2singp cosp—1 cost) +1 —2siney costp — 1
—V2sing  2cosgp  —v2sing | = [ —v2sinyy  —2cosyy  —/2siney
cosp—1 +/2sing cosp+1 costh —1 —+/2siny) cosy) + 1

At first, we pay our attention to the entries on the positions (1,2) and (2,1). We
obtain
sinp = —siny = —sinyp, ie., @, € {0,727}

Next, the entries (3,1) and (2,2) give
cosp =cosh = —cosp, ie., @€ {n/2,31/2}.
Hence, the components PO;(3) and PO3(3) are disjoint as well.

Finally, the cases (1&4), (2&3), and (3&4) are analogous to (1&2) and (2&4) is
analogous to (1&3). O

2.3 Systems without almost periodic solutions

Now we can consider the gist of this chapter. At first, we prove an auxiliary result and
a result concerning strongly transformable groups which is generalized later in this work.

Lemma 2.18. If an almost periodic sequence of non-singular Ay, € Mat(F,m) is such
that, for any e > 0, there exists i = i(e) € Z for which 0(0O, A;) < e, then the system
Tpr1 = A xi, k € Z, does not have a non-trivial almost periodic solution.

Proof. By contradiction, suppose that we have an almost periodic sequence {A;}, a se-
quence {h;}ien C Z satisfying

1
0(0,A,) < - ieN, (2.10)

and a non-trivial almost periodic solution {z;} of the system xy.; = Ay zx. Using Corol-
lary 1.5, we obtain uniformly convergent common subsequences

HApin teeztien  and  {{x,, 7 trez}ien
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of the sequences {{Akin, }rez}ien and {{zxin, trez tien. The limits are denoted as { By}

and {yx}.
We put € := p(x,0) /2 > 0. Because of the almost periodicity of {x)}, there exists

some p (¢) from Definition 1.1. We consider the sets N; :== {i+ 1,i +2,...,i+ p(e)} for
i € Z. Any one of the sets N; contains a number [ € T'({z}, ). Thus,

x; & O2(o). (2.11)

From (2.10) it follows that By = O. Since the multiplication of matrices is continuous, one
can find ¥ > 0 for which

Cj"'CQ'yEO§(0)7 j:(),l,...,p(&)—l,
if y € O5(yo) and C; € OF(B;), i € {0,...,j}. There exists ¢ € N such that
0(Apii  Be) <V, o(x i ue) <V, kel

Therefore,
Tiyp, € O2(0), j=1,...,p(e). (2.12)
Indeed, it is valid

Tih = Ain A, J=1...,p(e).
This contradiction (compare (2.11) with (2.12)) gives the proof. O

Theorem 2.19. Let X be strongly transformable. Let {Ay} € AP(X) and € > 0 be
arbitrarily given. If there exist L € RY and {M;}ien such that

M;, M;' € X\ 0%(0), i€N, (2.13)

and that, for any non-zero vector u € F™, one can find i = i(u) € N with the property that
M;u # u, then there exists { B} € OZ({Ax}) which does not possess a non-trivial almost
pertodic solution.

Proof. Tt { Ay} has a non-trivial almost periodic solution, then there exists K € R* such
that o (A, O) > K for all k. Indeed, it follows from Lemma 2.18. Since it suffices to
consider only very small € > 0, we can assume without loss of generality that

L+e<o(1,0), L+e<0(A,0), kez,; (2.14)
otherwise we can put By := Ay, k € Z.

Let n = n(e/2), ¢, P and Q = Q(L) be from (ii) and (iii), respectively. Further, let
n<e<(andlet {&};ey CRT, n €N, and j > 2 (5 € N) satisfy

. n
i < ==, 2.15
2.7 7 21

j'n+1)>p(L,g) forallieN. (2.16)
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The inequality (2.15) follows from (2.8) if we omit finitely many values of ¢;, and (2.16)
from the fact that n and j can be arbitrarily large and from (2.9). We remark that P, @Q > 1.
We put
By :=A;, Cp:=1 forke{0,1,...,n}

and we choose

B, = A, - C,,  for some C}, € OfQQ (C’k,(nﬂ)) NX, ke{n+1,....2(n+1) — 1},

By =A,-Cr, Cre O (Crojinny) NX, ke{j n+1),...,(5" + (n+1)— 1},
arbitrarily such that

n+1 n+1 n+l
H By = My, H By, = H By =1.
k=(j2+1)(n+1)—1 k=(j3+;2)(n+1)-1 k=t +1)(n+1)—1

For
Ci,...,Cpo,Dy,...,D, € X, D;cO3C),

where 9 >0, L+ 9 < o(C;,0),i €{1,...,n}, and n > p(L,?), we can express
D,---Dy-Dy=0C, - (C;1~Dn)~~Cl'(Cf1-D1),
where
(C71-Di) e O, (1), ie{l,...,n}.

Using this fact and considering (2.13), (2.14), and (2.16), we get the existence of the above
matrices C},.
In the second step, we put

By = Ap - Cry iy, ke {=(G'+1)(n+1),..., -1},
By := Ap - Cryjrgranmn), ke {70+ D +1),.. =G =1+ D(n+1) - 1},
and we denote
Cpi= A By, ke {-j'(j"+D(n+1),..., -1},

Now we choose

By =Ap-Cr, Cr €02 o (Co(jirimrn) N,
ke{(*+Dn+1),.... (' +Dn+1)+ (G*+1)*(n+1) -1},



2.3 Systems without almost periodic solutions 49

By, = A - C,
ke{('+1+(*
arbitrarily such that

(4D (1)

I[I Bi=m,

k=57 (n+1)—1

(G* D) (n+1)

Il Be=wMm.

k=38 (n+1)—1

(%41)(n+1)

H By, = Mo,

k=359 (n+1)—1

(j441)(n+1)

Il Be=wm,

k=710(n+1)—1

Cy € 054PQ (Ck—j4(j4+1)2(n+1)) n&,
~1E' 1))+ 1),

G+ 147G+ D)) +1) — 1},

(j441)(n+1)

11 By =1,

k=(7+55—3°) (n+1)-1

(j4+1)(n+1)

k=(5+5%—3%) (n+1)-1

(G4+1)(n+1)

11 B =1,

k=(+75—3°) (n+1)—1

(j*+1)(n+1)

11 B =1,

k=(j10+5=5%)(n+1)~1

(j441)(n+1)

II

B, =1.

k=(j4+1)(n+1)+54(j4+1)2(n+1)-1

Such matrices C}, exist. Indeed, we can transform

By, = Ay - Ch_ (i1 (ni1),
ke{(* +1)(n+1),...

By, = Ay - Ch_ja(is1)2(ns1)s
ke {(*+1+ (G
into By by

ke {(J +1)(n+1),...

= Ak : Ck—j j*+1)2(n+1) Ck?

ke{(j4—|—1—|—(j — DG+ D)) +1),. ..

where C), € o2,
below given (2.20) and (2.21))

— DG+ DH(+1), ...

(J*+1)2(n+1) -~ Ck;
LGP+ D(n+ D)+ (7 +1)*(n+1) — 1},

LGP D+ + (P + 1) (n+ 1) — 1},

LGP LG D) (1) — 1,

LGP TG D) (1) — 1,

o (I) for all considered k (see (iii)). Hence, we have (see (ii) and also the

Ok (j*4+1)2(n+1) Ck € 054PQ (Ck j441)2 (n+1)) )

ke {(G*+Dn+1),...

LGP D+ 1)+ (T + 1) (n+ 1) — 1}
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Crja(gr2mt) - Cr € OFpg (Crojagiirnzmen) »
ke {(*+1+0G* - DG+ DH(n+1),....0  + 1+ G+ DY) (n+1) — 1}.

Thus, we can obtain Cj, from the previous step and from the above C.
We put

By = Ag - Cry (4413 (nt1)5
ke{-(*"+1°(n+1) =7 G* + )(n+1),...,—'G* + )(n+1) — 1},

By = Ak - Crgjr(a41)3(nt1)s
ke {—i*(G*+1)*n+1) -2 ¢G* + D(n+1),...,
— =D+ D) (n+1) =G+ D(n+1) — 1,

and we denote

Cy = A;l - By,
ke {—i*'(G*+13%*n+1) =2 G* +D(n+1),...,—5*G* + D(n+1) — 1}.

We proceed further in the same way. In the (2¢ — 1)-th step, we choose

By =As-Cy, Cre O, 7o (Ck G +122(ns1)) N X,
ke {G'+ D+ 1)+ 720"+ 1D)*(n+ 1)+ + 720"+ D)*Hn + 1),
SEHF DD+ D2 ) -
+o G T i D) G D (e 1) - 1,

By = Ay Cy, C,€OZ pg (Cr—jagjasnyzi-2(nin)) N X,
Fe{('+ D+ 1) +70 + D (n+ )+ + 50+ D* ' (n+ 1)
+ G -DG D P+ 1), L G D+ D 50+ 1) (e + 1)
+o DT I D)+ G D (1) - 1,

such that
q(3)

q(i)
H By = M;, H By =1,
k:pofl

B=p+(% ) (n+1)-1

q(i)

H By = M, 11 By =1,
pl

- Bl (7% =) (n+1)-1
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q(4)

q(%)
I B.=M, 11 B, =1,

k=pi ' -1 k=py (73 =520 D) (n41) 1
q(7) q(7)
H By, = M;, H By =1,
h—pf—1 k=p0-+ (5% —j0) (n+1)~1
q(i) q(i)
k=pl 1 k=p}+(%—3)(n+1)—1
o) q(é)
H B, = MZ', H By = [7
k=p; ' -1 k=p; ' +(j% =3 D) (n+1)~1
and
q(#)
H Bk = [7
k=p(i)
where p9,...,p" % ... p%, ..., pi~! are arbitrary positive integers for which
q(i) + 5% (n+1) < p}
and ' ' , , : ,
i+ G+ ) <pn o PG+ <
PG+ 1) <y,
PG+ ) <pl, o p G ) <pih
P+ "+ +1) < p(i)

if

q(i)) = G+ D)+ 1)+ G+ D+ D+ + G+ DT+ 1),
p(A) =G+ D)n+ D)+ 4G+ D)2+ D+ 4+ G+ D 2 (n+ 1) — 1.

The existence of these numbers follows from

p(i) —q(@) =G+ D> P(n+1) =1 >(G% + %)+ 1) (n+ 1),
i,j >2(i,j €N), neN,

and the existence of the above matrices By follows from (2.16) and from

G RR > 2 ke {1 i} ieN,j>2(j €N).
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In the 2:-th step, we put

Bk = Ak : Ck+(j4+1)2i—1(n+1),
Fe{—(U"+ 1"+ 470+ )P+ 500+ D))+ 1),
DT G DR G D) (1) - 1,

Bk = Ak : Ck+j4(j4+1)2i—l(n+1),
ke {— G+ "+ + [+ 1)+ G+ 1)(n+1),
=G DG D) T e+ G DR+ G D)) (4 1) — 1,

and we denote

Cp:=A" B, ke{-(G'G'+D)*" '+ +7'G"+ 1> +5'G* +1))(n+1),
=T D) T G )P G D)) (R 1) — 1

Using this construction, we obtain the sequence { By }rez C X.
We consider the system
Tpy1 = By, - Tk, keZ. (217)

Suppose that there exists a non-zero vector u € F™ for which the solution {z}} of (2.17)
satisfying ,,1 = u is almost periodic. We know that

n+1
Ty = H B;-u fork>n-+1,keN. (2.18)

i=k—1

If we choose {h;}ien = {7°0V(n + 1) bien for {¢r} = {3} in Corollary 1.5 (see also Theo-
rem 1.3), then, for any ¥ > 0, we get the existence of an infinite set N = N(J) C Ny such
that

0 (Thrjoit (ny1)s Thrgria(nin)) <V, Kk €L, iy i €N, (2.19)

Thus, for every v > 0, there exist infinitely many ¢-translation numbers in the form
(73 — j32)(n + 1), where i; > iy (i1,i2 € N). For some i € N with the property that
M; u # u, we choose ¥ < o (M; u,u) and the above iy > iy > i (i1,iy € N) arbitrarily. We
have (see (2.19))

0 (Ik+(j3il—j3i2)(n+1)7$k) <19, keLZ.

From (2.18) and the construction of { By}, we obtain
0 (xk+(j3i1_j3i2)(n+1), xk) > ¢} for at least one k € N.

This contradiction gives that {z)} cannot be almost periodic. It means that system (2.17)
does not have a non-trivial almost periodic solution.

Now it suffices to show that {By} € OZ({Ax}); i.e., that By € O2(Ay) for all k and
some € € (0,¢) and that { By} is almost periodic. It is seen that

Cre OLo(I), ke{—j'(*+1n+1),...,0,....(j* + D(n+1) -1},
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Ck G OQ )PQ(I)’

(e2+€a
ke{[ '+ 1D)(n+1),....0"+1+'0"+ 1)) (n+1) -1},
Ck € O€€2+€4)PQ<I)’
ke {=j'G"+ D’ + 1) = 3'G" + )(n+1),..., =G + D(n + 1) = 1},

and that, for all i > 3 (i € N), it is valid

Cr € 0552+54+---+52¢)PQ(I)7
Ee{(*+ D)+ 1)+ G + 1)’ (n+ 1)+ +7'G"+ D> (n+1),...,

G D0+ D+ G+ D2+ D) 4G+ D 1) = 1,

C € 0552+54+_.+52i)PQ(I)7
Fe{-('G"+ D"+ 700G P+ G D) 1),

Thus, we have (see (2.15))

Cre OI), keZ, (2.20)
and (see (iii))
By, € O 5(Ak), k€L (2.21)
Indeed,
B, =A,-C, forall keZ. (2.22)

From Theorem 1.27 it follows that the sequence {C}} is almost periodic. Using Co-
rollary 1.12 and the almost periodicity of {Ax}, we see that the set

T({Ax},0) NT({Ck},0) is relatively dense in Z (2.23)

for any 6 > 0. Since the multiplication of matrices is uniformly continuous on X, consi-
dering (2.22), we have

T({Ar}, 0(9)) NT({Cx},6(9)) € T({ By}, V) (2.24)

for arbitrary ¢ > 0, where () > 0 is the number corresponding to ¥ from the definition
of the uniform continuity of the matrix multiplication. Finally, (2.23) and (2.24) give the
almost periodicity of {By} which completes the proof. ]

Note that, in Theorem 2.19, condition (2.13) can be omitted (i.e., one can put L = 0).
This fact follows from the below given Lemma 2.27. Now, for the later comparison, let us
recall a result from [45] (see also [1, Theorem 2.10.1]) and one of its consequences.

Theorem 2.20. Let (F,o(-,-)) = (C,|-—-|). If a vector valued sequence {by} is almost
periodic and a matric A € Mat(C, m) non-singular, then a solution of

$k+1:A'$k+bk, ke,

is almost periodic if and only if it is bounded.
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Remark 2.21. Several modifications and generalizations of Theorem 2.20 are known. The
first theorem of the type as Theorem 2.20 was established by E. Esclangon (in [64]) for
quasiperiodic solutions of linear differential equations of higher orders. It was extended
by H. Bohr and O. Neugebauer (in [29]) to the form mentioned in Remark 2.23 below.
In [152], Theorem 2.20 is proved if A € Mat(R,m) and {bs} is almost periodic in various
metrics. A

Corollary 2.22. Let (F,o(-,-)) = (C,|- —-|). Let a periodic sequence {Ar} of m x m
non-singular matrices with complex elements be given. Then, a solution of the system
Tpa1 = A i, k € Z, is almost periodic if and only if it is bounded.

Proof. Every almost periodic sequence is bounded. Hence, we need to show only that the
boundedness of a solution implies its almost periodicity. Assume that we have a periodic
system 1 = Agxg, k € Z, and its bounded solution {z;}. Let n € N be a period
of {Ax}. Applying Theorem 2.20, we get that the sequence {y;.} = {z,.x}; i.e.,

0 ~1
Yo = o, Yp = H A -zo, keN, y,i:HAi_l-xo, keZ\N;

i=nk—1 i=nk
is almost periodic. Indeed, {y;} is a bounded solution of the constant system
Yr1 = Ap1 - Ar- Aoy, kEZ.

Analogously, one can show that the sequences {yi} = {@pprj1}s J € {2,3,...,n}, are
almost periodic as well. The almost periodicity of {x}} follows from Corollary 1.10. O

Remark 2.23. We add that it is possible to obtain several modifications of Corollary 2.22
for non-homogeneous systems if the non-homogeneousness is almost periodic. We men-
tion at least the most important one—the continuous version for differential systems. If
a complex matrix valued function A(t), ¢t € R, is periodic and a complex vector valued
function b(t), t € R, is almost periodic, then any solution of 2'(t) = A(t) z(t) +b(¢), t € R,
is almost periodic if and only if it is bounded. See the introduction of Chapter 6 or, e.g.,
[72, Corollary 6.5]; for generalizations and supplements, see [129]. A

Example 2.24. Consider again (F,o(-,-)) = (C,| - —-|). We want to document that
Corollary 2.22 is no longer true if {A} is only almost periodic. We know (see Lemma 1.32
and consider the second part of Corollary 1.26) that the real sequence {ay} defined by the
recurrent formula (1.36) on Ny and by the prescription

ap = —a_,_1 for ke Z Ny (2.25)

is almost periodic and that it satisfies (see Lemma 1.35)

2n—1 ontiqon_1

1
d a=1, > ar=2-;, neNyjeN (2.26)
k=0

k=0

Let X be the set of all m x m diagonal matrices with numbers on the diagonal which
has absolute value 1. (It is easily seen that, in this case, X is strongly transformable.
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See also Examples 2.4 and 2.13.) All solutions of the system of the form (2.2) given by

the almost periodic (see Theorem 1.6) sequence {A;} = diag (exp (iax), . .., exp (iax)) are
obviously bounded, but we will show that they are not almost periodic (except the trivial
one).

It suffices to consider the scalar case, i.e., m = 1. We suppose that the system has an
almost periodic solution {x;}. We have

k—1
T = exp (i aj> -xg, keN.
§=0

Ton = exp (i) - To, Tgn+ipon = exp (20 —2771) -z9, n €Ny, j €N. (2.27)

Especially (see (2.26)),

Using Corollary 1.5 (or Theorem 1.3) for the sequence {27}y, for any € > 0, we get an
infinite set N = N(¢) C N such that

| Tp0i0) — Tppoi | <€ forall k € Z, j(1),5(2) € N.
For some j(1) € N, the choice k = 2/() and (2.27) give
|exp (i) —exp (2 — 27WTE) [ [wo | <&, (1) <(2), §(1),5(2) € N.

Since € can be arbitrarily small and j(2) > j(1) can be found for every € > 0, we obtain
xog = 0. Thus, the system does not have a non-trivial almost periodic solution. O

In the above example, we see that the boundedness is necessary to the almost pe-
riodicity of solutions but not sufficient. Now we prove a more important necessary (also
not sufficient, see again Example 2.24) condition about the limitation of almost periodic
solutions.

Lemma 2.25. Let an almost periodic sequence of non-singular Ay € Mat(F,m) be given.
Let {xy} be an almost periodic solution of the system xy,1 = Ap g, k € Z. Then, it is
valid either x, = o, k € Z, or

11616129 (zg,0) > 0.

Proof. Suppose that an almost periodic solution {x} of a system satisfies

iggg (xg,0) = 0.

Let {h;}ien C Z be such that
lim o (zp,;,0) = 0. (2.28)

1—>00

Considering Corollary 1.5 and Theorems 1.7 and 1.8, we get a subsequence {h;} of {h;}
for which there exist almost periodic sequences { By}, {yx} satisfying

zliglo Aihe = Bry zlgglo By_r, = Ak, zliglo Lith, = Yk }5& Ye—h; = Tk
where the convergences can be uniform with respect to k € Z (see Remark 1.9). We

have yg11 = Bryk, k € Z, and yo = o (see (2.28)). Thus, {yr} = {o}. Consequently,
rp =m0 yy_j, =0 for k € Z. O
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Example 2.26. Applying Theorem 1.27 for n = 0, @9 = 2, j = 1, and r; = 3/2°, i € N,
we construct the everywhere non-zero almost periodic sequence

1 1
bp:=2, by =2—-1, byi=2——=  b_;:=1——
0 ) 1 ) 2 27 1 27

1 . .
by ::bk+22i,1—ﬁ, ke{-2¥t—...20 2 —2%3 ... 28 9 1}
1 . . .
by ::bk_gm—ﬁ, Ee{2+2% 4. 2% 2422 4. 4252 4 9% 1}
in the space (R,|-—-|). Since

1imb0_1 2_93... _i:O
i—>oo2 2142223 4...4(-2) 9

the equation xyyq = by zx, k € Z, does not have a non-trivial almost periodic solution (see
Lemma 2.18) and the vector valued sequence {b; u}, where u # o, u € R™, is not a solution
of an almost periodic homogeneous linear difference system (see Lemma 2.25).

Moreover, for any bounded countable set of real numbers, it is shown in [73] that there
exists an almost periodic sequence whose range is the set. (For details, we refer to the
next chapter.) It means that there exists a large class of almost periodic sequences which
cannot be solutions of any almost periodic system (2.2). O

To improve Theorem 2.19, we need also the next lemma.

Lemma 2.27. Let X be transformable and let {Ar} € AP(X) and € > 0 be arbitrary. If
there exists a matriz M (9) € O3(0)NX for any ¥ > 0, then there exists { By} € O ({Ax})
which does not have an almost periodic solution other than the trivial one.

Proof. We put L; := o (M;, O) for matrices M; € X, i € N, such that

hm L, = 0, Li—i—l < LZ', 1 € N. (229)

11— 00

Let n = n(e/2), ¢, and P and @ = Q(L;) be from (ii) and (iii), respectively. We can
assume (or choose {By} = {Ax}) that

n<e<, Li+e<o(A,0), kezZ,

and that (see also Lemma 2.11) we have {¢;};ien C RT, j > 2 (j € N), and n € N satisfying
S 77
i < 5
27

j'(n+1) > p(Lgu),e;) for infinitely many odd i € N, (2.30)
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where ¢(7) is from Lemma 2.11 as well.

The set of all i # 1 (i € N), which are not divisible by 2 and for which (2.30) is valid, is
denoted by N. Let N = {iy,ia,...,4;, ...}, where iy < i;1, [ € N. Since we can redefine L;
(choose other M;), we can also assume that g(i;) > [, [ € N. We will construct sequences
{By} and {C4} as in the proof of Theorem 2.19 for j* replaced by j. First of all we put

pi= G140+ 440+ D))+ 1), LeN,
@=0G+1+jG+1) + 4G+ )" Hn+1) -1, leN

Before the i;-th step (for k& < p; — 1), we choose the matrices Cj (consequently By)
arbitrarily. We will obtain By and define

0 0
Jl = H Bk, J2 = H Bk,

k=p1 k=p2

In the i;-th step, we choose the matrices Cy arbitrarily if J; € Of (O), and so that

0
[[B:=M it ¢ 05 (0).

k=q1

Between the i1-th step and the is-th step, we choose them again arbitrarily. In the io-th
step, we choose them arbitrarily if J, € O, (O), and so that

0
[[B:=M it ¢ 05,(0).

k=q2

If we proceed further in the same way, then we get matrices Cy, By for all k € Z.
Analogously as in the proof of Theorem 2.19, we can prove that {By} € O7({Ax}). We
have

0
0 (H Bk,0> <L, forre{p,q}, l€N. (2.31)
k=r

Evidently, for any v € F™ and p > 0, there exists 6 = § (u, ) > 0 with the property
that o (Cu,0) < pif C € OF(0). Using this, from (2.29), (2.31), and Lemma 2.25, we get
that all non-trivial solutions of the system of the form (2.2) given by { By} are not almost
periodic. O

Now we can generalize Theorem 2.19 into the case of general transformable groups.

Theorem 2.28. Let X be transformable. Let {A;} € AP (X) and € > 0 be arbitrarily
given. If there exists a sequence {M;}ien € X such that, for any non-zero vector u € F™,
one can find i = i(u) € N with the property that M;u # u, then there exists {By} €
OZ({Ar}) which does not possess a non-trivial almost periodic solution.

Proof. We obtain from Lemma 2.27 that it suffices to consider the case when

020)N X =9, (2.32)
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because we can assume that the number ¢ is small enough. Let n = n(e/2), ¢, P, and

@ = Q(¢) be from Definition 2.1. Note that ) does not depend on ¢ (consider (2.32)) and
that P, > 1, n < ¢/2 (consider C' = I in Definition 2.1). For simplicity, we also assume
that e < ¢ (the number ( is given for X). Let n € N be arbitrary such that

PQ

We will construct an almost periodic sequence of matrices C, € X, k € Z, applying
Corollary 1.28. Let us denote (see Definition 2.1 and also (2.32))

1 ,
pi i =Dp (E, W) , 1€ N, (234)
and

spi= 2%t _9¥=3 ... 93 9 4eN,
ti =242 4. 42%2 9% N
Evidently, there exists an increasing sequence {l(7)};ey € N for which
2 <Oy <l e N (2.35)
In the first step of the construction of {Cy}, we put Cy :=1, Cy =1,

Co:=1, ke{-2 -1}, Co =1, ke{2,...,2+2* -1},

Co=1, ke{tig-2,. .. ,tom-1—-1}  Co=1, ke{sq), ..,s0)-1— 1},

and define
By = Ag, k€ {s11),-- . tiy—1 — 1}

In the second step, we choose matrices

B, € Os_gn_l (Ak) , ke {tl(l)—la R 7tl(1) — 1}, (236)
arbitrarily so that
0 ty(1)—1+P1
H By =1, H By = M.
k=ty1)-1+p1—-1 k=t;(1y_1+p1+(2M-1)-1

The existence of such matrices By follows directly from Definition 2.1 (see (2.34), (2.35)).
We define
Ci = A,;l - By, ke {tl(l)—lu sty — 1}.

From (iii) in Definition 2.1 and from (2.36), it follows that

Cr € 05721171@ (I), ke{tiqy-1,. -ty — 1},
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ie.,
C € OS_Qn_lQ (Ck722z(1)) N X, ke {tl(l)—b ... 7tl(1) — 1}.
In the third step, we define
Ck = Ck+22l(1)+1, ke {85(1)_;,_1, R 1 1},

Cy = Cy_guys2, k€ {tl(1)7 - ,tl(1)+1 — 1},

Cr i =Cl_oue—2, k€ {tl(g),g, N I 1},
Cr = Crpion—, k€ {81(2), ceySi2)-1 — 1},

and put
B, = A - Ck; ke {Sl(g), o 7tl(2)—1 — 1}.

We remark that, before the third step, we have
By =A-Cr, ke{siqa,....tixy — 1}
In the fourth step, we choose
B, =A,-C,, Cc€ (’);’,%,QPQ (Chgz) N X, k € {ty2)-1, ..., tiz) — 1},

arbitrarily so that

0 ty2)—1+p2
I &=L 11 By = M,,
k=ty2y_1+p2—1 k=ty(2y_1+p2+ (212 -1)—1
0 ty(2)—1+2p2+2! (D
I II Bo= i,
k=ti(z)-1+2p2+21? -1 k=ty(2)_1+2pa+2!D (21D —21(1) 1
0 ti(2)—1+3p2+22!3
II Bi=1, 11 By = Mo,
k=t;(2)_1+3p2+2-21() -1 k=tj(2)_1+3p2+2-212) (212 —1)—1
0 tl(z)—1+4p2+3-2l(2)
1T B =1, 11 Bi, = M.
k:tl(2),1+4p2+3-2l(2)—1 kztl<2),1+4p2+3~21(2)+(21<2>—2l(1))—1

Note that it is valid
tigy—1 +4py +3- 2@ 4 2/ 2l <,
because #y(a) — t2)-1 = 22 and (see (2.35))

Apy + 32/ 4 91 _ 9l1) < 92912~ 4 9291(2) < 9. 92 9l < %)
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Now we show that the above matrices By, Cj, for k € {t;2)_1,...,t;2) — 1} exist. First,

we put B
Bk = Ak . Ck—221(2)7 ke {Ifl(g)_l, . ,Ifl(g) — 1}. (237)

We use (i) in Definition 2.1 to transform By, into By, € OF 22 (Bk> N X arbitrarily as
Uy,...,U into V...,V for

l=pe, = 2l2) _ 1, I=p+ ol(2) _ (21(2) _ 1) 1= 9l(2) _ 21(1)’

[ =py+2/@ — (21 2y - =2l
l=py+2@ - (2® 1) =221

and
-1
ti2)—1 0 ty(2)—1+Pp2
Up = H By, = H By | , U= H By, = M,
k=tj2)—1+p2—1 k=tj2)—1—1 k=ty(o)_1+p2+(21?)-1)-1
tiz)—1+p2+(210) 1) ty(2)—1+2p2+2!(»
-1
Up = II Bp=M;', Uy= 1T By, = M,
k=ti(2)-1+2p2+2/(?) —1 k=ty(2)—1 +2p2+21(D)+(21(2) —21(1)) 1

ti(2)—1+2pa+21(2) 4 (21 _21(1)
-1
U() = H Bk _ Ml |

kztl@), 1+3p2 +2'2l(2> —1

ty2)-113p2 +2:242)

Us = 11 By = M,

k=t;(2)_1+3p2+2-212)+(212) —1)—1

ty(2)—1+3p2+2:21) (21D 1)
-1
Uy = 11 B, = M; ",

k:tl@), 1+4p2 +3~2l(2> —1

ti(2)—1+4p2 432!

Uy = H By, = Mo,

k=ty(9)_1+4p2+3-2t(2) 4 (24(2) —21(1)) -1

respectively. It suffices to consider (2.32), (2.34), and the inequalities (the sequence {I(7)}
is increasing)

Do S 2l(2)—1 S 2l(2) _ 2l(1) S
p2 < pp + 2% — (2@ —1)
To prove the existence of the above By, C), = A,;l By, it remains to show that

C € Og_zn_QPQ (Ck,_22l(2)) NnNxX, ke {tl(g),l, cetie) — 1}. (2.38)
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We can express
By = Ay Cy_oriry - Oy k€ {tiy—1, -, liz) — 11, (2.39)
where C), = 01:_1221(2) A,;l By € X, i.e., it is valid (consider By = Ay C}) that
Cr=Choue - Cr€X, ke {ta1, .tz — 1}. (2.40)
Further, we have (see (2.37) and (2.39))
Cv =B B, ke {tyz-1,-..,tie)— 1}.
We repeat that
B, €0, , (Bk) . ke{tg 1, e — 1}
Using (iii) in Definition 2.1, we obtain
Cr € 0F auag(I), k€ {tigr,- .ty — 1},
and, using condition (ii) (consider (2.33) and n < ¢/2 < (), we obtain
Chrogrz) - Ch € OF s app (Crogm), k€ {tig)-1, -, tizyy — 1} (2.41)

Now (2.40) and (2.41) give (2.38).
Continuing in the same manner, in the 2i-th step, we choose arbitrary matrices

Bk = Ak . Ck, Ck S Og,gn,iPQ (Ck,22l(i)) N X7 ke {tl(i)—la R 7tl(i) - 1}7

for which
0 Li(iy—1+pi
II B=1 11 By, = Mj,
k=ty(5—1+pi—1 k=t;(;y—1+pi+(2:0)—1)—1
0 ti(s)—1+ipi+(i—1)2!0)
H B, =1, H By = My,
k=t)(s)—1+ipi+(i—1)21D —1 k=t iy 1 +ipi+(i—1)210) +(210) —21E=1)) -1
0 ti(iy—1+(i+1)pi+i2l )
11 By=1, 11 By = Mo,
k=t;(;)_1+(i+1)p;+i2! ) —1 k=t;(;)—1+(i4+1)p;i+i2t O+ (210 —1)—1
0 t(s)—1+2ipi+(2i—1)2!%)

H B, =1, H By = M,

k=ty(;y_1+2ipi+(2i—1)2LH -1 k=ty(;)_1+2ipi+(2i—1)2H) 4+(21() —21G 1)) 1
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0

11 B =1,

k=ty(;y—1+((i—1)i+1)pi+(i—1)i2t (D -1

ti(iy—1+((I=1)i+1)pi+(i—1)i2"?

H Bk = Mi7

k=ty(;y_1+((i—1)i+1)ps+(i—1)i2t D) 421D —1)—1

0

11 B =1,

k=ty(;y_1+12pi+(i2—1)2HD -1

ti(sy—1+i%pi+(i2—1)2!()

H By, = M,.

k=t(;y_1+12pi+(i2—1)2HH (210 —21G-1)) —1
We remark again that it is true (see (2.35))
ini + (ZQ o 1) 2[(1) 4 2[(1) o 2l(i*1) < Z'22l(i)71 + Z22l(z) < 22l(i).
Thus, we have ' ’ .
tl(i)—l + i2pi + (iz - 1) L) + 2le) _ 9li=1) < tl(i)-

The existence of the above matrices By, Cy € X can be shown analogously to the fourth
step.
In the (2i 4+ 1)-th step, we define

Cy = Ck+22l(i)+1, k e {Sl(i)+1, ceey SI() T 1},

Ck = C_gaiyr2, k€ {tl(i)a ety — 1},

Cr = Cy_guan-2, k€ {tiig1—2, - tigr—1 — 1},
Cy = Ck+221(i+1)—17 ke {Sl(i+l)> <oy Si1) -1 — 1}7

and put
By = Ay - Cp, k€ {siin), - -ty —1 — 1}

We can construct {Cy}rez € X and {By}rez € X so that
B, =A,-C., keeL. (2.42)

We know that
Ce=1, ke {siqy,...,tin)-1 — 1},
C, e Og,Qn,lQ (Ch_ozny) C O;’,WlPQ (I), ke{tiy-1,-..,tixy — 1},
Cr = Cipg20+1 € Og_gn_po (I), ke {sis1---»s0) — 1},
Cr = Ci_yumy2 € Og,Q,HPQ (I), ke{tiy, -ty — 1},
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Cr = Cy_p292 € O3 50 1p (1), k€ {tyg)-2, - tyg)-1 — 1},
Ck = Ck+221(2>—1 S Og_Qn_po (I) , ke {85(2), ceey SI2)—1 T 1},
Cy € OS_M_QPQ (Ck,221(2>) - O(QQ_%_1+2_2”_2)PQ ([) , ke {tl(g)_l, o lie) — 1},

Ck € 0572n7iPQ (Ck722l(i)) - 0(9272n71+,,,+272n7i)PQ ([) ) ke {tl(z’)—b s 7tl(z‘) - 1};
Ck = Ck+22l(i)+l e 05272"71+~"+272n7i)PQ (I) ; k E {SZ(Z)J’_l, . 7Sl(l) - 1}7

Especially, we see that we can construct {Cy} as in Corollary 1.28 for the sequence of

numbers ‘
g;:=27"PQ if j= f(i) forsomeie N~ {1,...,2n};

g =0 if jeN~{f(i);ieN~{l,...,2n}},

where f: N~ {1,...,2n} - N~ {1,...,2n} is a given increasing discrete function. Since
the sequence {¢;} ey satisfies (1.25), {C}} is almost periodic.
Further, we see that

Cke(l)f )PQ(I)

9—2n—149-2n-24...19-2n—j(k)
for all £ € Z and some j(k) € N (which depends on k); i.e., we have

C € OS_QRPQ ([) , ke Z.

From (2.33) it follows C), € OZ2(I) for k € Z and, consequently, from condition (ii)
and (2.42) it follows

Bie 0% (&), keZ, ie, supo(AyBy)< g <e. (2.43)
k€EZ

Now we prove the almost periodicity of {By}rez applying the almost periodicity of
{A;} and {Cy}. Let ¥ > 0 be arbitrarily small and let 6 = §(J) > 0 be such that (see (ii)
in Definition 2.1)

UQ‘/QEOg(Ulm) if Ul,‘/l,UQ,‘/QEXaHd U1€O§(U2),‘/1€O§(‘/2) (244)

Corollary 1.11 implies that the sequence {[Ag, Ck]}rez in Mat (F,m) x Mat (F,m) is
almost periodic. Thus (or see directly Corollary 1.12), the set T'({Ax}, ) N T ({Cx},0) is
relatively dense in Z and, from (2.42) and (2.44), we have

T({Ar}, 0) N T({Ck},6) € T({ Bk}, V).

Because of the arbitrariness of ¥ > 0, we obtain the fact that {Bj} is almost periodic.
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The almost periodicity of { By} together with (2.43) give that { By} € OZ({Ax}). Sup-
pose that there exists a vector u # o, u € F™, for which the solution {zy}rez of

Thy1 = Bp -y, kE€Z, To=1u

is almost periodic. Let i(u) € N and ¢ = d(u) > 0 satisfy ¥ < o (M) u,u). From
Theorem 1.3 for hy = 1 and h; = 210-Y i > 2 4 € N, it follows that the inequality

g(:Ek+21(i(1>>,Ik+21(i(2))) <v, ke, (2.45)

is satisfied for infinitely many (1) < i(2), i(1),4(2) € N.
It is easily seen that

0
vp= [] Bi-u, keN, (2.46)
i=k—1
and that
k
T4 2162 _olG(1)) = 11 B; -y, i(2) >i(1) >i(u), k,i(1),i(2) € N. (2.47)

i=k-2U(i(2)) —2l(i(1)) 1

If we choose
k= tia@y—1 + ((((w) — 1)i(2) +i(1) + 1) piay + ((i(w) — 1)i(2) +i(1)) 20 (2.48)

we obtain (from (2.46) and from the construction of {By})

0
T = H Biru=1-u=u

i=k—1
and (from (2.47) and the construction)

k
$k+2l(i(2))—2l(i(1)) = H B,L - T = Ml(u) - T = Mz(u) U
i=k-4-20(i(2)) —21(i(1)) —1
for i(2) > i(1) > i(u), i(1),4(2) € N.
Finally, we have

0 (l’k,$k+21(i(2)),21(i(1))) =0 (u, Mi(u) u) > 19, ’L(2) > Z(l) > z(u), i(l), 2(2) € N,
where k is given in (2.48). Of course, we can rewrite (2.45) into the form (k is replaced by
k — 216y of

0 ($k, xk+21<¢(2>>,21(i(1))) < 19, k¢ Z,
which is valid for infinitely many i(1),4(2) € N such that (1) < (2). This contradiction

proves that the system {B;} € AP (X) does not have any non-trivial almost periodic
solution. ]

Now we mention preliminary results, which we need to prove our main result concerning
weakly transformable groups (the main generalization of Theorem 2.19).
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Lemma 2.29. Let X be transformable. For any e > 0 and C, D € X, there exist matrices
Ch,...,C; € X satisfying

CLe0L(C), Cre08(Ciy) foriefl,....j—1}, ;€0 (D).

Proof. Let ¢ > 0 and C, D € X be given. To prove the lemma, it suffices to use (i) in
Definition 2.1 for n = n(e) < € mentioned in (ii). Let L > 0 be such that L < o(I,0),
L <o(C,0),and L < o (D,0O) and let p = p (L, n) have the property mentioned in (i). Let
us choose Uy = C and U; = I, i € {1,...,p}, in (i). There exist matrices V; € O2(I) N X,
ie{l,...,p}, for which V,,--- V5 -V} = C. We put

My =V, My:=Va-Vi, ... M,:=V,---Vy-Vi.
Since V; € O2(I) N X, i € {1,...,p}, and
Mi=VieX, My=Vo-Mi€X, ... My=V,-M,,=C¢€X,

we have

M, eO(I), M;e€ 0O (M) forie{l,...,p—1}.
Especially, M,_; € 02 (C). Analogously, we can find matrices M1, ..., My, € X with
the property that
MP-H Eog([)v Mp-‘rzeo ( p-‘rH—l) foriE{l,...,p—Z}, M2p—1 GOE(D)

For the sequence My_1, ..., My, I, Myq, ..., My,_1 as Cf,...,C;, we obtain the statement
of the lemma. O

Lemma 2.30. Let X be weakly transformable and let Xy C X, Xi,...,.X; € X be
from Definition 2.14. If for some Cy, Dy € Xy and i(1),i(2) € {1,...,l}, the product
Co Xi(1) Do Xi(2) can be expressed as My X for some My € Xy and j € {1,...,1}, then, for
all C, D € Xy, matriz C X1y D Xj9) can be expressed in the form M X; for some M € Xj.

Proof. Since the multiplication of matrices is uniformly continuous on Xj (see (ii) in De-
finition 2.1) and since the multiplication of matrices is continuous on Mat (F,m), the
multiplication of matrices is uniformly continuous on X" (the set of X; is finite). Hence,
there exists 6 > 0 such that

4 Xi(l) D, Xi(g) < 055) (C() DOX( )) if C; e 05(00) N X, D, e Og(DQ) N X,

for each i(1),i(2) € {1,...,l}, where dy is from Definition 2.14. This fact implies the
lemma for matrices C, D (as C, D;) from neighbourhoods of Cy, Dy. The radius ¢ of the
neighbourhoods does not depend on the choices of Cy, Dy. Thus, it is valid

Oy X, i(1) D2 ) € Og (Cl Xi(l) D, Xi(g)) if Cye Of(Cl) NX, Dy € Og(Dﬁ NnAx,

Now, from Definition 2.1 and Lemma 2.29, it follows the statement for all C, D € &,. [
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Lemma 2.31. Let X be weakly transformable and let Xy C X, X1,...,X; € X be from
Definition 2.14. There exists r € N with the property that

ClXZCQXZC',«XZGXO forallC’l,C'g,...,C'rGXO,iE{l,...,l}.

Proof. Leti € {1,...,1} be arbitrarily given. Using Lemma 2.30 (j—1)-times (for arbitrary
j € N), we obtain that

CleCngchzeXo fOI'aHCl,CQ,...,CjGXO

if and only if Xij € Xp. Indeed, it suffices to replace Ci,...,C; by I,...,I. For all j € N,
one can express X; = C(j) - Xy(;), where I(j) € {1,...,{} and C(j) € Ap. Evidently, there
exist j(1) > j(2) (j(1),5(2) € N) for which I(j(1)) = ((§(2)), i.e.,

Xij(l) = C (1)) - X1y, Xfm = C((2) - Xiay-
Hence, we have o
X[ = 0(j(1) - (C((2) 7 € X

We see that, for each i € {1,...,1}, there exists (i) such that X;(i) € Xy IfreNis
divisible by all r(i), i € {1,...,l}, then X! € A}, i € {1,...,l}. The above equivalence
completes the proof. O

Theorem 2.32. Let X' be weakly transformable and let {Ay} € AP (X), € > 0 be arbi-
trarily given. If there exists a sequence {M;}ien C Xy such that, for any non-zero vector
u € F™, one can find i = i(u) € N with the property that M;u # w, then there ezists
{Bx} € O2({Ax}) which does not have an almost periodic solution other than the trivial
one.

Proof. Let € < 0x (see Definition 2.14) and let n € N be an e-translation number of {Ax}.
Let us express (see again Definition 2.14)

Ay = C(Ak) - Xigry,  C(Ar) € Xo, i(k) € {1,..., 1},
where k € Z. An arbitrary system {By} € O7({Ax}) has the feature of
B, = C(Bk) . Xi(k:)7 O(Bk) € Ay, ke 7, (249)

because o (Ax, By) < € < 0x, k € Z. We also know that i(k) = i(k + jn) for k,j € Z.
Indeed, we have
Q(Ak,AkJrn) <e<dy, kez,
i.e.,
% (Ak:-i-jn; Ak+(j+1)n) <e<dx, k,jei.
Thus, Lemma 2.30 and (2.49) imply that there exists ¢ € {1,...,{} for which

Bijtiyn—1- Bjp = C(B(j+1)n—1 s Bjn) - X, C(B(j+1)n—1 T Bjn) € Ao,

where j € Z and {Bx} € O7({Ax}). Furthermore, Lemma 2.31 gives r € N with the
property that
B(s1yrn-1- Bjm € X,  j € Z, {Bi} € O ({Ak}). (2.50)
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The multiplication of matrices is uniformly continuous on X' (see also the beginning of
the proof of Lemma 2.30). Hence, for any ¢ > 0, there exists §(¢) > 0 such that

Q(Cl"'Crn,Dl"'Drn) <9 i CZ,DZ € X, Cz S 05(19) (Dz), 1 E {1,...,7’71,}. (251)
Using (2.51), we obtain the inclusion
T({Ak’}v 5(19)) - T({Ak+rn—1 o Ak}v 29)7 U > 07

which proves that {Agirn—1 -+ Ag}rez is almost periodic. Thus, {A¢t1)rm-1" - Ajm}jez is
almost periodic as well. From (2.50) it follows that {A¢jt1)rm-1--Ajm} € AP (Xp).

Theorem 2.28 says that, in any neighbourhood of {A+1)n—1---Ajm}, there exists
a system {B(jt1)rm-1"*Bjm}jez € AP (X)) which does not possess non-trivial almost
periodic solutions. Let

{B(j+1)rn71 T Bj?“n} S Og(a/Q)/Q ({A(jJrl)rnfl Tt Ajrn}) >

where 6(¢/2) > 0 is from (2.51) for rn = 2 and @ > 0 is from Definition 2.1 for Aj.
Especially,

For all j € Z, we can express

B(j+1)7"n—1 T Ban - A(j+1)7‘n—1 ce A]rn : A]7

i.e.,
—1
Aj = (A(jJrl)rnfl e 'AjT‘n) : B(j+1)rn71 - Bj, € Xp. (2.53)

We have (see also (2.52) and (iii) in Definition 2.1)
A€ Of (D), de, A Aj €02, (Aj), JEL (2.54)
Now we show that the sequence { By }xez, given by
Bjrn = Ajrn . Aj, Bjrn+i = Ajrn+i; ] < Z, 1€ {1, Lo, T — 1}, (255)

is almost periodic. Applying Corollary 1.10, we get that {B} is almost periodic if and
only if all sequences {A;,, - Aj}jez, {Ajrntitjez, i € {1,...,mrn — 1}, are almost periodic.
Of course, the almost periodicity of each {A,.,4;} and {A4,.,} is obvious. The sequence
{[Ajrn, Aj]}jez in Mat (F,m) x Mat (F,m) is almost periodic (consider Corollary 1.11) if
{A;} is almost periodic. Since we have

T({[Ajrn, Aj]},8(9)) € T({Ajm - Aj},9)  for 9 >0

from (2.51) if rn > 2, the sequence {A;,,- A;} is almost periodic if {A;} is almost periodic.
The fact that we can assume the almost periodicity of {flj}jez follows from the proof of
Theorem 2.28. There is constructed { By }xez as By = Ag-Ch, k € Z, for an almost periodic
sequence {Cy }rez. If (2.32) is fulfilled, then it suffices to consider (2.53) as Cj, = A" - By,
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i.e., Bijy1yrn-1- Bjrn as By and A(ji1yem—1- - Ajrn as Ap. If (2.32) is not valid for any
g > 0, then it suffices to use Lemma 2.27.
Let us consider the general system

Tjt1 = C(j+1)m—1 T ij "Ly, JEZL. (2~56)

Clearly, if {z;}rez is a solution of zyy1 = Cray, k € Z, then {z;,};ez is a solution
of (2.56). Indeed, it is valid that

k
Tptrn = H Cz * T, ke Z7

i=k+rn—1

i.e.,
TGi+1)rn = C(jJrl)rnfl tee ern * Ljrn, ] € Z.

One can easily show that {z;}rez cannot be almost periodic if {z.,}jez is not almost
periodic. Non-trivial solutions of {A¢i1)rm—1-+*Ajrmn - zzlj}jez are not almost periodic.
Thus, the system {By} (defined in (2.55)) does not have an almost periodic solution other
than the trivial one. Note that {By} € OZ({A}) follows from (2.54). O

The most important case is covered by the following corollary.

Corollary 2.33. Let X be weakly transformable and have a dense countable subset. Let
{Ax} € AP (X) and € > 0 be arbitrarily given. If for any vector u # o, uw € F™, there
exists M(u) € Xy for which M(u)u # u, then there exists {By} € O ({Ax}) which does
not possess almost periodic solutions.

Proof. Let X be a dense countable subset of X'. Since the operations & and ® are con-
tinuous with respect to o, the multiplication of matrices and vectors on Mat (F, m) and
F™ is continuous as well. Thus, if o (M u,u) > 0 for some M € X and u € F™, then
o (Mx u,u) > o(Mu,u) /2 for some Mx € X from a neighbourhood of M. Now it suffices
to use Theorem 2.32. O

Example 2.34. All concrete transformable and weakly transformable matrix groups, men-
tioned in Examples 2.2-2.10 and 2.15-2.17 (except O(2) & Ox(2)), satisfy the conditions of
Corollary 2.33. O

Applying the process used in the proof of Theorem 2.28 and considering Theorem 2.32
(by simple modifications), one can analogously prove the following theorem.

Theorem 2.35. Let X be weakly transformable and let {Ax} € AP(X), € > 0, and
u € F™ be arbitrarily given. If there exists a matriz M € Xy such that M u # u, then there
exists { B} € OZ({Ax}) for which the solution of

Tpr1 =By -1, k€EZ, To=1U (2.57)

s not almost periodic.
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Remark 2.36. Let us illustrate the significance of Theorem 2.35. Let {Ax} € AP (X)
and € > 0 be arbitrary. We consider the group X of complex matrices (with the usual

metric) in the form
I O
O U)’

where [ is the m; X my identity matrix and U is a my X mo unitary matrix. This group
is transformable, but it does not satisfy the condition of Theorem 2.32. Clearly, a system
{Bx} € AP (X) without almost periodic solutions does not exist. Of course, using Theo-
rem 2.35 for arbitrarily given non-zero u € F™ satisfying M u # u for some M € X, we
obtain {By} € O7({Ax}) with such a property that the solution of (2.57) is not almost
periodic. In fact, using the above process (see also Corollary 2.33), one can construct a
system {By} € O7({Ax}) for which the solution of (2.57) is not almost periodic for all
u € F™ such that M u # u for some M € X; i.e., it is possible to obtain the same { By}
for all considered wu. JAN

At the end, we say that it is possible to obtain various generalizations and modifications
of results presented in this section. For simplicity, we consider only sufficiently general and,
at the same time, important cases. Especially, in Chapter 1, the constructions are used for
a ring with a pseudometric. For almost periodic sequences defined for k£ € Ny, it suffices to
replace Corollary 1.5 by Remark 1.2 (see also [100]) and Corollary 1.28 by Theorem 1.23.
Note that the basic theory of almost periodic sequences on Ny is established, e.g., in [57].



Chapter 3

Values of almost periodic and limit
periodic sequences

The goal of this chapter is to find limit periodic and almost periodic sequences whose
ranges consist of arbitrarily given sets. To find them, we apply a construction from Chap-
ter 1. In addition, using a different construction, we obtain another result concerning values
of limit periodic sequences. The obtained results are also used in the study of complex
almost periodic (weakly) transformable difference systems (introduced in Chapter 2).

3.1 Preliminaries

As in the first chapter, let X # () be an arbitrary set and let d : X x X — [0,00) be a
pseudometric on X'. For given € > 0 and x € X, we define the e-neighbourhood of x in X
as the set {y € X; d(z,y) < €}. The e-neighbourhood of z is denoted by O.(z).

3.2 Sequences with given values

In this section, we construct limit periodic (and almost periodic) sequences whose ranges
consist of arbitrarily given sets satisfying only necessary conditions. We are motivated by
paper [73], where a similar problem is investigated for real valued sequences. In that
paper, using an explicit construction, it is shown that, for any bounded countable set of
real numbers, there exists an almost periodic sequence whose range is this set and which
attains each value in this set periodically. We extend this result to limit periodic sequences
attaining values in X.

Concerning almost periodic sequences with indices £ € Ny = NU{0} (or asymptotically
almost periodic sequences), we refer to [100], where it is proved that, for any precompact
sequence {zy}ren, In a metric space X, there exists a permutation P of the set of non-
negative integers such that the sequence {xp()}ren, is almost periodic. Let us point out
that the definition of the almost periodicity (in fact, asymptotic almost periodicity) in

70
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[100] is based on the Bochner concept; i.e., a bounded sequence {xj}ren, in X is called
almost periodic if the set of sequences {xyip}ren,, p € N, is precompact in the space of
all bounded sequences in X. We repeat that, for sequences with values in complete metric
spaces, the Bochner definition is equivalent with the Bohr one which we prefer. Moreover,
we know that these definitions remain also equivalent in an arbitrary pseudometric space
if one replaces the convergence in the Bochner definition by the Cauchy property (see
Theorem 1.3 and Corollary 1.5). However, it can be shown that the result of [100] for the
almost periodicity on Ny cannot be true for the almost periodicity on Z or R (see also
Remark 1.2).

In Banach spaces, another important necessary and sufficient condition for a function
to be almost periodic is that it has the so-called approximation property; i.e., a function is
almost periodic if and only if there exists a sequence of trigonometric polynomials which
converges uniformly to the function on the whole real line in the norm topology (see, e.g.,
[46, Theorems 6.8, 6.15]). There exist generalizations of this result (see [38, 177]). For
example, it is proved in [13] that an almost periodic function with fuzzy real numbers as
values can be uniformly approximated by a sequence of generalized trigonometric polyno-
mials. We add that fuzzy real numbers form a complete metric space. One shows that
the approximation theorem is generally invalid if one does not require the completeness
of the space of values. Thus, we cannot use this idea in our constructions for general
pseudometric spaces.

We prove that, for a countable subset of X', there exists a limit periodic sequence whose
range is exactly this set. Since the range of any limit periodic sequence is totally bounded
(see Theorems 1.14 and 1.22), this condition on the set is necessary. Now we prove that
this condition is sufficient as well.

Theorem 3.1. For any countable and totally bounded set X C X, there exists a limit
periodic sequence {1y }rez satisfying

{Up; keZt=X (3.1)
with the property that, for any | € Z, there exists q(l) € N such that

U= Yoy, J € L. (3.2)

Proof. Let us put X = {¢x; k € N}. Without loss of generality, we can assume that the
set {¢k; k € N} is infinite because, for only finitely many different ¢, we can define {9}
as periodic. Since {yy; k € N} is totally bounded, for any € > 0, it can be embedded into
a finite number of spheres of radius €. Let us denote by z¢,... ,xin(i) the centres of the

spheres of radius 27¢ which cover the set for all i € N. Evidently, we can also assume that

and that .
=i, €N (3.4)
We will construct {t} applying Corollary 1.28. We choose arbitrary n(1) € N for
which 22" > m(1). We put

Vo = :E%, Py = 33%> s Umy—1 1= :E}”(l)’
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Ypo=at, ke {220t ... 9% o 1yu{m(1),...,24 2>+ 422D 1}
and
er:=L, ke{l,...;2n(1)+1}, (3.5)
where
L:= max d (:Ell,l‘]l) + 1.
ij€{1,..m(1)}

In the second step, we choose n(2) > n(1) +m(2) (n(2) € N). We define
Vg o= Ypyorner, k€ {=22WF .98 9. _omD=L 98 2 1}

U = Uy gz, kE€{24+22 4. 4220 940292 _ 4

Vi = Ypporme—1, k€ {=22@71 ... 93 oL om@=3 .93 9 1},

and we put
=0, ke{m(1)+2,...,2m(2)}, e i=2" (3.6)

Since n(2) > n(1) + m(2), from the above definition of 1y, it follows that, for each
j€{l,...,m(1)}, there exist at least 2m(2) + 2 integers

le {21t ... 93 9 9M@=2, ... 49249 1}
such that ¥, = 33]1 Thus, we can define
Uk € Ocypipyir Wp_gznm), K €{24 224 422072 90427 .4 270 1}
with the property that
(ke {24224 42372 94924 ... 4924 97 _ 11

_ 1 1 2 2
- {*xl’ B 7xm(1)7x17 ce 7xm(2)}'

In addition, we can put
1/122n(2) = ¢0 = ZL’% (37)

and we can assume that
Yp =21 forsomek € {24 -+ 22)=2 944222 1}~ {22”(2)}.

In the third step, we choose n(3) > n(2)+m(3) (n(3) € N) and we proceed analogously.
We construct {¢} for

ke {2+l .93 _9o oM@l _..._93_9_ 1}

ke {—2m®-1t_... 93 _9o  _9MB)3_ ... _95_9_1}
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as in the 2(n(2) + 1)-th, ..., 2n(3)-th steps of the process (mentioned in Corollary 1.28)
for
er,:=0, ke{2n(2)+2,...,2n(3)}. (3.8)

Especially, we have
Yp=at, ke P ={j2%; jezin{-2®-1_..._2 . 24...427B)2_11 (3.9)

As in the second step, for all j(1) € {1,2} and j(2) € {1,...,m(j(1))}, there exist at
least 2m(3) + 2 integers

le {21t ... 93 92 24224 422072 _ 11 {j27?. j ez

such that ¥, = xigg It is seen that, to obtain

Uk € Ocypigyir (Wp_gen@), K €{24 224 422072 9427 4.4 270 1}

where
Eon(z)1 i= 277, (3.10)

satisfying
(s ke {24224 422O=2 9492 ... 49324 o:B) _ 11}

_ 1 1 3 3
— {xl,...7xm(1),...7x17... ,I’m(3)},

we need less than (or equal to) m(3) + 1 such integers [. Thus, we can define these v so
that

p=xl, kel ={j27®, jcezin{2+.. 42732 24... 4273 _11 (311
1 0

¢22n(3)+1 = 'QZ)1 = :E%, ¢22n(3)_1 = ¢_1 = l‘i (312)
and

Yp =1 forsome k € {24 - +22G72 24 490 1} {22 1},

Y =1p_1 forsome k € {24 - +22O2 o 427G 1} {20 — 1},

We proceed further in the same way. In the i-th step, we have n(i) > n(i — 1) + m(q)
(n(i) € N) and

U 1= Yy, k€ (=220 g gDl g )

Yk = Ypggenr, k€ {2071 g 9@ 91}

and we denote

er=0, ke{2n(i—1)+2,....2n(0)},  egn@y41:=2"""1. (3.13)



3.2 Sequences with given values 74

We also have

Y =1y, ke J={j2"@, jezin{-2O-1_..._2  24...427O2_11 (3.14)
U =11, keJ,
A . i (3.15)
Jo= {14220, jezyn{=220O-1 ... _9 24 ... 42202 _ 11
wk:,gb—la ke Jil,
J={-1+j2"®, ez} (3.16)
N{=22@O-1 _ ... 9% _9 24922 4...49270O2_1}
wk = %73, ke Jii—?,a
Jig={i—3452"0D. 7}
N{=22O-1 ... 93 _9 24924 ... 42202 _11
wk = w7i+37 ke Jii_,_?n
T = {—i+ 34207, j e 7}
N{=22O-1_..._98_9 24922 4...42920-2_1}
if i —3 <22 If 227(2) < j — 3 < 222D+ we have
77ij - ¢—22"(2)+1; k E ‘]12271(2)+17
Ty = {=22"® 4 14 2@ 00, e 73
N{=22O-1 ... 9% _9 2492 4... 42202 _ 11
'l/)k = ¢22”(2>+17 k€ J52n(2)+17
Ty = {200 14 j2E0, € 7}
N{=22O-1 ... 9% _9 24924 ... 42202 _ 11
If 220+ < 1—3, then we omit the values @Dj 92n(2) 5 1/}1+j 92n(3) 1/)_1+j 92n(3), ... For simplicity,

let i — 2 < 221,
Considering the construction, for all j(1) € {1,...,i — 1}, j(2) € {1,...,m(j(1))},
there exist at least 2m(i) + 2 integers

le {2207t .28 9 24274 42202 1} (JPU---U T L)
such that v, = xjgg Evidently (similarly as in the third step), we can obtain

77Z)k € 052n(i)+1 (wk—22"(i)) ) ke {2 + e+ 2271(1)—2’ R 2+ -+ 2271(2) - 1}’
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for which
{wk; ke {2 4+t 22”(1)*27 24+ 92n(i)—2 4 92n(i) _ 1}} (3 17)
:{x%,7$in(1),,le77$in(l)} .
and, in addition, we have
I={j2@ jezZyn {2+ +27072 24 ... 4270 1} ’
I={1+5270) jezyn{24 - - +22O2 24 ... 4270 1} '
=, kel
Ve =91 ! (3.20)

I' = {—142270) jezZyn {24 - 422072 o4 ... 4220 1}

wk = zbi737 ke 1—1?737

]273 = {Z'_3_|_j22”(i*1); j € Z}m{2_|_...+22”(i)*27_”72+..._|_22”(i) —1},
wk = ¢71‘+37 ke Ing’
Iy = {—i+ 3452700 e Zyn {24 -+ 22072 24 .. 4220 1},

and ‘ |
Ve = Pig, k=270 442 Ve = _ire, k=20 _j42

Y = 1hi_y for some k € {24 .- 422002 o4 o2@ 1) {220 44 — 2},
U =1h_iry forsome k € {24 .. 42202 o .. 9@ 1) {220 ;4 2},

Using this construction, we get the sequence {iy}rez € X with the property that
(see (3.7), (3.9), (3.11), (3.14), (3.18))

Ue =1, ke{j2"?; ez},
and that (see (3.12), (3.15), (3.16), (3.19), (3.20))
=1, ke {l+j2"%; ez},
Up =191, ke{-1+52"; 5 €L},
and so on; i.e., for any [ € Z, there exists i(l) € N satisfying
V=1, ke {l+;2700) jez}. (3.21)

Now it suffices to show that the sequence {1} is limit periodic. Indeed, (3.1) follows
from the process, (3.3), (3.4), and (3.17); (3.2) follows from (3.21) for ¢(I) = 221,
Since we construct {¢4} using Corollary 1.28, {1} is limit periodic if (1.25) is satisfied.
Considering (3.5), (3.6), (3.8), (3.10), and (3.13), we have

iei =L(2n(1)+1)+1 (3.22)

which completes the proof. O]
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From Theorem 3.1, we immediately obtain the following result concerning almost pe-
riodic sequences.

Corollary 3.2. For any countable and totally bounded set X C X, there exists an almost
periodic sequence {1y }rez satisfying (3.1) with the property that, for anyl € 7, there ezists
q(l) € N such that (3.2) is valid.

Remark 3.3. We can mention several other corollaries which follow from Theorem 3.1,
when the limit periodicity of {1} is replaced by a concrete type of almost periodicity in the
statement. For example, one can consider almost automorphic sequences which generalize
classical almost periodicity and which have totally bounded ranges as well (see, e.g., [79,
Definition 3.2 and Theorem 3.3, (v)]). A

Before the formulation of the next theorem, we add that a sequence {zy}reny C X is
dense in itself if for any k£ € N and ¢ > 0, there exist infinitely many x € {z; k € N} with
the property that d(xg,x) < €.

Theorem 3.4. Let a sequence {xy}ren € X be totally bounded and dense in itself. There
exists an injective limit periodic sequence { fx}rez satisfying

{fx; k € Z} = {x1; k € N}. (3.23)

Proof. Without loss of generality, we can assume that the sequence {xy}ren is injective.
We put X := {zy; k € N}. We know that, for any n € N, there exists an odd integer
m = m(n) > n such that

1
min d (z;,1;) < o [ € N. (3.24)

ie{l,...,m}
In the first step, let us consider the periodic sequence {f} }rez given by values
fO1 =1, fll = T2, fil = T3, 7f7}1(1) = T2m(1), fim(l) = T2m(1)+1

and period 2m(1) + 1. In the second step, we define a sequence {f?}rez C X with period
[2m(1) 4+ 1]m(2) so that

fzm(l) = fim(l)vmf(? - f(}a?fr?ﬁ,(l) = fr}v,(lﬁ

{z1,. . ame {51 e{1,..,2m(1) + 1] m(2)} }, (3.25)
d(f2 ) < % le{l,....2m(1) +1]m(2)}, (3.26)
FE# 7 i# 05 e{l,.. [2m(1) + 1]m(2)}. (3.27)

We can find such a sequence {f?}rez. Conditions (3.25), (3.26) follow from (3.24) and
(3.27) can be satisfied because, in any neighbourhood of each considered value z;, there
are infinitely many values from X.
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We proceed further in the same way. In the n-th step, we define a sequence { f}' }rez C X
with period [2m(1) 4+ 1]m(2) - - - m(n) arbitrarily so that

fﬁ[2m(1>+1]7n(22)~~m(n71)+1 = T—L[_Q}n(l)—‘rl]m(Q)---nL(n—l)+1 I f(;L = (7)1_17 cee
Tty fgm(1)+1]m(22)»-»m(n71)71 = ’[r;r_n%l)-&-l]m(Q)--»'m(n—l)—l
and
{1, amm ) {1 e{L, .. 2m(1) + 1] m(2) - --m(n)}}, (3.28)
n n— 1
d(fl » J1 1) < F? l e {177[2m<1)+1]m(2)m<n)}7 (329)
We put .
for=1lim ff=fFY kez jeN
n—oo

We have (see (3.29))

1
d(fkvfl?)gd(fl?a ]?+1>+d( ]’;H_ly ]:L+2)+< 271717 ]CGZ,’I’LGN

Thus, the sequence { fi }xez is limit periodic. Since

f le{—[2m<1>+1]n»;<2>~~m<n>+1’“.,07
B ) m(n) - } LN ()
from (3.30), we obtain
s z’;«éj,i,je{_[2m(1)+1]W;<2)"'m(n)+1,...,0,
._,[2m<1>+1]m<22>---m<n>—1}’ peN (1)

i.e., we have (m(n) — oo for n — o)
fi?éfj? Z%j’ZaJEZ

It remains to prove that {f;} satisfies (3.23). Of course, this fact can be easily shown
considering (3.28). O

Again, we obtain a new result in the almost periodic case.

Corollary 3.5. Let a sequence {xy}reny C X be totally bounded and dense in itself. There
exists an injective almost periodic sequence { fi}rez satisfying (3.23).
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Remark 3.6. For any sequence {x;}rey € X which is not dense in itself, Theorem 3.4
cannot be valid. Indeed, if there exist [ € N and £ > 0 such that the intersection of the
e-neighbourhood of x; and the set {zy; k € N} contains only a finite number of elements of
{zg; k € N}, then any almost periodic sequence { fi}rez satisfying (3.23) attains a value
from this neighbourhood infinitely many times (consider directly Definition 1.1). JAN

At the end of this section, we assume that X is a uniform space with a non-empty
family U of entourages. We generalize the definition of limit periodicity from Chapter 1 as
follows.

Definition 3.7. A sequence { fi}rez C X is called limit periodic if it is the uniform limit
of periodic sequences {f'}kez C X, n € N, i.e., for any U € U, there exists ng € N such
that (fy, fi') € U for all k € Z, n > ng, n € N.

We can also formulate the corresponding generalizations of almost periodicity and
asymptotic almost periodicity. Especially (see, e.g., [10]), a continuous multivalued map
f R — X is said to be almost periodic if for any entourage U € U, there exists a positive
number p € R such that every real interval of length p contains a number s for which
f(z + s) is in the U-neighbourhood of f(x) and intersects the U-neighbourhood of all
y € f(x), z € R. For the fundamental properties of this type of almost periodic functions,
we refer to [10, 11, 109, 158] (and also [50, 51, 139]).

If there exists a countable fundamental system of entourages of X', then the uniform
structure of X' can be defined by a pseudometric (see, e.g., [107, Theorem 13 on p. 186]
and references cited therein). Hence, we have:

Theorem 3.8. The statement of Theorem 3.1 remains true if X is a uniform space with
a countable fundamental system of entourages.

Considering Theorem 3.4, we also obtain the following result.

Theorem 3.9. Let X have a countable fundamental system of entourages and let a totally
bounded sequence {zy}ren C X be such that, for any k € N and any entourage U € U,
there exist infinitely many v € {xy; k € N} with the property that (xy,z) € U. Then, there
exists an injective limit periodic sequence { fx}rez satisfying (3.23).

3.3 Applications related to almost periodic difference
systems

Let m € N be arbitrarily given. We consider m-dimensional homogeneous linear dif-
ference systems of the form
Yk+1 = Ak‘ * Yk, ke Zv

where {Ax} is an almost periodic sequence of matrices from a given group X of m x m
matrices with complex elements. Of course, in C, we consider the usual metric d given by
the absolute value of difference. This metric induces the metric on the set C™ of all m x 1
complex vectors and on the set C™*™ of all m x m complex matrices as the sum of m and
m? non-negative numbers, respectively. For the sake of simplicity and convenience, these

metrics are denoted by d as well. Let I € C™*™ be the identity matrix.
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Lemma 3.10. Let X C C™™ be a bounded group. If {fi}trez C X is almost periodic,
then the sequence {f,;l}kez of the inverse matrices is almost periodic as well.

Proof. For an arbitrary matrix norm (especially, for the ¢;-norm which corresponds to d)
denoted by ||-||, we have (2.3) for any matrices A, E such that A is non-singular and
|A7*E| < 1. For the bounded group X, (2.3) implies that the map C — C~! has
the Lipschitz property on X. Hence, the almost periodicity of {f, '}xez is guaranteed by
Theorem 1.6. O]

Theorem 3.11. Let X C C™™ be a bounded group. There exists an almost periodic
sequence {Cy}rez € X satisfying {Cy; k € Z} = X such that all solutions of the system

Yet1 = Cr - yp, k€, (3.31)
are almost periodic.

Proof. 1t is seen that every bounded group of complex matrices has a dense countable
subgroup. Thus, we can assume that X = {zy; £k € N}. We apply Corollary 3.2. There
exists an almost periodic sequence {fi}rez satisfying (3.23). From Corollary 1.10 and
Lemma 3.10, it follows that the sequence

Cor = fr, Copqr = fk_1> ke Z, (3.32)

is almost periodic as well. Note that f, ! denotes the inverse matrix of f, and that I 1— fi
for some j = j(k) € Z. The principal fundamental matrix {®y}rez of the system (3.31)
given by (3.32) attains values

B0)=I1,0(1) = fo,®(2) =1, ... ®2n)=1,82n+1)=f,

O(—1) = f 1, 8(=2) =1, ... ®(—2n)=1d(—2n—1)=f 1,

The almost periodicity of {®} is equivalent to the almost periodicity of { fi} (see directly
Definition 1.1). O

To obtain counterparts of Theorem 3.11 (the below given Theorems 3.12 and 3.13), we
use Corollary 2.33 and Theorem 2.35.

Theorem 3.12. Let X C C"™*™ be a weakly transformable group. If there exists a matrix
M(u) € Xy for any non-zero vector u € C™ such that M(u)u # u, then there exists an
almost periodic sequence { Dy }rez C X satisfying {Dy; k € Z} = X for which the system

Yet1 = Dy -yk, k€ Z, (3.33)
does not have any non-trivial almost periodic solution.

Proof. Evidently, in the complex case, any weakly transformable group has a dense count-
able weakly transformable subgroup. Hence, as in the proof of Theorem 3.11, we can
assume that X = {xy; k¥ € N} and we can apply Corollary 3.2. We obtain an almost
periodic sequence { fx}rez with the property that {f; k € Z} = {zy; k € N}.
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Let { By }kez C {zx; k € N} be an arbitrary almost periodic sequence mentioned in the
statement of Corollary 2.33. We put

Dsp := fr, Dspsr:=f, ', Dspyo:=Bp, kel (3.34)

Corollary 1.10 and Lemma 3.10 give the almost periodicity of {Dy}rez. For the principal
fundamental matrix {Wg }rez of the system (3.33) determined by (3.34), we have

v0)=1, ¥Q1)=/fo, V(2)=1I Y(3)=Dy,

\11(377/) = anl s Bl . Bo,
UBn+1)=f, By 1---Bi- By,
\If(?m + 2) = Bn—l s B1 . B(),

and

U(—3n+2)=(B_y Ba---B_,) ",
U(-3n+1)=f, (B.1-Bo---B.,) ",
U(=3n) = (B, By B,

From Corollary 2.33, we know that the sequence {Ws; u} ez is not almost periodic for any
non-zero vector u € C™. Thus, the sequence {¥y u}rez cannot be almost periodic. O

Analogously, using Theorem 2.35, one can prove:

Theorem 3.13. Let X C C™™ be a weakly transformable group and uw € C™ be an
arbitrary non-zero vector. If there exists a matriz M(u) € Xo such that M (u)u # u, then
there exists an almost periodic sequence {Dy}rez C X satisfying {Dy; k € Z} = X for
which the solution of

Tpy1 = Dy -z, k€ Z, To=1u

18 not almost periodic.
From the proofs of Theorems 3.11 and 3.12, we also get the following theorems which

finish this chapter. Note that we partially study almost periodic systems in Chapter 4 as
well.
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Theorem 3.14. For any countable bounded group X C C™ ™, there exists an almost
periodic sequence {Cy }rez satisfying {Cy; k € Z} = X such that all solutions of the system

Yer1 = Cr -y, k €Z,
are almost periodic.

Theorem 3.15. Let X C C™*™ be a countable weakly transformable group and let there
exist a matriz M(u) € Xo for any non-zero vector v € C™ such that M(u)u # u. There
exists an almost periodic sequence {Dy}rer satisfying {Dy; k € Z} = X for which the
system

Y1 =Dy -y, kE€Z,

does not have any non-trivial almost periodic solution.

Theorem 3.16. Let X C C™*™ be a countable weakly transformable group and let u € C™
be an arbitrary non-zero vector. If there exists a matriz M(u) € Xo such that M (u)u # u,
then there exists an almost periodic sequence {Dy}rez satisfying {Dy; k € Z} = X for
which the solution of

Tp1 = Dy -x, k E€Z, To=1u

18 not almost periodic.



Chapter 4

Solutions of limit periodic difference
systems

Now we consider limit periodic homogeneous linear difference systems of the form
Tpy1 = A -z, keZ. (41)

Limit periodic systems (4.1) form the smallest class of systems which generalize pure
periodic systems in the form (4.1) and which can have at least one non-almost periodic
solution (for complex matrices Aj from a bounded group, cf. Corollary 2.22). The basic
motivation comes from Chapter 2, where we study non-almost periodic solutions of almost
periodic systems. In this chapter, we improve the main results of Chapter 2 in a certain
sense, because we analyse non-almost periodic solutions in the limit periodic case. In
addition, we obtain results about non-asymptotically almost periodic solutions. Since the
methods used in this chapter are substantially different from the process from Chapter 1
applied in Chapter 2, we also obtain new results for almost periodic systems.

The necessity of generalizations of periodic mathematical models is implied by various
oscillatory phenomena in natural sciences. The models induce the research of limit periodic,
almost periodic, and asymptotically almost periodic sequences in connection with difference
equations. There are many significant books dealing with (asymptotically) almost periodic
solutions of difference and differential equations, e.g., [32, 39, 46, 72, 183]. We also refer
to references given in these books.

In this chapter, we use methods based on constructions of limit periodic sequences. A si-
milar method was firstly applied in [78], where non-almost periodic solutions of homoge-
neous linear difference equations are found as classes of constructible sequences. A method
of constructions of minimal cocycles, which are obtained as solutions of homogeneous linear
differential systems, is described in [141] (see also [140]). Special constructions of homoge-
neous linear differential systems with almost periodic coefficients are used in [124, 125] as
well.

This chapter is organized as follows. We begin with the used notations. In Section 4.2,
we introduce properties (denoted by P and P*) which allow us to improve the results of
Chapter 2 for bounded groups of coefficient matrices in Section 4.3. In Section 4.4, the
coefficient matrices of the considered systems belong to a given commutative group. We

82
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find a condition on the group under which the systems, whose fundamental matrices are not
almost periodic, form an everywhere dense subset in the space of all considered systems.
The treated problems are discussed for the elements of the coefficient matrices from an
arbitrary infinite field with an absolute value. Nevertheless, the presented results are new
even for the field of complex numbers.

4.1 Preliminaries

Let (F,®,®) be an infinite field with a zero eg and a unit e;. Let | - | : F — R be an
absolute value on F'; i.e., let

(a) |f|>0and |f]|=0if and only if f = ey,
(b) [fogl=Ifl-1gl,

() [fogl<Ifl+lg]

for all f,g € F. As F, we understand each one of the fields C, R, Q with the usual absolute
value. For arbitrary p € N, we put pN := {pj; j € N}. We remark that i € C stands for
the imaginary unit.

Let m € N be arbitrarily given (as the dimension of systems under consideration).
Symbol Mat(F, m) denotes the set of all m x m matrices with elements from F and F™
the set of all m x 1 vectors with entries from F'. Next, -, + stand for the multiplication
and the addition on spaces Mat(F,m), F™. As usual, we denote the identity matrix
I € Mat(F,m), the zero matrix O € Mat(F,m), and the zero vector o € F'™.

The absolute value on F' gives the norm on F™ and Mat(F,m) as the sum of m and
m? non-negative numbers which are the absolute values of the elements, respectively. For
simplicity, both of the norms are denoted by || -||. Especially (consider (a), (b), (c)), we
have

(A) [[M||>0and || M| =0 if and only if M = O,

B) [[u] >0 and ||u| =0 if and only if u = o,

D

)
(B)
(©) 1M+ N <[[M]+[N,
D) utvll <ful+vl,
(E)

E) [M-N[<[M]|-[N],

(F) 1M -ull < M-l

for all M, N € Mat(F,m), u,v € F™. Henceforth, we will use properties (A), (B), (C),
(D), (E), (F) without emphasizing.

The absolute value on F" and the norms on F, Mat(F, m) induce the metrics. For the
sake of convenience, we denote each one of these metrics by g. The e-neighbourhood of «
is denoted by O¢(«) in all above mentioned spaces with metric ¢. In addition, we assume
that the valued field F' (with | - |) is separable. Hence, all considered spaces are separable.
We remark that metric space (F, ¢) does not need to be complete.
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4.2 General homogeneous linear difference systems

Let X C Mat(F,m) be a group. We study the homogeneous linear difference systems
Tpr1 = A -z, kEZ, where {A;} C X. (4.2)

Let P (X), LP (X), and AP (X) denote the set of all systems (4.2) for which the sequence
of matrices Aj, is periodic, limit periodic, and almost periodic, respectively. Note that we
identify the sequence { Ay} with the system (4.2) which is determined by {A}. In AP (X),
we define the metric

o ({Ar} {Bi}) = ilelgg(Aka By), {Ai} {Bi} € AP (X).

Symbol O7({Ay}) stands for the e-neighbourhood of {A;} in AP (X).
To study limit periodic systems of the form (4.2), we introduce properties of X denoted
by P and P* as follows.

Definition 4.1. We say that X has property P if for every a > 0 and § > 0, there exist
¢(a) >0 and I = (a,0) € N such that, for any vector u € F™ satisfying || u || > a, one can
find matrices My, ..., M; € X for which

M, € O§(I), M; € O( M), ie{l,....,1 =1}, [ M -u—ul > ((a).

Definition 4.2. We say that X has property P* if for any a > 0 and § > 0, there exist
M(a) € X, ¢(a) >0, and [ = I(a,d) € N such that, for any N € X, one can find matrices
My, ..., M, € X satistying

M1€O§(N)a Mieog(MH—l)v iE{l,...,l—l}, Ml:M(a)

and
| M(a) -u—ul >((a), uweF™ [ul>a

We formulate Definitions 4.1 and 4.2 in the above form for general a > 0, because we
apply symbols ((a),l(a,d) later (i.a., in the proofs of the main results of this chapter).
Of course, we obtain the identical definitions if we consider only one number a < 1 as
arbitrarily given. Indeed, we have

[S=101 Wfeul=1f1-lull, feFueF" el
Thus, we can simplify them into the following forms.

Definition 4.3. The group X has property P if there exists ¢ > 0 and if for all 6 > 0,
there exists [ € N such that, for any vector u € F™ satisfying ||u || > 1, one can find
matrices My, ..., M; € X with the property that

Mleog([>7 Mieog(Mi+1)7ie{la"wl_l}v HM[U—UH><
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Definition 4.4. The group X has property P* if there exist M € X and ¢ > 0 such that,
for every 6 > 0, there exists [ € N with the property that, for any N € X', one can find
matrices My, ..., M; € X satisfying

M, GOf(N), M; GOg(MHl), 1€ {1,...,[—1}, M,=M

and
“M'U_UH>C> uEFm,HUH21

Remark 4.5. Especially, X has property P if there exist ( > 0 and continuous functions
fi :10,1] = Mat(F,m) for i € {1,...,n} with the properties that

filrye X, reQnlo,1], fi(0)=1, ie{l,...,n},

and

max || fi(1)-u—ul>( weF™” [Jul>1.
ie{l,...,n}

A

Remark 4.6. Let F' = C and let X be weakly transformable. If there exists a matrix
M € X, such that Mu # u for all non-zero vectors u € C™, then X has property P. It
follows directly from Definitions 2.14 and 4.3 and, considering the compactness of the set
C:={ueC™ ||u|| =1}, from the inequality

inf | M-u—u| >0.

ueC
Note that the number [ € N considered in Definition 4.3 has to exist for any ¢ > 0, because
the set X' is totally bounded.

Analogously, if for every non-zero vector v € C™, there exists a matrix M(u) € Xj
satisfying M (u)u # u, then we can assume that

inf || M(u) - u—ul| >0.
ueC

Indeed, there exists a finite number of matrices My, ..., M; € X, satisfying
max |[|[M;-u—ul| >0, weC” ||ul|=1. (4.3)
i€{l,j}
Hence, in this case, X has property P as well. A

Example 4.7. Based on Remark 4.6, we can mention many examples of weakly trans-
formable groups X C Mat(F, m) with property P. Since each one of concrete transformable
and weakly transformable groups mentioned in Examples 2.2-2.10, 2.15, and 2.17 contains
matrices My, ..., M; from a transformable subgroup such that (4.3) is satisfied, all these
groups have property P (it also follows from Remark 4.5). O

Remark 4.8. It is seen that X has property P if it has property P*. One can trivially
show that the converse implication is not true. It suffices to consider the real case for m = 3
and the group X = SO(3) which consists of all orthogonal matrices with determinant 1.
This group has property P (see Example 4.7). For any matrix M € SO(3), there exists
a vector u € R? with the properties that Mu = u and ||u|| = 1. This fact implies that
X = SO(3) cannot have property P*. A
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To formulate our results in a simple and consistent form, we also introduce the following
definition concerning non-asymptotically almost periodic solutions of systems (4.2).

Definition 4.9. We say that a system {Aj}rez € AP (X) does not have any non-zero
asymptotically almost periodic solution in the strong sense if there exists a sequence
{ln}nen € N satisfying lim,, .o [, = oo with the property that, for any non-zero solu-
tion {xy}rez, there exist ¥ > 0 and @ € N such that the inequality

st — s, || > 9

is valid for all © > j > @) and for a set of k£ which is relatively dense in N and which depends
on ¢ and j.

Remark 4.10. Evidently, the systems considered in Definition 4.9 form a special class
of systems whose non-zero solutions are not asymptotically almost periodic. For exam-
ple, the scalar system x;,,, = e*z, (for k € Z) does not have non-zero asymptotically
almost periodic solutions, but it is not true that this system does not have any non-zero
asymptotically almost periodic solution in the strong sense. A

In Section 4.4, we intend to improve results of Section 4.3. To show how the results of
Section 4.4 improve theorems from Section 4.3, we need to reformulate Definition 4.3 for
bounded groups applying the following two lemmas (which we will need later as well).

Lemma 4.11. Let p € N be given. The multiplication of p matrices is continuous in the
Lipschitz sense on any bounded subset of Mat(F,m).

Proof. Let K > 0 be given. Since the addition and the multiplication have the Lipschitz
property on the set of f € F satisfying | f | < K, the statement of the lemma is true. [J

Lemma 4.12. Let a bounded group X C Mat(F,m) be given. There exists L > 1 such
that
M-N'N*'Mec0O? (I) if M,N¢e€X,MeON). (4.4)

Proof. We know that the inequality
IM||<K, McX, ie, | M7 <K, MeX, (4.5)

holds for some K > 0. The map f — —f, the multiplication, and the addition have the
Lipschitz property on the set of all f € F satisfying | f | < K. In addition, for any M € X,
we have (see (4.5))

1 1

M K™ M = :
det M <m , det Tot M1 > e

Hence, the map

M- ——/'_ MelX,
det M
has the Lipschitz property as well. Let a matrix M € X be given. If we use the expression
-1 Mj,i

Mij = e i,j€{1,...,m},
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where m;- jl are elements of M~! € X and M,; are the algebraic complements of the

elements m;,; of M, then it is seen that the map M — M ™! is continuous in the Lipschitz
sense on X.

Evidently, Lemma 4.11 and the Lipschitz continuity of M + M~! on X imply the
existence of L > 1 for which (4.4) is valid. O

Using Lemmas 4.11 and 4.12 for bounded X and for M, replaced by Ms - My, ..., M,
by M;--- My - M, we can rewrite Definition 4.3 as follows.

Definition 4.13. A bounded group X C Mat(F, m) has property P if there exists ( > 0
and if for all 6 > 0, there exists [ € N such that, for any vector u € F™ satisfying || u| > 1,
one can find matrices My, ..., M; € X with the property that

M, € O(I), 1e€{1,...,1}, | M- My -u—ul > . (4.6)
We introduce the following direct generalization of Definition 4.13.

Definition 4.14. Let a non-zero vector u € F™ be given. We say that X’ has property P
with respect to wu if there exists ( > 0 such that, for all § > 0, one can find matrices
M, ..., M, € X satisfying (4.6).

Remark 4.15. Since a group with property P has property P with respect to any non-
-zero vector u (consider || f @ ul|| = |f|-||u||, f € F, u € F™), we can refer to a lot
of examples recalled in Example 4.7. Furthermore, we point out that any group, which
contains a subgroup having property P with respect to a vector u, has property P with
respect to u as well. A

4.3 Systems without asymptotically almost periodic
solutions

In this section, we consider that the given group X is bounded. We can directly prove
the main result of this section which reads as follows.

Theorem 4.16. Let X have property P. For any {Ax} € LP(X) and € > 0, there exists
a system {By} € O({Ar}) N LP(X) which does not have any non-zero asymptotically
almost periodic solution.

Proof. Let {u,}neny C F™ be a sequence of non-zero vectors such that {u,; n € N} = F™.
We know that there exists K > 1 satisfying | M || < K for all M € X. In addition, for
any u,, there exists L,, > 0 satisfying

| Mu, || > L, MeZX. (4.7)
Indeed, lim;_,« || Mju, || = 0 for a sequence of M; € X implies the following contradiction

o Il = i | A4 M || < timmsup ([| 3257 |- || My 1)) < K€ i || My | = 0.



4.3 Systems without asymptotically almost periodic solutions 88

Since {Ax} € LP(X), there exist sequences {B} }rez C & for n € N with the property
that -
HAk—BIZL||<W7 kGZ,nEN, (48)
where {B}'} has period p, € N. We can assume that p, > 2, n € N.
For M, My, ..., M; € X, it is seen that

H(Ml...Ml)—l.M.Ml...Ml_]H

1 ) (4.9)
<My M) (M =T My M| S KPIM - T
Let matrices Ay, ..., Agsi141, Ex, ..., Exii1 € X be arbitrary. The product
By -Epiq- Ergior - Ag - Apsr - Akgic1 - Apric 1
can be expressed in the form
A - Fy- - Apicr - Frgicr - Apici - Fryioi4s (4.10)
where
F.=(Ay) ' By - Ay,
Fipin = (Ap-Appr - Appi )™ Briy - A Apyr -+ Ay,
and
Fepi=1, ... Fepiaa=1
Analogously, one can express
Ap - Aprr - Akgicr - Agpicip - B - By B
in the above given form (4.10) for
Fy=Apyr o Appicinr By - (Agpr - Appicin)
Frriin=Apyio Apricinn Brvicn - (A Apyicin)
and
Fepi=1, ... Fepiaa=1
In the both cases, using (4.9), we have
Fk""JFk+i71+l € O%ZG(I) if Ek:a"'kaJrifl S OS(I) (411)

Considering Lemma 4.12, let L > 1 be such that

M-N' N1 Me©?(I) if M,NeX, MeON). (4.12)
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For all w;, there exists £(L;) = &(u;) > 0 such that

| M- v— q?)if

[ M-u—ull > (L), [|v—ull <&(L), (4.13)
where M € X is arbitrary. Indeed, we have
[M-v—ul| <[M-u=M-v|+[|M-v-ul| <K[v—ul]|+[M- v—-u].

Assume that &(L;) < ((L;)/2. In fact, we can put {(L;) := ((L;)/(2K).
Let us consider ¢(L;) and matrices D, ... Dll(’ll’l) € X satisfying

Dlteo?. (I, DMe 0. (Djjl) ie{l,...,1(1,1) =1},

2K3L

| ity - (Ly).

Expressing

1,1 1,1 1,1
D, D, D,

-1
1,1 1,1\ —1 1,1
1,y — Fian ( 1(1,1)—1> - Dy '(Dl ) Dy,

where (see (4.12))
1,1 1,1 -1 1,1 1,1\ 1 1 1
Dty (Dl ) oo D (D) e 0. (I),

we know (see also (4.11) and (4.13)) that there exist matrices Cj,CY,. .., C'lell(lyl)_l ex
such that
HApll(ll —2- 011(11 A O Ay O g — H > &(L)

and that
Cy, - - 0111 112 € O ( ), 0511(1,1)71 O2p1l (11)-1 =1
Indeed, one can put

C& == 0111(1 1)— =C) prl(1,1) -1 — * = Czlpll(1,1)—1 =1

P
if

H Apiay—2- A1 Ao ugp — H > &(La).
We define the periodic sequence {C}}rez C X with period 2p;l(1,1) by the matrices

1 1 1
Co,---,C p1l(1,1)—23 Opll(l,l)— C2p11 (1,1)—1-

In the second step, we consider ((L1), ((Lz2) and the numbers (see Definition 4.1)
£ €
2.1) = (L—) 2,9) = (L—)
(@)=l g ) 122 =1L gy

We recall that, for any vy, vy € F™ satisfying || vy || > L1, || v2 || > Le, there exist matrices
2,1 2,1 2,2 2,2 .
Dy, 7Dl(2,1) eXx, Dy, ... >Dl(2,2) € X with the property that

DM e0’. (I), DMeo’. (DX, ie{l,... l(2,1)—1},

2 K3L 22K3L,
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2,2 0 2,2 0 2,2
Dy e 02 . L(I), D7 e« (D7), ie{l,...,1(2,2) — 1},
and

2,1
H Dl(2,1) S

P

> ((La).
Assume that (2,2) > 1(2,1) > [(1,1) > 1. Denote
hy = (00)2pil(1,1),  hy = (1)2*pipol(1,1)1(2,2).

Analogously as in the first step (consider also (4.7)), we can show that there exist matrices
C3,Ct,. .., Gy, 1 € & such that

1 2 1 2
| Angtha—2 Chyiny—2 Chpsny—z =+ Ao~ Co - Cf -
1 2 1 2
_Ah2_1 .Chg—l .Chz—l'..AO'CO 'OO s Uy H >§(L1)’

1 2
H A2h2+h2 hi—1" C2h2+h2 h1—1 C2h2+h2 hi—1""" AO . CO . CO “ U
1 2
— Agpy1 - C2h2 1 C2h2 1 Ao Gy - G g H > &(Ly),

1 2 1 2
H A3y thy—2 * C3h2+h2—2 : C3h2+h2 o Ao Cy - C - up
1 1 2

— Ashy—1 - Cspy 4 C3h2 17 Ao Gy - Cf - ug || > &(La),

1 12
| Adns sz —ni—1 - Canging—tn—1 * Cihgtho—ny—1 == Ao - Cg - C - us
— Agpy1-Clpy 1 - Cllpy g -+ Ag - C - CF - ug H > ¢(L2)
and, at the same time, such that

Cga 0127 s 702222h2—1 € OQL([%

22K
C]2h1+0 - C]2h1+1 C j2h1+h1—1 = I7 j € {07 17 cevy 22p2l<27 2) - 1}7
0322h1+h1 0222h1+h1+1 == CJ222h1+2h1—1 =1, je{0,1,...,2pl(2,2) — 1},

i.e., only matrices
Cg22h1+3h170]22h1+3h1+17 O J22hy +4hi—1 € O ( ), J€40,1,...,2p0(2,2) — 1},
do not need to be I. Especially, we have
C?=1 if Cj#Iforsome je{0,1,...,2°2hy — 1}
We consider the periodic sequence {C?}rez C X given by period 222k, and the matrices

2 2
CO> Cl> e C'222h2 1

We contlnue in the same manner. Before the n-th step, we have

i _ i _ _ _ ; : _
Cj2n—1h1+h1 - Cj2"—1h1+h1+1 - Cj2"—1h1+2h171 =1, jeZie{l,...,n—1}
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for the resulting periodic sequences {Cf}rez C X with periods 2i*h;, i € {3,...,n — 1},
where
In the n-th step, we consider ((L1),...,{(L,_1),((L,) and the integers

I(n,1) =1 (Ll,ﬁ> o —1) =1 (L,H, ﬁ) A(nyn) =1 (Ln, ﬁ) .

Let
l(n,n)>Ilnn—1)>--->1l(n,1)>--->1(2,2) >1(2,1) > I(1,1) > 1.

We put
B = ((n— 1)D)2pipe - - pul(1,1)1(2,2) -+ - I(n, n).

For all vy,...,v, € F™ satisfying || vy || > L1,..., || vn || > Ly, there exist matrices

n,1 n,1 n,n n,n
D]. 7""Dl(n,1)""’D1 ""’Dl(n,n)e‘)(

with the property that

DMeo®. (I), DMeo°.

2N K3 2N K3,

(1Y), il .l 1)~ 1},

D" e 0® . (1), D" eo® . (D), ie{l,...,l(n,n)—1},

2N K3, 2N K3,

and
| Dy o= | > (),

H Dt vy — v || > C(La).

Thus, considering

hy—1>--->h, —hp1=hp1 [(n —1)*pul(n,n) — 1] > hp_ql(n,n),

we know that there exist matrices Cg, CT, ..., Cg 0, | € X such that

1 n 1 n
| Attn—2  Chysn—z Chiy—a - Ao Cg - G

—Ahn_l-Cin_l---C,?n_l---Ao-CS---CS-ul H > &(Ly),

1 n 1 n
H Anhn+hn7hn7rl ’ Cnthrhnfhn_lfl e Cnthrhnfhn_lfl o 'AO ’ C'0 T C'0 !
1 n 1 n
— App, 1 - C MEREEE nhn—l"'AO Cy-CF oy H > £(Ly),

n
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|| A[(i—l)n+1}hn+hn—2 ’ O[l(i—l)n+1]hn+hn—2 e O[T(Zz‘—l)n+1]hn+hn—2 -+ Ag - O& e Cg U
— Alli-)n+1lha-1 - C[l(i—l)n+1]hn—l T C[T(Li—l)n+1]hn—l -+ Ag - C& O -y || > (L),

1 m 1 n
| Ainothn—h -1 Connottin—tn 117 Cli 11 -+ Ao - Cg -+ C -
1 n 1 n
— Ainh, 1 - C'nhn—l . "C‘nhn—l Ay Gy Oy H > &(Ly),

(3 v

H Aln-Dn4 1) thy—2 - C[l(n—l)n+1]hn+hn—2 T C[?n—l)n+1}hn+hn_2 - Ag - C& O - uy,
— Aln—1n+1lhn—1 C[l(nfl)nﬂ]hnfl T C[?nq)nﬂ}hnq A C& G up H > &(Ln),

1 n 1 n
H An2h7l+h7l_hn71_1 : C(n2hn+hn*hn7171 T n2hn+hn*hn7171 T AO ’ CO e OO ’ un
1 n 1 n
— Apap, 1 Chap o Cllay oo Ay - Cp -+ Cf “nH > &(Ly,)

n n

and such that
0(7)17 C?a ceey §n2hn—1 € OQ €K <I>7

omn

where
Cr=1, je{0,1,...,2(n—1)*h, — 1}. (4.14)

In addition, we can assume that
n __ : 7 . 2 .
Cr=1 if Cj#Iforsomeje{0,1,....2n°h, — 1}, i € {1,...,n—1}. (4.15)
It follows from the inequalities

B — 1> o> hy — hp_y > 2%h,_1l(n,n) > 2*h,_sl(n,n) > - -
c> 22700 (nyn) > 22" 2yl (n, n) > 22"(n, n)

and from the fact that it suffices to choose only the matrices

CTL n Cf’n
J27hi+ (27— 14+1)hy) Y 527h + (2714 1) 4+10 * c 0 Y g2rhy (27 1+ 1)hy+h —1

as different from 1. We consider the periodic sequence {C}'}rez C X given by the above
values Cy', CT, ..., C3 5, | and period 2n2h,,.
We define
By=A;-Cp-Ct---Cp---, keEL. (4.16)

For all k € Z, there exists ¢ € N such that B, = A, - C}. (consider (4.15) together with
(4.14)). Especially, the definition of the sequence of By, is correct and By € X', k € Z. We
have to prove that { By }rez is limit periodic and that

sup || By — Ar || < e. (4.17)
keZ

Since
C’?EOZ%K(I)’ keZ,neN, (4.18)
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we have

| Be = Al = [ Ac- G = Al < 1 Ac - || G

for some i € N. Thus, (4.17) is satisfied. Similarly, if we express
HBk_BZ‘C;"‘C]?H
< HBk_BI?C]iC]?H—i_HB]?C]iC]?_B]?C]iC]?H
S||Ak_BZ||.HC’;...C};...H+||BZ.C’;...C]?H,HC}ZL-&-I_”C:-"-J'”_I{

then we obtain (see (4.8), (4.18))

| Be=Bp -Gl Cp |l < e K+ Koz = 570 k€ZneN
It means that {By} is the uniform limit of the sequence of By - C}---Cp as n — oo.
Any sequence {B} - C} - - - Cl'}ez has period 2(n!)?p; -+ pnl(1,1) -+ -I(n,n). Hence, { By}
is limit periodic.
It remains to show that the system {Bj;} € O7({A;}) does not possess any non-zero
asymptotically almost periodic solution. On contrary, suppose that the solution {zj}rez
of the Cauchy problem

Tpy1 = By -, k€L, Ty = Uy

is asymptotically almost periodic. Applying Theorem 1.15 for I := 1, l,,11 := h,, n € N,
we obtain

| <&(Ly), keN, (4.19)

(BT

for infinitely many ny,no € N. Let integers ny > ny > [ be arbitrarily given. It holds

H x[(l—l)nl-i-nz-‘rl]hnl-i-hnl —hn2 - x[(l—l)n1+n2+1]hn1 H

= || B[(lfl)n1+n2+1]hn1+hn1fhn271 -+ By By-u — B[(lfl)n1+n2+1]hnlfl <+ By By || .

From (consider (4.14) and (4.16))

B[(l—l)n1+n2+1}hn1+hn1—hn2—1 = A[(l—l)nl—l—ng—l-l]hnl—i—hnl—hn2 X

1 ni
X C[(lfl)m+nz+1]hnlJrhnlfhn2 C (I=D)ni+no+1]hng +hn; —hny—1

_ Nl n1
Bia-1ymi4na1)hn, —1 = Af-Dmatna+10ha, —1 Ol ymtnat 11, -1 Cli—1yny 4o+ 1), -1

B1=A1-Cll~-- m Boon-Cé-“ oL,
we obtain
|| Z1=1)m1rz+ 1y oy g — T[1=Dyma+nat 1], || > E(La)-
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Especially, it is valid that

iug H Ththn, = Ththn, || > &(Ly), my>mng>1,ny,ng €N, (4.20)
€

This contradiction (see (4.19)) proves that the solution of
Tpy1 = By -1, k €Z, To = Up

is not asymptotically almost periodic for any w,, n € N.
Let us consider an arbitrary non-zero vector u € F™. We know that there exists a
sequence of u;(,y for which lim,, o u;n) = u. For the solution {zj}rez of

Zhpr = Br- 2o, K€L, 2o = Ui,
we have (see (4.20))

sup | Zkttn, = Zhthny || > ELim)), 11 > ng >i(n), ny,ny € N.
(S

The value £(L;(,)) can be chosen as §(L;)) = ((Liw))/(2K) and L, can be chosen as a
constant value L* for sufficiently large n, because there exist ¥ > 0 and L* > 0 satisfying

IM-v||>L* veOiu), MeX. (4.21)

Note that (4.21) follows directly from (4.7) and from the Lipschitz continuity of multipli-
cation. Without loss of generality, we assume that u;q,) € Oy(u), n € N. In this case, it is

valid
¢ (L")
2K

Therefore, for the solution {yx}rez of the following problem

sup H Zhthn, — Phthn, H > ny > ng > i(n), n,ny,ny € N.
keN

Yk+1 = Bk * Yk, ke Z7 Yo = U, (422)

it holds .
¢ (L")
4K

where n € N is sufficiently large. Indeed, it follows from

sup | Ybthny = Ybtin, || > ny > ny > i(n), ny,ng € N, (4.23)
eN

2k —ye || = || Bro1 -+ Bo - win) — Be—1 -+ Bo - u|| < K || wigny —u|, k€N

Finally, (4.23) implies that the solution {y;} of (4.22) cannot be asymptotically almost
periodic (consider again Theorem 1.15). O

Remark 4.17. Since P(X) is a dense subset of LP(X') (consider directly Definition 1.17),
the statement of Theorem 4.16 does not change if one replaces the system {A;} € LP(X)
by {A;} € P(X). A

Example 4.18. Theorem 4.16 can be applied for all groups of matrices recalled in Exam-
ple 4.7. In addition, considering Remark 4.6, other matrix groups with property P can
be constructed using the direct sums, because the direct sum of a weakly transformable
group and a finite group and the direct sum of two weakly transformable groups are weakly
transformable as well (see Examples 2.16 and 2.17). O
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Remark 4.19. Let us consider that the statement of Theorem 4.16 is true for a bounded
matrix group X C Mat(F,m). Especially, it is valid when Ay := I, k € Z. Since the
multiplication of matrices is continuous in the Lipschitz sense on X' (see Lemma 4.11), for
any non-zero vector u € F™ and § > 0, there exist matrices My, ..., M, (where M; is the
product of ¢ matrices from a neighbourhood of I) with the property that

Mle(’)f;(l), MZ‘EO(L;(MZ'_H), ’ée{l,...,l—l}, ||Mlu—u||>0

Similarly as in Remark 4.6, one can show that X has property P. Thus, the condition of
Theorem 4.16 (that X has property P) is necessary if F' = TF. A

Theorem 4.20. Let X have property P*. For any {Ax} € LP(X) and e > 0, there exists
a system {Br} € OZ({Ax}) N LP(X) which does not have any non-zero asymptotically
almost periodic solution in the strong sense.

Proof. We can proceed as in the proof of Theorem 4.16 and construct the limit periodic
system { By }rez for a decreasing sequence {L; }ien of positive numbers with the property
that lim; ., L; = 0. The value L; > 0 is given by a non-zero vector u; € F™ in the sense
that || Mw;|| > L;;, M € X. Let the sequence {u;};eny be such that, for any non-zero
vector u € F™ one can find j € N for which [|w; || < [Ju][, i > j.

Especially, from the construction, we obtain

| Bhyshy—2-Br+Bo-ur — Bp,—1-+- By Bo-up || > &(Ly),

H Bihythn—hn1—1+-B1+ Bo-u1 — Bpp, -1+ B1 - By - ug H > &(Ly),

H B[(i—l)n+1}hn+hn—2 By By u; — B[(i—l)n+l]hn—1 ~+B1-Boy-u H > f(Lz’),

| Binhn4hn—tns—1- " B1 - Bo -ty — Binp—1++ - By - By - w; || > £(Ly),

|| B[(n—l)n+1]hn+hn—2 By - By u, — B[(n—l)n+1}hn—1 - By By uy, H > f(Ln),

H Br2hythy—hy -1 B1- Bo - un — Bpzp, 1+ By - By - uy, H > (L),

Let a non-zero vector u € F™ be given. We consider the solution {zj}rez of the Cauchy
problem

Tpr1 = By -z, kEZ, Ty = U.
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From the proof of Theorem 4.16, we know that

]i€n£ |zi |l > L; for some j € N (4.24)
S

and that (see (4.23))
SUP || Thihn, — Thhn, || >0
keN

for all sufficiently large integers n; > ny and for some ¥ > 0. Hence, for all ny > ny > ny,
ni,ne € N, where nyg € N is sufficiently large, there exists an integer | > h,, with the
property that

| Zistin, —hmy 41 — Tis1 || = || Bihoy—tny = Bi---Bo-u— By By - ul|
| Biomy s Bios— 1] Bi- By - > .

Considering (4.24), the construction, and the property P* of X, we can assume that
H |:Bl+hn1_hn2 SR Bl+1 — I] Tk H > 19, k € N. (425)

Since the multiplication and addition are continuous in the Lipschitz sense on bounded
subsets of F' and {By} is limit periodic, Theorem 1.3 and Corollary 1.11 (together with
Theorem 1.22) imply that the sequence {Bthl,th -+« Byy1 brez is almost periodic for all
given integers ny; > ng > ng. Thus, for any n > 0, we get the existence of a sequence
{@n}nen € N which is relatively dense in N and which has the property that

| Bishn,—hny = Bt = By, —hy  Baas1 || <m, n €N (4.26)
Combining (4.25) and (4.26) for a sufficiently small number 7, we have

| 2t = st | = || Bt -+ Bty = 1] 2 | >
forall k =¢, — hp, +1, n € N. O

Remark 4.21. Based on the proofs of Theorems 4.16 and 4.20, it is possible to prove that
the group X is transformable if it has property P*. A

Example 4.22. One can easily show that the transformable groups of matrices recalled in
Example 4.7 have actually property P* (except SO(m) if m is odd); i.e., for these groups,
one can apply Theorem 4.20 which improves Theorem 4.16. O

The process used in the proof of Theorem 4.16 can be applied for almost periodic
systems as well.

Theorem 4.23. Let X have property P. For any {Ay} € AP(X) and e > 0, there exists a
system { By} € O ({Ax}) which does not have any non-zero asymptotically almost periodic
solution.

Proof. The statement of this theorem can be proved using the construction from the proof
of Theorem 4.16, where it suffices to put p,, := 2 and B}} := A foralln € N, k € Z. Indeed,
the almost periodicity of the sequence {Ay - C} - - O }rez follows from Theorem 1.3 and
Corollary 1.11 (the multiplication and addition have the Lipschitz property on any bounded
subset of F') and the almost periodicity of { By }rez comes from Theorem 1.7. O



4.3 Systems without asymptotically almost periodic solutions 97

Corollary 4.24. Let X have property P. For any {Ay} € AP(X) and € > 0, there exists
a system {By} € OZ({Ax}) which does not have any non-zero almost periodic solution.

Proof. See Theorems 1.22 and 4.23. n

In the complex case, Theorem 4.23 is a generalization of Corollary 2.33 (see also Corol-
lary 4.24). It follows from Remark 4.6. Of course, in the general case, the results presented
in Chapter 2 do not follow from ones presented here.

Remark 4.25. In fact, considering the proofs of the above theorems, we see that it is
not necessary to introduce the map |-| on the whole field. It suffices to define it on a
neighbourhood of ey and for all elements of matrices from the matrix group X in such a
way that condition (a) is replaced by | f| > 0, |eg| = 0, |e;| = 1 and condition (b) by
[ fogl <|fl-lgl,|f|=1—f] (consider also Definitions 4.1 and 4.2). Let X have
property P with respect to a given non-zero vector u and let there exist a neighbourhood
of u with the property that, for all vectors v from the neighbourhood and all M € X', there
exist the norms || M v ||. In this case, for any limit periodic (or almost periodic) sequence
{Ag}trez C X, there exists a limit periodic (or almost periodic) system given by { By }rez
in an arbitrarily small neighbourhood of {Ay} for which the solution of

Tpy1 = By -1, k €Z, To=u
is not asymptotically almost periodic. A

Example 4.26. Now we show that there exists a group X with property P which is
not weakly transformable. Especially, we show that Corollary 4.24 does not follow from
Corollary 2.33. For simplicity, we use Remark 4.25. Let I’ be the field of all meromorphic
functions defined on an open connected set which contains the set

D={2€C;Re z€[—mn|, Imz=0}.

Note that, using the analytic continuation to eliminate removable singularities, meromor-
phic functions can be added, subtracted, multiplied, and the quotient can be formed. For
the set Fy C F of all bounded functions on D, we put

[fl:=sup[ f(2)], f€F.

Let m = 1, i.e., let us consider the scalar case. Especially, || f || =|f]|, f € Fb.
We put
X = {c[sin(nz) £icos(nz)|; c€C, |c| =1, n € Z}.

The set X forms a group. Indeed, the identity element
1 =1i[sin(0z) —icos(02)] € &,
associativity is obvious, the inverse elements

(¢[sin(nz) £icos(nz)]) " = ¢ [sin(nz) Ficos(nz)], ceC,|c|=1,n¢eZ,
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belong to X', and the closure of multiplication follows from the formulas

[sin(nz) +icos(nz)] - [sin(lz) £icos(lz)] = Fcos[(n £ 1)z] £isin[(n £1)z],

[sin(nz) —icos(nz)] - [sin(lz) —icos(lz)] = — cos[(n + 1)z] —isin[(n +1)z].

Evidently, this group is bounded.
Firstly, we show that X is not weakly transformable. The subgroup

Xo:={c[sin0Licos0);c€C, |c|=1}={f=ceC; |c|=1}
is transformable. It can be directly verified that

|c —d[sin(nz) £icos(nz)]|| >1, ¢,deC,|c|=|d|=1neZ~\{0}.

Thus, there does not exist a transformable subgroup of X which contains &, and at least
one other element. To prove that X is not weakly transformable, it suffices to consider

that the distance of any two different components
Xy={f=ceC|c|=1}

X! = {clsin(nz) +icos(nz)]; c€C, |c| =1}, ne€Z~ {0},
X, = {c[sin(nz) —icos(nz)]; c € C, |c| =1}, neZ~{0},
is greater that 1.

Secondly, we show that X has property P. It suffices to put ((a) := 2a for all a > 0.

For § = 7/l, | € N, we can choose matrices
M, = (eié) My — (6125) My = (ei(Z—l)a) M, = (eiw) = (~1)
for which we have
| My — 1| <d,||My— M| <6,...,|| My — M| <6.
Evidently, it is also valid that

|M-u—ul|=|—u—ul||=2]u| >{(a) =2a, [u]>a,ue k.

Analogously as Theorem 4.23 (see the proof of Theorem 4.20), one can obtain the

following result.

O

Theorem 4.27. Let X have property P*. For any {Ay} € AP(X) and ¢ > 0, there
exists a system { By} € O ({Ar}) which does not have any non-zero asymptotically almost

periodic solution in the strong sense.

Remark 4.28. We recall that Theorems 4.23 and 4.27 do not follow from Theorems 4.16

and 4.20. See Theorem 1.21.

A
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4.4 Systems with non-almost periodic solutions

Henceforth, we assume that X’ is commutative. To prove the announced result (the
below given Theorem 4.31), we use Lemmas 4.29 and 4.30.

Lemma 4.29. Let {Ay} € LP(X) and € > 0 be arbitrarily given. Let {3, }nen C R be a
decreasing sequence satisfying
lim 6, =0 (4.27)

n—oo

and let { B} }kez C X be periodic sequences for n € N such that

By eO; (I), keZ,neN, (4.28)
B.=1I or Bi=1 kecZi#jijeN (4.29)
If one puts
By:=A,-By-Bf---B!---, k€,

then {By} € LP(X). In addition, if

€

o < W, (4.30)
then {By} € O2({A4)).
Proof. Condition (4.29) means that, for any k € Z, there exists ¢ € N such that

B, = A, - B;. (4.31)

Especially, the definition of { By }rez is correct and By € X, k € Z.
We show that { By} is limit periodic. Since {A} is limit periodic and A, € X, k € Z,
there exist periodic sequences {C} }xez C X for n € N with the property that

1
HAk—C,’j||<E, keZ,neN. (4.32)

Let {B}} and {C}'} have period p, € N and ¢, € N for n € N, respectively. The sequence
{Cr- B} - B} Bi}rez C X has period ¢, - p1 - pa2- - pa; 1.€., it is periodic for all n € N.
It is valid that
HBk—CZ-Bé-BE---BZH
S||Bk—C£-Bé-B;3---BZ~-H+||C;?~B;1-BEWB;?---—C';?-B;-Bi---BZH
S||Ak—01?||'HBé'Bz“'BJ?“‘HJF}|OZ'B/i'BJ%"'BZLH'||B£+1"‘Bg+j"'—f“

and that

|G- By By B || < IIC Il - || By - B+ B |
< (Al +11CF = Al - || By - Bi -~ By |-
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Hence (see (4.28), (4.29), (4.32)), we have
n 1 2 n 1 1
| By = Cp - By - B -~ Bl || < —(m 401 + SIU%)HAJ [l ) (4 01) Onsa
€

for all k € Z, n € N. Considering (4.27), we get that {By} is the uniform limit of the
sequence of periodic sequences {C7 - B} - B --- BP}. Especially, { By} € LP(X).
Let (4.30) be true. We have to prove that {B} € O7({Ax}), i.e.,

sup || Ax — B || < e. (4.33)
keZ

Since
By eO5(I), keZ neN,

considering (4.31), we have

HAk—BkHSHAkH'HI—BiiH§51811£HA1H

for some ¢ € N and for all & € Z. Thus (see (4.30)), we obtain (4.33). O

Lemma 4.30. If for any 6 > 0 and K > 0, there exist matrices My, ..., M; € X such that
M, € O(I), ie{l,...,1}, | M- M || > K, (4.34)

then, for any {Ax} € LP(X) and € > 0, there exists a system { By} € OZ({Ax}) N LP(X)
whose fundamental matrix is not almost periodic.

Proof. We can assume that all solutions of {Ay} are almost periodic. Especially (consider
Corollary 1.11), for any ¢ > 0, there exist infinitely many positive integers p with the

property that
| Apq---Ar-Ag— 1| <. (4.35)

Let {0, }nen C R be a decreasing sequence satisfying (4.27) and (4.30). For 6, and K, :== n,

n € N, we consider matrices
1 g1 1
My, My,...,M; € X,

MP M3, ..., M} € X,
M, M3,...,M] € X,

such that 4
Mfe@gj([), ie{l,2,...,l;}, €N, (4.36)

and

HM;]‘,--.Mg-M{ >K,=j, jeN (4.37)

Let a sequence of positive numbers ¢,, for n € N be given.
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Let us consider pi, p} € N such that p} — pj > 2I; and that (see (4.35))
HApé_l"'Al'A()—IH <’(91. (438)

In addition, let p} and p} be even (consider Corollary 1.4). We define the periodic sequence
{B} }kez with period p} by values

By :=1,B} = I,...,B;}J =1,

1 o 1 . 1 a7l pi o 1 a7l ni o
Bp}_1 = I,Bp% = I,BMJrl = Ml,Bp%+2 = [’Bp%+3 = MQ,BP%+4 =1,
1 gl 1 o 1 gl
Bp}+2lr3 T Mll—l’ Bp%+2l172 T [a Bp}+21171 T Mll’
1 e 1 ._ 1 ._
Bpyon, =1 Bpryo 1 =L, By 0 =1,
1 -
Bp%fl = 1.
We put
B,i ::Ak~B,i, keZ.
We have
o1 SISy I | 1 1 1
HBp;A"'Bl .BOH = HMll"'M2 - M| 'Ap%—l"'Al'AOH'

Again, we can assume that, for any ¥ > 0, there exist infinitely many positive integers p
with the property that

H B, Bl-Bi-1 H <. (4.39)

Otherwise, we obtain the system { By} = { B}} with a non-almost periodic solution. Indeed,
it suffices to consider Lemma 4.29 for By*' = I, k € Z, n € N.
Analogously, let us consider p?, p3 € N satisfying p3 — 41y > p? > pl and (see (4.39))

HB;%_I.--B}.Bg —IH < D, (4.40)
Let p?, p3 € 4N (see Corollary 1.4). We define the periodic sequence { B }rcz with period

p3 by values
By =I1B}:=1,... ,35%_1 =1,

2 . 2 R 2 S 2 2 -
Bk =1,B%,, =1,B% =M}, Bs =1,
2 o 2 e 2 I 2 2 .
Bl yi=1,B%  =1B% =M B . =1,
2 o 2 . 2 R 2 2 .
Bp§+412—4 =1, Bp%+412—3 =1, Bp§+4l2—2 = M;,, Bp%+412—1 =1,
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B§ 2440, T I B;2> 24dlp+1 T I 322+4l 42 =1, BIQ: 2441543 - [>
B =1
For .
B =A,-B,-B, kecZ,
it holds
Hélzg,l...éf.égH:HMg. M} M? Bl ..311.33“.

Especially, for all & € Z, there exists i € {1,2} such that B2 := A, - Bi.

We continue in the same manner. Let us assume that all obtained systems {Bi}kez
have only almost periodic solutions. Thus, for every ¥ > 0 and j € N, one can find
infinitely many p € N such that

H Bl—1 H <.
In the n-th step, we consider p?, p& € 2"N such that pi — 271, > p? > py~ ' and
H Bt Byt Byt -1 H < D, (4.41)

We define the periodic sequence { B} }rez with period p§ by values

By :=1,B] = I,...,B;ﬁffl =1,

B _IBnn+1::I,...,Bg'il+2n—171::],

n — n n L n .
Bp?+2n71 . M]. ,Bp?+2n71+1 . I’ B 2n 1 = [
n . n . n Fp—
Bl yon = 1By ionsy 7= 1o Bl ey 1= 1,
p’ll+2"+2”*1 T M2 7Bp?+2n+2n71+1 = [, . +2 on_q = I
" . = n -—_
Byr s u-2e = LBpr s, -2 = Lo By mnpngan-io1 = 1
Bp?+(ln*1)2n+2n—1 = Mlna Bp?+(ln71)2n+2n—1+1 = ], e Bp{b-l—an"—l = I7
n . n o n L
p?+ln2" : I B +l 2n41 7 ]’ e pn+l 2n+2n—171 . I,
B +l 2n 4 on— 1. [ B "+l 2N 4 on— 1+1 = I B ( +1)2n 1 = [
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If we put .
B!:=A, B, -Bf---By kcZ,

then

N PN PN
HBp’g—l“.Bl 'BO

. n n n  pn—1 pn—1  pn—1
_HMln“'MQ'Ml'Bpg—l'“Bl 'BO

‘ . (4.42)

Finally, we put
By:=A,-B,-Bf---B!---, kcZ.

From the construction, we obtain that, for any & € 7Z, there exists ¢ € N such that
By, = Ay - Bi. Tt means that (4.29) is satisfied. Since (4.28) follows from the construction
and from (4.36), we can use Lemma 4.29 which guarantees that { By} € O7({Ax})NLP(X).
It remains to prove that the fundamental matrix of {By} is not almost periodic. On
contrary, let us suppose its almost periodicity. Then, the fundamental matrix is bounded
(see Theorem 1.14); i.e., there exists Ky > 0 with the property that

|Bi - By Byl < Ko, keN. (4.43)

Let us choose n € N for which n > Ky + 1. We repeat that the multiplication of matrices
is continuous (see also Lemma 4.11). Hence, for given matrix

My My - M) = M - M3 - My € X,
there exists #,, > 0 such that
| M- My MY || -1 < || M- My -MP-C |, Ce0f (D). (4.44)

We can assume that v, = 6,, in (4.41) (see also (4.38), (4.40)). We construct sequences
{Bj} in such a way that

B) =1 B! :1,...,31{371 =1, j>n,jneN.
Indeed, pi*' > p) > pl, j € N. Thus, (4.37), (4.41), (4.42), and (4.44) imply

| Buas- B Bol| = | By By - By

= H M- My M7 ng—_ll . ..B?—l . Bg—l H (4.45)
> || M- MY M| —1>n—12> K.
This contradiction (cf. (4.43) and (4.45)) completes the proof. O

Theorem 4.31. Let X have property P with respect to a vector u. For any { A} € LP(X)
and € > 0, there ezists a system {By} € O ({Ar}) N LP(X) whose fundamental matriz is
not almost periodic.

Proof. Let us consider the solution {x9}.cz of the Cauchy problem

Tpt1 = Ay - rp, kE€EZ, Ty = U.
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If {2} is not almost periodic, then the statement of the theorem is true for By := Ay,
k € Z. Hence, we assume that {z} is almost periodic.
We put
1 €
- neN. (4.46)

T+l sup A
leZ
We know that there exist ¢ > 0 and matrices
M, My, ....,M € X,
M3:, M, ... ex,

M, M3,.... M € X,

such that ‘
M 6(959], (1), ie{1,...,0;}, (4.47)

HM;]‘,-.-Mg-M{-u—uH>g (4.48)

for all j € N. Of course, we can consider /; such that

> >l >0 >2 (4.49)
Denote . ' '
Kj::Hij-~~M§~Mf . jeN (4.50)
For ¢
V= i € N 4.51
J 2 (Kj + 2)7 J € ) ( )
we have

M-v—w >g if [|[M-u—u||>¢(MecO) ,(0O)NX,v,weOf (u). (4.52)
2 K]-i-l 19J

Indeed, for considered u,v,w € F™ and M € X, it holds (see (4.51))

M v —ulf < | M-u—=M-v|+[M-v—-w|+[w-ul

¢

<(Kj—l—l)Hu—UH—i—Hw—u||—|—HM~v—w||<§+|\M-v—w||.

The almost periodicity of {2} (see Corollary 1.4) implies that there exists an even
positive integer j(; ) such that

U

0
J(1,0)
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Let us define a periodic sequence { B} with period j(1,0) + r1, where ry := 2[;. If

Y
0 0 1
H Line ~ g+ > 9 (4.54)
then we put B} := I, k € Z; and if
9
0 .0 V1
"xj(l,ﬂ) L0+ < 9 (4.55)
then
l.— ] Bl .= 1 —
By :=1,B; := I""’Bjup)—l =1,
1 — 1 — 1 1 L 1 L 1
Bj(l’o) =1, BJ'(LO)“ = My, BJ(1,0>+2 =1, Bj(l,o>+3 = M,,
1 — 1 . 1 1 L 1 L 1
Bj(1’0)+2l1_4 =1 Bj<110)+2l1_3 = My, Bj(1,0)+211—2 =1, Bj(1,0)+211—1 = M.

For B} := A, - B}, k € Z, we consider the solution {x}}rez of the initial problem
mk“:B,i-ark, ke Z, Ty = U.

Lemma 4.29 gives that {B}} € OZ({A:}) N LP(X). In the case, when {z}} is not almost
periodic, we can put By := B}, k € Z. Thus, we have to consider the almost periodicity
of {x}}. Especially (see Corollary 1.4), there exist infinitely many numbers j € 4N with

the property that

U
H Ty — acjl H = H U — x; || < ?2 (4.56)

Let us consider an integer j1,1y € 4N satisfying (4.56) and the inequality
Jaay = Jao) i (4.57)

For ry := 81115, we define a sequence {B,gl’Q)}kGZ with period j11) + r2. We put B,E;m) =7
for all k € Z if

vV
1 1 2
H xj(l,l) - $j(1,1)+T2 > ? (458)
In the second case, when (4.58) is not valid, we define
(12) . _ (1,2) . _ (12
B = 1,B" =1, B | =1,
(12) . _ (2) 12) . _ a2 p2)
Bj(1,1> =1, BJ-(L1>+1 =1, BJ-(LUJr2 = My, B]~(171)Jr3 =1,
(L2) . _ (L2) . _ (1L2) a2 p2)
Bj(1,1)+4 =1, Bj(m)Jr5 =1, Bj(171)+6 = M, Bj(171)+7 =1,
(1,2) o (1,2) o (1,2) — A2 pL2) —
Bj(1,1)+4l2—4 T T jantal=3 T T T -2 T Ml2’ Ja,ntdle—1 "7 L
(172) [ (172) P (172) R (172) I

Jantdle T T T tle+l T T T 4l +2 T T T ) +4le+3 =
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For B"? .= A, - B} - B{"?
problem
Th+1

Again, we can assume that {x;“)

the properties that
|

and that

We define a periodic sequence {

(12) _

(1,2) —
Bj(l,1)+r2_1 - — _[

, k € Z, we consider the solution {x,(cl’Q)}kGZ of the initial

_ B}(j,g) 2,

(12)

J(2,1)

k € Z,

<[4

Je1) = Jan) + e

(1,2)

J(2,1)

Tog = U.

U2
2

B ez with period jio.)(rs — ). 1t

(1,2)  _(1,2) 2
H J:j(2,1) J2,1)+r2—r1 > 2"’
2,2
we put B( )= forall k € Z; and, in the other case, we define
(2,2) ._ (2,2) . _ (22) . _
BP? = 1,BP? =1,... ,B?? =1,
(2,2) ._ (2,2) (2,2) (2,2)
Bj(2,1) =1 BJ(2 1)+1 =1, BJ(2 n+2 =1, B](2 1>+3 =1,
22 . 2 (2,2) (2,2) (2,2)
BJ(z n+d T M Bj(z H+o T =1 BJ(z 1H+6 " =1 B](z 1)+7 [
(2,2) (2,2) _ (2,2) (2,2) —
Je2, 1)Jr8 =1 BJ(z n+9 =1 BJ(2 1)+10 Je,n+1l - I’
(2,2) 2 np(22) . (2,2) (2,2)
Je, 1)+12 M2 ’ BJ(z H+L3 =1, BJ(2 n+14 - J, 1)+15 =1,
(2,2) o ] B(2 ,2) o (2 2) (2,2) -]
](2 1)+8l2 8 ](2 1) +8l2—7 T ) (2 1)+8l2 6 _](2 1)+8l2 5 ’
(2,2) _ 2 p2) — (2,2) 2 p(22) e
j<2 1)-}-8[2 4 Mlz’ Bj(211)+8l2—3 T J2, 1)+8l2 2 Mlz’ Bj(2 1>+8l2 1 I’
(2,2) — (2,2) _ (2,2) (2,2) =1,
Je,+8l2 Je2,1)+8la+1 * J(2, 1)+812+2 J2, 1)+812+3
(2,2) (2,2) (2,2) (2,2) —J
Je, 1)+8[2+4 J(z, 1)+812+5 J(2, 1)+8l2+6 Je2, 1)—‘,—8[2—1—7 )
(2,2) o (2,2) —
o) tra—ri—1 = I, ... 7Bj(271)(7’2—7"1)—1 = 1.

Finally, in the second step, we consider the periodic sequence of

B? = B}(Cl,z) ‘ BI(€2,2)’

keZ.

}rez is almost periodic. Let an integer jo 1y € 8N have

(4.59)

(4.60)

(4.61)

(4.62)
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Note that its period is [j1,1) + 72][J(2,1)(r2 — 71)]. Consequently, we consider
B?:= A, B} -B?, kel (4.63)
and the solution {x?}cz of
:L‘k+1:B]§-£L‘k, ke, To = U.

In the case, when {z7} is not almost periodic, we can put By, := BZ for k € Z and use
Lemma 4.29 for Bi™> = I, k € Z, j € N (see also (4.63)). Thus, we have to assume that
{z?} is almost periodic.

We continue in the same manner. Before the n-th step, we define

B ':=Ay B} BBl kel
Let {B}Z‘l}kez have period ¢,_1, e.g., let
Gn—1 =Ja,0 + r1)lTa,) +rollien(rs — )] x -
- X [j(l,an) + rn—l][j(Q,n72) (rn—l - Tl)] T [j(nfl,n72) (Tn—l - Tn—2>]~

Consider the solution {27!} of

Tyl = B};—l -xE, k€, To = U.

Again, we consider that the sequence {xzfl} is almost periodic. Otherwise, we can put
By = B,’j’l, k € Z. Especially, for all p € N, there exist infinitely many numbers j € pN
with the property that

Un

g™ =i | = lu =2 < 5 (4.64)

Denote
pp = 20T > 92 peN, (4.65)
Ty = 2pplily -+ 1,, n>2 neN. (4.66)

Let us consider an integer j n—1) € p,N satisfying (4.64) and
j(l,nfl) > qn—1- (467)

We define {B,(cl’n)}kez with period jqn_1) + 7. If

H R o | %, (4.68)
we put B,gl’n) := 1, k € Z. In the other case, we put
Bélvn) =1, B%l’n) =1..., BJ(':{Z)AM =1,
Bj(jl’jj}fl) =1, B](.(ll’:ll) =1 Ba(-:{jl),w%n—l =1,
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(1,n) . rn pn) ._ (1) o
Bj(17n71)+p7n =M ’Bj<1,n71)+p7n+1 =1 Bj(l,nfl)"‘pn_1 =1,
(1) o (1,n) o (1,n) o

j(l,n—1)+pn T I’ Bj(l,n—1)+pn+1 T [7 Ut B](l n— 1)+pn+p" -1 " I’

(Ln) P n (Ln) [ (lm’) P
Bj(17n,1)+pn+p7” T M2 ’Bj(1,n71)+pn+p7"+1 =1, Bj(1,n—1)+2pn—1 =1,
(1,n) ._ (1,n) o (1,n) —
j(l,n—1)+(ln71)pn T I’ j(l,n—l)“l’(ln*l)pn“rl T [’ Tt B](l n— 1)+(ln—1)pn+pn -1 [7
(Ln) [ n (Ln) — (l’n) P
Bj(l,nfl)'*'(ln_l)pn""%% T Mln’ Bj(l,n71)+(ln—1)pn+p7”+1 T [’ T Bj(l,nfl)""lnpn_l T I’
Jn-1)tnpn J(1,n—1)FTlnpnt+l - 1re J<1n 1 Hnpn+EE— - )

(1,n) o (1,n) o (1,n) ._
Bj(1,n—1)+lnpn+p7n T I’ Bj(1,n—1)+lnpn+p7"+1 T I’ T ’Bj(1,n71)+(ln+1)pn*1 T ]’

BN =1

Jan-1)trn

For
B .= pr=t. g™ — 4, . BL.B2...Br . B ke,

we consider the solution {z{'"™} of
Ty = B,il’n) -z, kEZ, To = U.

Again, we assume that {x,(cl’")} is almost periodic. Let a number ji,-1) € 2p,N have the
properties that

(1,n) (1 n) o 1971
H Lo B ](2 n—1) ‘ H J(2 n—1) ’ ? (469)
and
Jen-1) 2 J1n-1) + Tn- (4.70)

We define the following periodic sequence {B,gZ’”)}kez with period j(gm_l)(Tn —ry). If

H xg'(lﬂl)—u - 375'(1272)_1)“”77«1 > %, (4.71)
then B,(CZ’") =1, k € Z. In the other case, we put
BE™W = 1,BM =1, BZY =1,
BJ('(22’Z)—1) =1 BJ((Z;? n+l T L. J('<227,T:L)—1)+pn—1 =1,
BJ(‘?z’Z)—l)JrPn = My, Byi? DApatl ST ... 7B§<2;Z),1)+2pn—1 =1,
BJ('Z:)*DHP" =1, BJ('ZZ)—m“an =1..., B§<2£Z),1)+2pn+pn—1 =1,
B]('i’z)*l)"_%"*_p" =My, B§3;2)71)+2Pn+pn+1 =1 BJ('<22VZ)71)+4pn—1 =1,
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(2,71) — (2,71) — I (2,7’L) — I
Jem-1)tn—1)2pn ° P Then-1t(n—1)2pn+1 - 7 -y H(n—1)2pnt+pn—1 - ’
(2,m) — A R2n) — T (2,m) — T
j(2,n—1)+(ln_1)2pn+pn ) ln> j(2,n—1)+(ln_1)2pn+pn+1 : rery J(2,n71)+2lnpn_1 ’ )
](2,n—1)+21npn : ’ ](2,n—1)+21npn+1 : i .7(2,n—1)+2lnpn+pn*1 : ’

(2,n) ._ (2.n) — (2,n) o
J2;n—1)t2npntpn " ]’ Bj(z,n—1)+21npn+10n+1 T ]’ ) T en—nt2(nt+)pa—1 T I’
(2,n) — (2:n) —
I.....B =1

Jen-1)Ftran—ri—1 " J@n-1)(rn—r1)—1

We continue in the n-th step. We define
Bt =Bt B BEM B ke

We consider the solution {z\""""} .z of

Tyl = Blgn_l’n) -y, k E€Z, Ty = U.

Again, we have to assume that {x,(gn_l’")} is almost periodic. Let jin—1) € 2" 'p, N satisfy

(n—1,n) (n—1,n) || _ (n—1,n) 1977,
H Lo T Yimm—1) ‘ - H u—= :Cj(n,n—l) ‘ < ? (4'72)
and
j(n,n—l) > j(n—l,n—l) (Tn - 7an72)- (473)

We define a periodic sequence {B,in’n)}kez with period jgpn—1)(rn — Tn-1). If

Un
> — .
> (4.74)

(n=1,n)  (n—1n)
j(n,n—l) j(n,n—l)‘i""nfrnfl

(nn) . __ 1 , k € Z. 1f inequality (4.74) is not valid, we put

we put B,
(nn) (nn) . _ (n,m) —
B = 1B =1, B =1,
(nm) (n,m) — (n,n) —
ity = L Byt = Lo ’Bj(n,n—1)+2n_2pn71 =1,
(’/LJL) O n (nrn) O (n,n) .
j(n,n—1)+2n72pn T Ml ’ j(n,n—1)+2n72pn+1 T I’ e ’Bj(n,n—1)+2n71pn_1 T I’
(n,m) . (n,n) o (n,n) —
j(TL,7L71)+2n71pn B j(n,n71)+2n71pn+1 T I’ o Bj(n,nfl)+2n71pn+2n72pn_1 T I’
(nzn) . — n (nvn) .—— (nm’) fy—
=My By enipagan—tp = L Byl o, 1=

j(nynfl) +2n- lpn +2"_2Pn
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(’VL,TL) — I (nan) — ]
j(n,n—1)+(ln_1)2n71pn ’ ’ j(n,7b—l)+(ln_1)2n71pn+1 ’ ’
(TL,'I’L) “-— I
© i mn—y (=12 " pp 42— 2p, —1 T T
(n’n) . n (nvn) e
Bj(n,n—1>+(ln—1)2”‘1pn+2"‘2pn = My, Bj(n,nfu+(ln—1)2”—1pn+2n—2pn+1 =1,
(TLJ’L) — ]
c ey j(n,n—l)+ln2n71pn_1 . Y
(n’n) “-— (n7n) .-
Bj("a"—1)+l"2n71pn T ]7 Bj(n,n—1)+ln2n71pn+1 T ]7
(n,n) -
T Bj(n,nfl)+ln2n_1pn+2n_2pn71 T I’
(n7n) Pp— (n7n) PR
Bj(n,nfl)+l"2nflpn+2"72pn =1, Bj(n,nf1)+l"2n71pn+2n72pn+1 =1,
B(”Ln) P I’

t j(n,n—1)+(ln+1)2n71pn_1 T

B =1,...,B"" =1,

Jnn—1)Trn—Tn-1—1" P T htnn—1)(rn—rn—1)—1 "

where (see (4.49))
o= Tno1 =Tt [27 i — 1] 2 ppea2™ [2771, — 1] = 2p, [277'L, — 1] > 1,27 ',
Finally, in the n-th step, we define
By =B . BP"...B", ke, (4.75)

and .
By ::Ak-B,i-B,z---B,?, kelZ.

Then, we consider the solution {2} } ez of
xk+1zég~xk, ke, Ty = U.

Applying Lemma 4.29 for BZ+j =1,k € Z,j €N, it suffices to consider the case, when
{z}} is almost periodic, and to continue in the construction.

All sequence {BJ}'}rez is periodic as the product of n periodic sequences. Let g, be a
period of {B}}, n € N. In the construction, we can obtain matrices different from I only
for

B21l+17 B(172) B(272) .. B(l’n) B(27n) B(n,n)

41+2> 81+4» ) lpn+p7"’ 21Pn+Pn’ ey 2"71lpn+2"72pn’ ey

(4.76)

where [ € Z. Considering (4.65) and (4.75) (see also (4.62)), the structure of the indices of
matrices in (4.76) gives (4.29). It is seen that (4.27) and (4.30) follow from (4.46) and from
the construction. Analogously, (4.28) follows from (4.47). Thus, applying Lemma 4.29 for
the sequence of

B,:=A,-B,-B}---B}---, ke,
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we have that {By} € OZ({Ax}) N LP(X).
To complete the proof, it suffices to show that the solution {xy }xez of the problem

Tpy1 = By -1, k €Z, To=u

is not almost periodic. On contrary, let us suppose that {x} is almost periodic. We use
Theorem 1.3 for hy =0, hypy1 = 7, n € N (see (4.66)). We know that, for any £ > 0, there
exist infinitely many ¢, j € N satisfying

| zhss, — 2y, || < & Kk E€Z (4.77)
From the construction (consider (4.57), (4.60), ..., (4.67), (4.70), ..., (4.73)), we obtain
B =1 ke{0,1,...,¢,—1},n,j€N. (4.78)

Hence, we get

I s00 = 2500000 | = | Biwor-1-+- Br - Bo-u=Baaysn1-+-Br- By-u
= H B}(I,O)—l T B% ) Bé : Aj(l,O)—l Ay A u
= B oyiri 1 B By Ajaoyeri-1 e A Ag - u|

1 1 1 0 1 1 1 0
= || Bjro)-1 Bt - Bo - @51,0) = Bjuoysm—1 " B1 - By - 51 0ysr, ||+
ie.,

H Lj(1,0) — Lj(1,0)04r H

= Blooa e BB~ Blogyera - BBy | T

If (4.54) is valid, then we can rewrite (4.79) into
U

lziao = 2o | = 11---1- 12500 = T 112G gy, || 2 5

If (4.55) is true, then we have
3000 = | = 12T T = Mo MM g, | > 5 > 5

which follows from (4.48), (4.51), (4.52), and from (see (4.53), (4.55))

= 2 per I < = 2 1+ 2500y — 20y | < 4 2 = 01
In the both cases, we get

lzs00 ~ s0en || 2 2 (4.80)

2
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Considering (4.78) and the construction, we can express

l#500 = @i [| = | Bian-1--- B+ Bo-w = Bjaayirsr -+ Bu- By - u]
1,2 1,2 12) 5 517
— HB]('(l,i)l .. B2 ~Bé )‘35(1,1)—1"‘3%'301 U
(1,2) (1,2) (1,2) 1 Pl Pl
- Bj(1,1)+r271 ’ 'Bl ’ B - B} G(1,1)+ra—1 """ B1 ’ Bo "u
_ (1,2) (1,2) (1,2) .1
- H Bj(l,l)—l BBy Lj,1)
(1,2) 12) 12 1
B Bj(l 4re—1 " - By ’ Bo "L, s ||
i.e.,
10 = 2500+ |
_ | go2 B0 g2 | 502 B0 g2 | (4.81)
= || Piapy-1""P1 " Bo T T B 4r-1 P17 Bo T Ti1,1) 4y
If (4.58) is valid, then (4.81) takes the form
U9
| i) = Tjanyer | = |1 T T2l =T T T-alyyy,,, || > 5 (4.82)
If (4.58) is not valid, then we have
| 250 = Zjnn | s
¢ 4.83
:||I"'I'I'le(1’1)_Ml22 M2 M2 11)+T2H>2— 9"

Indeed, it suffices to consider (4.48), (4.51), (4.52), and the inequality (see also (4.56))

¥y ¥
1 1 1 1 2
le = nsr | < e = |+ | o =Gy | < 5 +5 =0
Again, one can express
H l'j(Q,l) - xj(271)+r2—71 H - || Bj (2,1)-1" "~ Bl ' BO U — Bj(2,1)+7~2_r1_1 Tt B1 : B() U H
_ (2,2) (22) 22 pA2) H(1,2)  p1,2)
= H Bj(2,1)—1 .- B . B, 'Bj(2,1)—1 BBy
(2,2) 22) 71,2 ~(1,2)
- Bj(2,l)+r2—r1—l e By Bj(2,l)+7"2—r1—l By
_ (2,2) (22)  p22)  (L2)
e
(2,2) 2,2) (22 (1,2)
~ B tytra—rio1 BT BeT T 1y ||
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ie.,
_ (2,2) (2,2) (2,2) ,.(1,2)
H Lj(2,1) = Lj(2,1)+r2—r1 H = H Bj(2,1)71 By - By Tj2,1)
(4.84)
(2,2) (2,2) (2,2) ,.(1,2)
~ Bignsra—r—1 BT By a0y,
If (4.61) is valid, then (4.84) gives
=112 —1.1 1202 92y
H Tj2,1) — Tj(2,1)+ra—r1 H = Tje2,1) Li21)+ra—r || Z ? ( -85)
If (4.61) is not valid, then (4.84) gives
| 2520 = Zj2a)+ra—n | s
4.86
_ (1,2) 2 2 (12 ¢ _ Y
_HI oL gy = My My - My 3(21)+rz nll7 223

where (4.48), (4.51), (4.52), (4.59), and (4.61) are used.
Finally (see (4.82), (4.83), (4.85), and (4.86)), from the second step of the construction,
we have
Uy

lzion = zianem |2 55 lwen = zienimn | = 5 (4.87)

Analogously as (4.80) and (4.87) (consider again (4.48), (4.51), (4.52) and the construc-
tion with (4.64), (4.68), (4.69), (4.71), ..., (4.72), (4.74)), one can obtain

n
} x‘j(lvn—l) - xj(l,n—1)+rn Z 77
Uy,
H x‘j(Qv"*U - xj(Q,nfl)"""'n_Tl 2 7’
Un
H l1‘.7‘(')1,77,—1) - l1‘.7‘(')’1,77,—1)‘F'r’1'1,7'r'n—1 2 7

for all n € N.
Considering Lemma 4.30, we can assume that (see (4.50) and (4.51))

sup K; < o0, ie., ¥ :=inf¥; > 0. (4.88)
jEN jEN

Thus, for all n € N, we obtain

NI

H :Cj(l,n—l) - xj(l,n—1)+7"n

v
27

H Lion-1) — Li@n_1)+rn—r1
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>

RIS

H Litnm-1) — Tinm-1)+rn—rn-1
Especially, for all 7 # j, 7,7 € N, there exists [ € Z such that

¥
H Titl; — Titi; H > 5

This contradiction (consider (4.77) for 2§ < 9J) proves that {x)} is not almost periodic. [

Remark 4.32. It is easy to see that the statement of Theorem 4.31 does not change if
one replaces system {A;} € LP(X) by a periodic one. Indeed, it follows directly from
Definition 1.17. A

Remark 4.33. To illustrate Theorem 4.31, let us consider an arbitrary periodic system
{M}} in the complex case (i.e., for ' = C with the usual absolute value). It means that
we have a system

Tpy1 = M, - Tk, ke Z, where M, = Mker, ke Z,

for a positive integer p and arbitrarily given non-singular complex matrices My, ..., M,_;.
We know that a solution of {M;} is almost periodic if and only if it is bounded (see
Corollary 2.22). The fundamental matrix ®(k,0) of {M;} satisfying ®(0,0) = I is given
by

q)(lp—l—’i,()):Mi_l"'Ml'MO'(Mp_l"'Ml'M())l, ZGNU{O},ZG{]_,,]?}

Thus, to describe the structure of almost periodic solutions, it suffices to consider the
multiples (M,_; --- M - Mp)" and, in fact, the constant system

Ik+1:Mp_1"'M1'M0'ZL'k, ke Z.

For any constant system given by a non-singular complex matrix M, one can easily find
a commutative matrix group X containing M and having property P with respect to a
vector (e.g., one can consider the group generated by matrices cM for all complex numbers
c=sinl+1icosl, | € Z). Applying Theorem 4.31, we know that, in any neighbourhood of
the considered system, there exists a limit periodic system whose coefficient matrices are
from the group and whose fundamental matrix is not almost periodic. In addition, such a
limit periodic system can be found for any commutative group X which contains M and
which has property P with respect to at least one vector. JAN

Remark 4.34. We repeat that the basic motivation comes from the previous section, where
non-asymptotically almost periodic solutions of limit periodic systems are considered. Of
course, systems with coefficient matrices from bounded groups are analysed in Section 4.3.
For general groups, it is not possible to prove the main results of Section 4.3. It suffices
to consider the constant system given by matrix //2 in the complex case. Any solution
{2k }rez of this system has the property that

|||
2 b

|2 [ =
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Thus, there exists a neighbourhood of the system such that, for any solution {y }rez of an
almost periodic system from the neighbourhood, we obtain limy_, || yx || = 0, which gives
the asymptotic almost periodicity of {yx} (see Remark 1.16).

At the same time, in Section 4.3, there is required that the studied matrix group
has property P. Since the group X has property P only with respect to one vector in
the statement of Theorem 4.31, we can apply this theorem for groups of matrices in the
following form

01 -0
00 - 1

where X is taken from a commutative matrix group having property P with respect to a
concrete vector. In this sense, Theorem 4.31 generalizes Theorem 4.16 as well. JAN

The construction from the proof of Theorem 4.31 can be applied for the Cauchy (initial)
problem. Especially, we immediately obtain the following result.

Theorem 4.35. Let a non-zero vector u € F™ be given. Let X have the property that there
exist ( > 0 and K > 0 such that, for all 6 > 0, one can find matrices My, ..., M; € X
satisfying

M€ OD), ie{l,...,1}, MM -u—ull>¢ || M--M| <K (48

For any {Ax} € LP(X) and € > 0, there exists a system {Byx} € O ({Ax}) N LP(X) for
which the solution of
Tpy1 = By -1, k€L, To = U

18 not almost periodic.

Proof. The theorem follows from the proof of Theorem 4.31, where (4.88) is satisfied (i.e.,
the case, which is covered by Lemma 4.30, does not happen). O]

Remark 4.36. We point out that, in a certain sense, Theorem 4.35 has been improved
in [41]. A

Similarly to Theorem 4.23 which is the almost periodic version of Theorem 4.16, we
formulate the below given Theorem 4.39 as the almost periodic version of Theorem 4.31.
We need the next two lemmas.

Lemma 4.37. Let {A;} € AP(X) and € > 0 be arbitrarily given. Let {6, }nen C R be a
decreasing sequence satisfying (4.27) and let { B} }xez C X be periodic sequences for n € N
such that (4.28) and (4.29) are valid. Then, {B} € AP(X) if

Bypi=A,-B.-B-.B'.., kel

In addition, {By} € O7({Ax}) if (4.30) is fulfilled.



4.4 Systems with non-almost periodic solutions 116

Proof. The lemma can be proved analogously as Lemma 4.29. In the proof of Lemma 4.29,
it suffices to put C}' = A, for all k € Z, n € N, to use Theorem 1.7, and to consider the
almost periodicity of {Cf - B} - B -+ - Bl }xez, C X which follows from Theorems 1.3, 1.14,
and 1.22 and from Lemma 4.11. O

Using the same way which is applied in the proof of Lemma 4.30, we can prove its
almost periodic counterpart. Indeed, we do not use the limit periodicity of {Ax} in the
proof (consider also Lemma 4.37).

Lemma 4.38. If for any 6 > 0 and K > 0, there exist matrices My,...,M; € X such
that (4.34) is valid, then, for any {A,} € AP(X) and ¢ > 0, there exists a system {By} €
O7({Ax}) whose fundamental matriz is not almost periodic.

Theorem 4.39. Let X have property P with respect to a vector. For any {A} € AP(X)
and € > 0, there exists a system { By} € O ({Ax}) whose fundamental matriz is not almost
periodic.

Proof. The theorem can be proved using the same construction as Theorem 4.31. It suffices
to replace Lemma 4.29 by Lemma 4.37 and Lemma 4.30 by Lemma 4.38. [

Analogously, we get the following result as well.

Theorem 4.40. Let a non-zero vector u € F™ be given. Let X have the property that there
exist ( > 0 and K > 0 such that, for all 6 > 0, one can find matrices My, ..., M; € X sa-
tisfying (4.89). For any {Ax} € AP(X) and e > 0, there ezists a system { By} € O ({Ax})
for which the solution of

Tpy1 = By -2, k€L, To=u

18 not almost periodic.

Remark 4.41. We add that Theorems 4.39 and 4.40 do not follow from Theorems 4.31
and 4.35. Consider Theorem 1.21. AN

At the end, we remark that all main results presented in this chapter remain true if
one replaces k € Z by k € N; and we repeat that the main results of Chapter 2 are not
covered by results about almost periodic systems presented in this chapter.



Chapter 5

Almost periodic and limit periodic
functions in pseudometric spaces

This chapter is analogous to Chapter 1, where almost periodic and limit periodic se-
quences are considered. Here we consider almost periodic and limit periodic functions.
Our aim is to mention basic properties of considered functions and to show a way one can
generate functions with several prescribed properties. Since our process can be used for
generalizations of classical (complex valued) almost periodic (and limit periodic) functions,
we introduce the almost and limit periodicity in pseudometric spaces and we present our
method for functions with values in a pseudometric space X as in Chapter 1.

We point out that we obtain the most important case if X is a Banach space, and
that the theory of almost periodic functions of the real variable with values in a Banach
space, given by S. Bochner in [22], is in its essential lines similar to the theory of classical
almost periodic functions which is due to H. Bohr in [27, 28]. We introduce almost periodic
and limit periodic functions in pseudometric spaces using a trivial extension of the Bohr
concept, where the modulus is replaced by the distance. In the classical case, we refer to
the monographs [18, 72, 128]; for functions with values in Banach spaces, to [7, 46, 117];
for other extensions, to [9, 12, 19, 20, 31, 77, 84, 99, 181]; for modifications, to [46, 85] and
references cited therein; for applications, to [32, 47, 160, 164].

Necessary and sufficient conditions for a continuous function with values in a Banach
space to be almost periodic may be no longer valid for continuous functions in general
metric spaces. For the approximation condition, it is seen that the completeness of the
space of values is necessary and H. Tornehave (in [177]) also required the local connection by
arcs of the space of values. In the Bochner condition, it suffices to replace the convergence
by the Cauchy condition. Since we need the Bochner concept as well, we recall that the
Bochner condition means that any sequence of translates of a given continuous function
has a subsequence which converges uniformly on the domain of the function. The fact,
that this condition is equivalent with the Bohr definition of almost periodicity in Banach
spaces, was proved by S. Bochner in [22].

We begin with the used notation in Section 5.1. The above mentioned Bohr definition
and Bochner condition are formulated in Section 5.2 (with some basic properties of con-
sidered functions). In Section 5.2, processes from [46] are generalized. Analogously, the

117
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theory of almost periodic functions of real variable with fuzzy real numbers as values is
developed in [13] (see also [157]). In Section 5.3, we mention the way one can construct
almost periodic functions with prescribed properties in a pseudometric space. We present
it in Theorems 5.20, 5.22, and 5.24 below. Note that it is possible to obtain many mo-
difications and generalizations of our method. A special construction of almost periodic
functions with given properties is published (and applied) in [101] as well.

5.1 Preliminaries

Let X be an arbitrary pseudometric space with a pseudometric p. Symbol O (x) denotes
the e-neighbourhood of z in A for arbitrary € > 0, x € X'. The set of all non-negative real
numbers is denoted by R .

5.2 Generalizations of pure periodicity

As in the first chapter, we define the notion of almost and limit periodicity in pseudo-
metric spaces.

5.2.1 Almost periodic functions

At first, we introduce the almost periodicity in X'. Observe that we are not able to
distinguish between x € X and y € X if o (z,y) = 0.

Definition 5.1. A continuous function ¢ : R — X is almost periodic if for any ¢ > 0,
there exists a number p (¢) > 0 with the property that any interval of length p (¢) of the
real line contains at least one point s such that

o(W(t+s),(t) <e, teR.

The number s is called an e-translation number and the set of all e-translation numbers

of ¢ is denoted by T'(¢,€).

Remark 5.2. It is possible to introduce almost periodic functions defined on various sets.
For almost periodic functions defined on the torus (on the annuloid), see [136, 154]; on
a tube, see [68]; on a circle, see [30]. A

If X is a Banach space, then a continuous function ¢ is almost periodic if and only
if any set of translates of 1) has a subsequence, uniformly convergent on R in the sense
of the norm. See, e.g., [46, Theorem 6.6]. Evidently, this result cannot be longer valid if
the space of values is not complete. Nevertheless, we prove the below given Theorem 5.5,
where the convergence is replaced by the Cauchy condition. Before proving this result, we
mention two simple lemmas. Their proofs are easily obtained by modifying the proofs of
[46, Theorem 6.2] and [46, Theorem 6.5].
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Lemma 5.3. An almost periodic function with values in X is uniformly continuous on the
real line.

Proof. Let an almost periodic function ¢ : R — & be given and let p = p(g/3), where
e > 0 is arbitrary, be from Definition 5.1. Since v is uniformly continuous on the interval
I:=[-1,1+ p|, there exists § = §(¢) € (0,1) such that

o(Y(th),¥(t2)) < %’ ti,ta €1, [t —ta| <.

Let t1,ty € R satisfying | t; — to | < § be arbitrary and s = s(t1,0) € [—t1, —t; + p] be an
(¢/3)-translation number of ¢. Evidently, t; + s € I, to + s € I. Finally, we have

o (W(tr),¥(t2)) < o (W(tr), v(t1 +5)) + 0 (1 + ), ¥ (t2 + 5))

Fo(Wlta+s) b(t) < ot =<

which terminates the proof. m

Lemma 5.4. The set of all values of an almost periodic function ¢ : R — X is totally
bounded in X .

Proof. Let p = p(g/2) be from Definition 5.1 for arbitrarily given € > 0. Obviously, the
set of all values of ¢ on [0,p] is a subset of a finite number of neighbourhoods of ra-
dius £/2. Let us denote by 1, s, ..., z, the centres of these neighbourhoods which cover
the set {¢(t); t € [0,p]}. For an arbitrary ¢t € R, we take an (¢/2)-translation number
s =s(t) € [-t,—t +p|] of ¢. Thus, t+ s € [0,p|. Let z(t) € {x1,xa,...,x,} be the centre
of the neighbourhood of radius /2 which contains (¢t + s). We obtain

e €

0 (x(0), Y(0)) < 0 (e(1), (b + 5) + 0 (V¢ + ), 6(1)) < 5+ 5 =<
It shows that, for any € > 0, the set of all values of ¢ is covered by a finite number of
neighbourhoods of radius ¢. O

Theorem 5.5. Let ¢ : R — X be a continuous function. Then, 1 is almost periodic if and
only if, from any sequence of the form {{(t + sn)}, oy, where s, are real numbers, one can
extract a subsequence {1 (t +ry)}, oy satisfying the Cauchy uniform convergence condition
on R, i.e., for any € > 0, there exists l(¢) € N with the property that

g(w(t+ri),w(t+rj)) <eg, tER,
foralli,j >1(¢e), i,7 € N.

Proof. We prove the sufficiency of the condition using a simple extension of the argument
used in the proof of [46, Theorem 1.10]. Suppose, on contrary, that ¢ is not almost periodic.
Then, there exists a number ¢ > 0 such that, for any p € N, one can find an interval of
length p which does not contain any e-translation number of . Consider an arbitrary
number /; € N and an interval (aj,b;) C R of the length greater than 2(I; + 1) which
contains no e-translation number of ¥). We choose Iy € Z such that Iy — {1 € (aq,b;). Thus,
lo — 1 is not an e-translation number of 1. Next, there exists an interval (ag, by) C R of
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the length greater than 2(l; + [y + 1) such that there exists no e-translation number of 1 in
(ag,b2). We can also find I3 € Z for which I3 — 11,13 — Iy € (ag,by) and, hence, I3 — 13,13 — s
cannot be e-translation numbers of .

Proceeding in a similar way, we get a sequence {l,, },en satisfying that none of the num-
bers l,, — l,,, where ny # ng (n1,ne € N), is an e-translation number of ¢). Therefore, we
obtain

0 (w(t + lnl o lﬂQ)? Tﬂ(t)) > €
for all ny # ny (n1,ny € N) and at least one ¢t € R. This contradiction proves that v is
almost periodic.

To prove the converse implication, we assume that 1 is an almost periodic function.
We apply the well-known method of the diagonal extraction and modify the proof of [46,
Theorem 6.6].

Let {t,; n € N} be a dense subset of R and {s,},.y C R be an arbitrarily given
sequence. From the sequence {t(t; + s)}, oy, using Lemma 5.4, we choose a subsequence
{¢(t1 + 1))}, cy such that, for any e > 0, there exists [;(¢) € N with the property that

o(¥(ti+r),oti+r;)) <e, 4,5>Mh(e),4,jeN.

Such a subsequence exists, because infinitely many values 1(¢; + s,,) is in a neighbourhood
of radius 27 for all i € N (consider the method of the diagonal extraction). Analogously,
from the sequence {t(ty + 7))}, cn. We get {1(t2 + 12)},,cy such that, for any e > 0, there
exists l5(¢) € N for which

Q(¢(t2+7"z2)7¢(t2+7}2)) <¢g, Za] >l2<€>’ Zu] eN.

We proceed further in the same way. We obtain {r*} C ... C {rl} k€ N.

Let £ > 0 be arbitrarily given, p = p (¢/5) be from Definition 5.1, § = § (¢/5) correspond
to ¢/5 from the definition of the uniform continuity of ¢ (see Lemma 5.3) and let a finite
set {t1,...,t;} C {tn; n € N} satisfy

. min}\ti—tl <9, tel0,pl
J

Obviously, there exists [ € N such that, for all integers ny,no > [, it holds

0 (V(t; + 1), p(ts +172)) < %, ie{l,..., 5%

Let t € R be given, s = s(t) € [—t,—t + p| be an (¢/5)-translation number of ¢, and
ti = ti(s) € {t1,...,t;} be such that |t + s —¢;| < J. Finally, we have
o (Wt +r) vt +m2)) < o (L(t+rl) ¢t + ) +59))
o (PE+r +8), 0t + ) + o (Pl + i), vt +172))
o (Wt + ), vt + 10 4 9) + o (U417 + ), Ut +172)) -

Thus, we obtain

n oy _E E E € €
QW@+%9#@+E@)<5+5+5+5+5=5 (5.1)

for all t € R, ny,ny > 1, ny,ny € N. Evidently, (5.1) completes the proof of the theorem if
we put r, ==, n € N. ]
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Remark 5.6. Using a combination of the methods used in the proofs of Theorems 1.3
and 5.5, it is possible to prove that, for a continuous function f : G — X with G an abelian
topological group and X a complete metric space, the definitions of almost periodicity in
the sense of Bohr and Bochner are equivalent. For other generalizations, see [14]; for
other equivalent definitions (e.g., the von Neumann and the Maak definition) of almost
periodicity, see [117, 128]. We add that, for the first time, almost periodic functions on
groups with values in Banach spaces were studied by S. Bochner and J. von Neumann
in [24, 25].

In the recent years, many researchers study the concept of almost periodicity on time
scales and analyse solutions of almost periodic (linear) dynamic equations. We refer at
least to papers [86, 119, 120, 121, 127, 180, 185]. A

Analogously as for complex valued almost periodic functions or almost periodic se-
quences in Chapter 1, one can prove many properties of almost periodic functions with
values in pseudometric spaces.

Theorem 5.7. Let X}, X5 be pseudometric spaces and ® : Xy — Xy be a uniformly con-
tinuous map. If v : R — X is almost periodic, then ® o) is almost periodic as well.

Proof. We can proceed similarly as in the proof of Theorem 1.6. If §(¢) > 0 is the number
corresponding to arbitrary € > 0 from the definition of the uniform continuity of ®, then
it is valid

T (1,6() C T (B0 ,¢)

which proves the theorem. O

Theorem 5.8. The limit of a uniformly convergent sequence of almost periodic functions
18 almost periodic.

Proof. 1t is possible to prove the theorem using the process from the proof of [46, Theo-
rem 6.4]. O

Directly from Theorem 5.5, we obtain the following corollaries.

Corollary 5.9. Let X be a Banach space. The sum of two almost periodic functions with
values in X is an almost periodic function.

Corollary 5.10. If &}, ..., X,, are pseudometric spaces and i, . .., ¥, are arbitrary almost
periodic functions with values in Xy, ..., X, , respectively, then the function 1, with values
in X)X - X X, giwen by = (Y1, ...,¢,), is almost periodic.

We add that one can use Corollary 5.10 to obtain simple modifications of the below
presented method of constructions of almost periodic functions. Moreover, from Corol-
lary 5.10, we get:

Corollary 5.11. The set

T(r,e) VT (o, ) N - N T (¢, €)

is relatively dense in R for arbitrary almost periodic functions 11, s, ..., Y, and any e > 0.
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Remark 5.12. For the first time, Corollary 5.11 was proved for almost periodic functions
with values in an arbitrary metric space in [153]. A

To conclude this subsection, we establish theorems which show how almost periodic
functions can be characterized by almost periodic sequences.

Theorem 5.13. A uniformly continuous function ¢ : R — X is almost periodic if and
only if there exists a sequence of positive numbers r,, n € N, satisfying r, — 0 as n — oo,
such that the sequence {{(rpk)}, o, is almost periodic for all n € N.

Proof. One can prove the theorem using a corresponding extension of the proof of [46,
Theorem 1.29]. O

Theorem 5.14. Let X be a Banach space. A necessary and sufficient condition for a se-
quence {Qr}rey © X to be almost periodic is the existence of an almost periodic function

YR — X for which (k) = ¢k, k € Z.
Proof. The sufficiency of the condition follows directly from Theorems 1.3 and 5.5. Con-
versely, assume that an almost periodic sequence {¢y}, ., is given. We define

w(t) = (Pk‘i‘(t_k)(@lwrl_(pk); k<t< k+1, keZ. (52)

Evidently, ¢ : R — X is continuous and ¢ (k) = ¢y, k € Z. The almost periodicity of 1
follows from

€
-\ c
which can be proved using (5.2). ]

Remark 5.15. Many known theorems show how almost periodic functions can be characte-
rized by almost periodic sequences. Such theorems are used to study almost periodic
solutions of differential equations as well. General examples of differential equations, for
which a solution x(t) defined for ¢ € R is almost periodic if and only if {x(k)}rez is an
almost periodic sequence, are mentioned in [4, 133, 144]. A

5.2.2 Limit periodic functions

Now we briefly recall the concept of limit periodicity for continuous functions with
ranges in X.

Definition 5.16. A function f : R — X is called limit periodic if f(z) = lim, o0 fn(2)
uniformly for x € R, where all f,, : R = & are periodic continuous functions.

Remark 5.17. As in the discrete case (cf. Remark 1.18), the periods of functions f,, in
Definition 5.16 do not need to be the same for considered n. A

Theorem 5.18. Any limit periodic function is almost periodic.
Proof. 1t suffices to consider Theorem 5.8 and the above definitions. [

Theorem 5.19. There exist almost periodic functions f : R — C (with respect to the usual
metric) which are not limit periodic.

Proof. The theorem follows from the characterization of limit periodic functions using the
Fourier expansion, which can be found in [18] (see also [47, p. 129]). O
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5.3 Constructions of almost periodic functions

Now we present the way one can generate almost periodic functions with given pro-
perties.

Theorem 5.20. For arbitrary a > 0, any continuous function ¥ : R — X such that
Q:D(t) S Oa W(t - 1)) , te (1a 2]7
¢(t) S Oa (77Z}(t + 2)) , te (_2a O],
(1) € Oupa (V(t —4)), 1€ (2,6],
P(t) € Oapa (P(t+8)), te(-10,-2],
W(t) € Oga (W(t—2Y)), te(242%,242°+27,
U(t) € Oupa (V(E+2%)), te(—2°—2°—2,-2%-2],

U(t) € Ogon (Yt —2°")), tE€ (24274 +2777 2427 4. 427772 4 277,
U(t) € Ogon (V(t+ 2", te (=22 —... =23 —2 91 ... 2% 2]

18 almost periodic.

Proof. Let € > 0 be arbitrary and k = k(¢) € N be such that 2% > 8a/e. It suffices to
prove that [ 2% is an e-translation number of 1 for any integer [.
First we define

pt) = ¢(t), te[-2%1 ... 23 22497 ... 4 2%
We see that

U(t) € Os (p(t —2%%)), te2+22+ - 42722427 4. 4 2%,

W(t) € Ogs (Yt +2%)), te -2 —... 282 %1 _..._23_9]
V(t) € Ocpie (W(t —2212)), te 2422+ + 2% 2422 4 ... 4 22
W(t) € Ocpe (Y(t+2%3)), te[-23 —... 28— 2%+ ... _23_ 9]

In a pseudometric space X, this observation implies
Pt +2%) € Oys (p(t), te[-221 - =28 -2242° 4 ... 4277,

Yt —2) € Ogs (p(1), €[22 = =20 =224 2% ... 42277,
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¢(t - 22k> € OE/8+€/8 (Qp(t)) ) te [_22]%,71 - 25 - 27 2+ 22 + e+ 22]672]7
Y+ 2 € OLjgiepio (9(t), te[=2F1— =23 22422 ... 2272
Y(t+32%) € Ojgyessiesio (p(t)), te[=21—.. =23 224274 ... 4222
Yt + 222 € O g (0(t)), te[-2% 1 —... =23 22422 ... 4222

/
Y(t+ 2% +2%2) € Ocpsrepo (1), t€[-2%71 =0 =20 =224 2% 4. 42777,
Since
fyc, e, 8,808 28
8 8 16 16 32 32 2’
we have
Y(t+127%) € Opp (p(t), te[-2%1— =28 —-2242°4...42%72] [ €Z. (5.3)

We express any t € R as the sum of numbers p(t) and ¢(t) for which
p(t)e[-22 1 ... 23— 22422 ... 4 2%
and ¢(t) = j2% for some j € Z. Using (5.3), we obtain

o (¥(t), ¥t +127)) < o (¥ (p(t) + (1), p(p(t)))

+ 0 (o(p(1)), ¥(p(t) + (j + 1) 2%)) < g n (5.4)

€
— =¢£
2

for any ¢t € R and [ € Z which terminates the proof. O]

Remark 5.21. Note that the range of a function 1 generating by Theorem 5.20 does not
need to be complete (for a general pseudometric space). A

The process mentioned in the previous theorem is easily modifiable. We illustrate this
fact by the following two theorems.

Theorem 5.22. Let M > 0, o € X, and j € N be given. Let ¢ : [0, M] — X satisfy
©(0) = (M) = If {rp}nen C R has the property that

o0

Zrn < 00, (5.5)

n=1

then an arbitrary continuous function 1 : R — X, ab|pa) = ¢ for which

Y(t)=m9, t€{iM,2<i<j+1}U{—i(j+1)M, 1<i<j}
UG+ D)+ 4G+ D2 i + 1M 1< < ) 56

{=(G+D+- 40+ +i( + D*HM; 1 <i < j}

n=1
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and, at the same time, for which it is valid

P(t) € O, (V(t = M)), te(M,2M),

¢(t)60r1(¢(t_jM))7 tG(]M,(]+1)M),
() € On, (Wt + (G + M), te(=(j+1)M0),

V() € O, (Wt +j(H+1M)), te(—ji+1)M,—(—1)(j+1)M),
V() € O, (Wt — (G +1)°M)), te(G+1)M(G+1)+(G+1)*M),

P(t) € Oy (V(t -4 +1)°M)),
te (G+D)+G -G +DHMAG+1)+50G+1)°)M),

Y(t) € O, (Yt + (G + 1) M),
te (—(G+D™ "+ +1" 7+ 40+ 1+ + 1)M,
— (U + 1" 4+ G+ D+ + 1)M),

U(t) € Oy, (V(E+ 40 + 1)1 M)),
te (—UU+D" T+ +D" P+ 450G+ 1)+ 5+ 1)M,

—((G-DG+D)" i+ D) P4+ G )P+ + 1))M),

U(t) € Oy, (V(E— (5 + 1) M),
te (G+1)+jG+1)7° 4 +j(G+1)*" )M,
G+ +G+1)* 4+ + G+ 1)+ (G +1)*"M),

w(t) S Or2n+1 (Wt - j(] + 1)2nM)) )
te (G+1)+iG+1)2+ - +iG+ D" 2+ G -1+ 1)*)M,
((G+D) +5G+1 4+ 5+ 1) 2455+ 1)*)M),

15 almost periodic.
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Proof. We prove this theorem analogously as Theorem 5.20. Let € be a positive number
and let an odd integer n(g) > 2 have the property that (see (5.5))

> £
;)rn <3 (5.7)

We prove that [(j + 1)"®)~1M is an e-translation number of 1 for all [ € Z. Let [ € Z and
t € R be arbitrary. If we put

s:=1(j 4+ 1)"©" 1M, (5.8)
then it suffices to show that the inequality
o(W(t),¥(t+5)) <e (5.9)

holds; i.e., this inequality proves the theorem.
We can write t as the sum of numbers ¢; and ¢5, where

ty
]

— (D" O G D G+ 1) M

5.10
G+1+7G+12+ -+ + 1)) M (5.10)

>
<

and
ty=1i(j +1)"&~IM  for some i € Z. (5.11)

Now we have (see (5.10) and the proof of Theorem 5.20)

o(W(t), v(t+s)) < o(Y(t +t2),¥(t1)) + 0 (V(t1), Y(t + t2 + 5))
n(e)+p—1 n(e)+q—1 (5.12)

Indeed, we can express (consider (5.8) and (5.11))

to= (01 + D" + iy + DO - iy (5 + DETP) (4 1),
tots=(L(+1)"O "+l + 1) 5) o L (G D)METY) (4 1),
where i1,...,0,, 01, ..., 1, ©{—j,...,0,..., 7} satisfy
i1>0, i3<0, -+ (=1)Pi,<0, 1,>0, [L,<0, - (=1)7,<0.
Evidently, (5.7) and (5.12) give (5.9). O

For j =1, we get the most important case of Theorem 5.22.

Corollary 5.23. Let M > 0 and xq € X be given and let ¢ : [0, M] — X be such that
©(0) = o(M) = zo.
If {e;}ien C Ry satisfies
Zgi < 00, (5.13)
i=1
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then any continuous function ¥ : R = X, ¥|jo.a = ¢ for which

() =x0, t€{2M, —2M} U {(24 2%+ -+ 226D 4 92\ 71: j € N}

. , 5.14
U{—=(2+2°+-- 2271 4 224H )\ € N} (5.14)

and, at the same time, for which it is valid
(t) € O, (Pt = M)), te(M2M),
U(t) € O, (¥(t+2M)), te(-2M,0),
U(t) € O, (Y(t—2°M)), te(2M,(2+2°)M),
Y(t) € O, (V(E+2°M)), te(—(2°+2)M,—2M),
U(t) € O ((t—2'M)), te((2+2%)M, (24 2°+2")M),

Y(t) € Oy (Y(E+2%TM)), te (=2 '+ +2)M,— (2% + - +2)M),
Y(t) € O, (W(E—2"M)), te(2+22+ - +2" )M, (24+2° + - +2%)M),

15 almost periodic.

Theorem 5.24. Let ¢ : (=1, 7] = X, {rn}neny C RY, and {jntnen € N be arbitrary such
that

o0

Zrnjn < 0 (5.15)

n=1

holds. Let a function v : R — X satisfy 1|, = ¢ and

P(t) € O (p(t —2r)), te(rr+2r],

V() € O, (p(t —2r)), te(r+(—1)2rr+5.2r],
P(t) € O (pt+2r)), te(=2r—r —r],

W(t) € Op (p(t+2r)), te(—=p2r—r,—(1—1)2r—r],
¢(t) € OTn ((p(t _pn>)7 le (pl + o +pn—1ap1 + - +pn—1 +pn] )

¢(t) € OTn (So(t - pn)) ) te (pl + - +pn—l + (]n - 1)pnapl + - +pn—1 ‘I']npn] )
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P(t) € Oy, (et +pn)), tE€(=Pn—Pn-1— - —DP1,—DPn-1— - —p1],
¢(t> S Orn (SO(t +pn)) ) S (_jnpn —Pn—-1— """ —P1, _(]n - 1)pn —Pn—1— """ _pl] )

where
p1 =71+ J12r, p2 = 2(r + j12r),

p3 = (2]2 + 1)p2, s Pn = (2jn—1 + 1>pn717

If ¥ is continuous on R, then it is almost periodic.

Proof. 1t is not difficult to prove Theorem 5.24 analogously as Theorems 5.20 and 5.22.
For given £ > 0, let an integer n(e) > 2 satisfy

i TnJn < Z.
n=n(e)

One can prove the inclusion

{Ipne; 1€ Z} S T(Y,¢) (5.16)
which guarantees the almost periodicity of 1. O]

Remark 5.25. From the proofs of Theorems 5.20, 5.22, 5.24 (see (5.4), (5.8) and (5.9),
(5.16)), we get an important property of the set of all e-translation numbers of the resulting
function . For any € > 0, there exists non-zero ¢ € R for which

{le; 1eZ} CT(,e).

Hence, applying the method from the above theorems, one cannot construct almost periodic
functions without this property. A



Chapter 6

Solutions of almost periodic
differential systems

In this chapter, we analyse (non-)almost periodic solutions of almost periodic homoge-
neous linear differential systems. Sometimes this field is called the Favard theory which
is based on the Favard contributions in [67] (see also [35, Theorem 1.2}, [47, Chapter 5],
[72, Theorem 6.3] or [145, Theorem 1]; for homogeneous case, see [44, 66]). In this con-
text, sufficient conditions for the existence of almost periodic solutions are mentioned in
[42, 54, 97] (for generalizations, see [48, 49, 69, 90, 95, 98, 105, 116, 118, 135, 159, 161];
for other extensions and supplements of the Favard theory, e.g., see [2, 34, 36, 37, 52, 53,
55, 96, 122, 166, 167]). Certain sufficient conditions, under which homogeneous systems
that have non-trivial bounded solutions have also non-trivial almost periodic solutions, are
given in [146].

It is a corollary of the Favard (and the Floquet) theory that any bounded solution of an
almost periodic linear differential system is almost periodic if the matrix valued function,
which determines the system, is periodic (see [72, Corollary 6.5]; for a generalization in
the homogeneous case, see [89]). This result is no longer valid for systems with almost
periodic coefficients. There exist systems for which all solutions are bounded, but none
of them is almost periodic (see [102, 103, 145, 155]). Homogeneous systems have the zero
solution which is almost periodic, but do not need to have other almost periodic solutions.
Note that the existence of a homogeneous system, which has bounded solutions (separated
from zero) and, at the same time, all systems from some neighbourhood of it do not have
non-trivial almost periodic solutions, is proved in [171].

In this chapter, we consider the set of all almost periodic skew-Hermitian differential
systems with the uniform topology of matrix functions on the real axis. In [170], there is
proved that the systems, whose all solutions are almost periodic, form a dense subset of
the set of all considered systems. We add that special cases of this result are proved in
[113, 114]. Using the method for constructing almost periodic functions from Section 5.3,
we prove that, in any neighbourhood of a skew-Hermitian system, there exists a system
which does not possess an almost periodic solution other than the trivial one (not only
with a fundamental matrix which is not almost periodic as in [172]). Then, we prove the
corresponding result in the real case, i.e., for the skew-symmetric differential systems.

129
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We use recurrent methods for constructing almost periodic functions. For non-almost
periodic solutions of homogeneous linear differential equations, we refer to [140] (and [141]),
where a method of constructions of minimal cocycles, which one gets as solutions of re-
current homogeneous linear differential systems, is mentioned. Special constructions of
almost periodic homogeneous linear differential systems with given properties can be found
in [112, 123, 124, 125] as well. A method to construct fundamental matrices for almost
periodic homogeneous linear systems is introduced in [150].

6.1 Preliminaries

Let m € N be arbitrarily given. In this chapter, we use the following notations: Zm(y)
for the range of a function ¢, Mat(C, m) for the set of all m x m matrices with complex ele-
ments, Mat (R, m) for the set of all m x m matrices with real elements, U(m) C Mat(C, m)
for the group of all unitary matrices of dimension m, SO(m) C Mat (R, m) for the
group of all orthogonal matrices with determinant 1, so(m) C Mat (R, m) for the set
of all skew-symmetric (i.e., antisymmetric) matrices, A* for the conjugate transpose of
A € Mat(C,;m), I for the identity matrix, O for the zero matrix, and symbol i for the
imaginary unit. We remark that the Lie algebra associated to the Lie group SO(m) consists
of the skew-symmetric m x m matrices (i.e., this Lie algebra is so(m) and it is sometimes
called the special orthogonal Lie algebra).

6.2 Skew-Hermitian systems without almost periodic
solutions

We consider systems of m homogeneous linear differential equations of the form
2'(t) = A(t) - z(t), teR, (6.1)

where A is an almost periodic function with Zm(A) C Mat(C,m) and with the property
that A(t) + A*(t) = O for any t € R, i.e., A: R — Mat(C,m) is an almost periodic
function of skew-Hermitian matrices. Let S be the set of all systems (6.1). We identify the
function A with the system (6.1) which is determined by A. Especially, we write A € S
and O € S denotes the system (6.1) given by A(t) = O, t € R.

In the vector space C™, we consider the absolute norm || - ||, (one can also consider
the Euclidean norm or the maximum norm). Let || - || be the corresponding matrix norm.
Considering that any almost periodic function is bounded (see Lemma 5.4), the distance
between two systems A, B € § is defined by the norm of the matrix valued functions A, B,
uniformly on R; i.e., we introduce the metric

o (A, B) :=sup||A(t) — B(t)||, A BeS. (6.2)

teR

For € > 0, symbol O7(A) stands for the e-neighbourhood of A in S.
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Now we recall the notion of the frequency module and its rational hull which can be
introduced for all almost periodic function with values in a Banach space. The frequency
module F of an almost periodic function A : R — Mat(C,m) is the Z-module of the real
numbers, generated by the numbers A such that

T
lim % / ™A A(t) dt # O.

T—o0
0

The rational hull of F is the set
{Nl, xe F,lelZ}.

For the frequency modules of almost periodic linear differential systems and their solutions,
we refer to [72, Chapters 4 and 6], [145].

In [170], there is proved that, in any neighbourhood of a system (6.1) with frequency
module F, there exists a system with a frequency module contained in the rational hull
of F possessing all almost periodic solutions with frequencies belonging to the rational hull
of F as well. From [174, Theorem 1] it follows that there exists a system (6.1) which cannot
be approximated by the so-called reducible systems with frequency module F (there exists
an open set of irreducible systems with a fixed frequency module; see [173] in the real
case); i.e., a neighbourhood of a system (6.1) with frequency module F may not contain
a system with almost periodic solutions and frequency module F. In this case, see also
[62] and [175] for reducible constant systems and systems reducing to diagonal forms by
a Lyapunov transformation with frequency module F, respectively.

In addition, for all £ € N, it is proved in [172] that the systems with k-dimensional
frequency basis of A, having solutions which are not almost periodic, form a subset of the
second category of the space of all considered systems with k-dimensional frequency basis
of A. Thus, it is known (see also [170, Corollary 1]) that the systems with k-dimensional
frequency basis of A and with an almost periodic fundamental matrix form a dense set of
the first category in the space of all systems (6.1) with k-dimensional frequency basis.

In this context, we formulate and prove the following result that the systems having no
non-trivial almost periodic solution form a dense subset of S.

Theorem 6.1. For any A € S and £ > 0, there ezists B € OZ(A) which does not have an
almost periodic solution other than the trivial one.

Proof. Let A,C € § and € > 0 be arbitrary. Since the sum of skew-Hermitian matrices is
also skew-Hermitian and since the sum of two almost periodic functions is almost periodic
(see Corollary 5.9), we have that A+ C € S. Let X4(t), t € R, and X¢(t), t € R, be the
principal (i.e., X4(0) = X¢(0) = I) fundamental matrix of A € S and C' € S, respectively.
If matrices C(t), X 4(t) commute for all ¢ € R, then the matrix valued function X 4(t) X¢(t),
t € R, is the principal fundamental matrix of A+C € S. Indeed, from X, (t) = A(t) Xa(t),
X4(t) = C(t) Xe(t), t € R, we obtain

(Xa(t) - Xo(1) = A(t) - Xa(t) - Xo(t) + Xa(t) - Ct) - Xo(t)
= A(t) - Xa(t) - Xe(t) + C(t) - Xa(t) - Xe(t) = (A+O)(t) - Xa(t) - Xe(t), teR.
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This fact implies that it suffices to find C' € OZ(0O) for which all matrices C(t),
t € R, have the form diag (ia,...,ia), a € R, and for which the vector valued function
Xa(t) Xe(t)u, t € R, is not almost periodic for any vector u € C™, ||u||; = 1.

We construct such an almost periodic function C' using Theorem 5.20 for a = £/4. First
of all, we put

Ct)=0, tel0,1].

Then, in the first step of our construction, we define C' on (1,2] arbitrarily so that it is
constant on [141/4,143/4] and || C(t) || < /4 for ¢ from this interval, C(2) := C(1) = O,
and it is linear between values O, C'(3/2) on [1,1+ 1/4] and [1 4 3/4, 2].

In the second step, we define continuous C' satisfying || C'(t) — C(t+2)|| < /4 for
t € [-2,0) arbitrarily so that it is constant on

[—241/16,—24+1—1/16], [-2+1+1/4+1/16,—2+1+3/4 —1/16];
at the same time, we put
C(=2) == C(0) =0, C(=1+1/4):=C(1+1/4) = C(3/2),
O(=1):=C(1) =0, C(=1/4):=C(2—1/4) = C(3/2),

and
C(t)=C(3/2)/2, te[-141/16,—1+1/4—1/16]U[-1/4+ 1/16,—1/16],

and we define C so that it is linear on

[—2,—2+1/16], [-1-1/16,—-1], [-1,—1+1/16],
[—1+1/4—1/16,—1+1/4], [-1+4+1/4,—-1+1/4+1/16],
[—1/4 —1/16,—-1/4], [-1/4,—-1/4+41/16], [-1/16,0].

Analogously, in the third step, we get C' on (2,6] for which we can choose constant
values on

[4—24+1/16+871/16,4—2+1—1/16 —871/16],
[4—2+1+1/4+1/16+81/16,4—2+1+3/4—1/16 — 8 */16],
[4—14+1/16+87"1/16,4 —1+1/4—1/16 — 87'/16],
[4—1/4+1/16+871/16,4 —1/16 — 87'/16],
[4+871/16,4+1—-871/16], [4+1+1/4+8"1/16,4+1+3/4—871/16]
arbitrarily so that ||C(t) — C(t —4)|| < e/8, t € (2,6]; at the same time, we put

C(4—2+1/16) := C(=2+1/16) = C(—3/2),

C4—2+1-1/16) := C(~1 — 1/16) = C(—3/2),
C4—1):=C(-1) =0,
C(4—1+1/16) := C(—1+1/16) = C(3/2)/2,
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C(4—1+1/4—1/16) := C(=1+1/4 —1/16) = C(3/2)/2,
C4—141/4):=C(-141/4) = C(3/2),
C4—24+1+1/44+1/16) :=C(—2+1+1/4+1/16) = C(—-1
C(4—241+3/4—1/16):=C(-2+1+3/4—1/16) = C(-1
C(4—1/4) :=C(—1/4) = C(3/2),
C(4—1/441/16) := C(~1/4+1/16) = C(3/2)/2,
C(4—1/16) := C(—1/16) = C(3/2)/2,
C4):=C0), CE+1):=C(1),
CA+1+1/4):=C(1+1/4)=C(3/2),
CA+1+3/4):=C(1+3/4) =C(3/2),
C(4+2):=C(2) = C(0) =0,
Ct)=C(-3/2)/2, t€4—2+8"1/16,4—2+1/16—8'/16]
U[4—-1-1/16+8""/16,4—1—8'/16],
C(3/2)/4, tc[4—1+81/16,4—1+1/16 -8 '/16]
U[4—1/16+87"1/16,4 —87'/16],
Ct)=3C(3/2)/4, t€d—1+1/4—1/16+81/16,4—1+1/4—8'/16]
U[4—1/4+81/16,4—1/4+1/16 —871/16],
Ct)y=(C3/2)+C(-1/2))/2, te4—1+1/4+8"/16,4—1+1/4+1/16 —8"/16]
U[4—1/4—1/16+87'/16,4 —1/4 —871/16],
Ct)=(8CMA+1)+1C(4+1+1/4))/9,
te[4+1+81/16,4+1+81/16-3],

Ct)y=(TCHA+1)+2C(4+1+1/4))/9,
te[4+1+81/16-54+1+81/16-17),

/2);
/2);

C(t)

Ct)=(1CMA+1)+ 80(.4+ 1+1/4))/9,
t€4+14+81/16-29,4+1+81/16-31],
C(t)=(BC(A+1+3/4)+1C(4+2))/9,
ted+1+3/4+81/16,4+1+3/4+871/16-3],
Ct) =(TC(A+1+3/4)+2C(4+2))/9,
te[4+1+3/4+81/16-54+1+3/4+81/16-17],

CH)=(1CMA+1+3/4)+8C(4+2))/9,
t€d+1+4+3/44+81/16-29,4+1+3/4+81/16-31],
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and we define continuous C so that it is linear on the rest of subintervals.
If we denote
aj =0, b} :=0,

by:=1+1/4, c3:=1+3/4, a3:=2

1.
¢ =1,
1.
ay =1,

and (compare with the situation after the second step)

a? = -2, bl:=-2 &:=-2

-2, b3:=-2+1/16, c5:=—1-1/16,
b= —1, c:=—1,
aj :=—1, bi:=-1+1/16, c}:=—1+1/4—1/16,
ag:=—1+1/4, bi:=—-1+1/4+1/16, ci:=—1+3/4—1/16,
ag:=—1+3/4, b :=-1+3/4+1/16, cf:=—1/16,

2.
a/2 -

2._
az = —1,

we see that C' does not need to be constant only on

[af —2,a; —2+47%), [by—2—-472by—2], [bf —2,b; —2+477,

[cj —2—47%¢; — 2],
for j € {1,2}, i.e., on

[c} —2,0} —2447%, Jab,, —2

-2 1
41 —4 yAjp1 — 2]

R

jE {17"‘76}7 [c?7a?+1]’ jE {17"'75}7 [02’0]7

and it has to be constant on each one of the intervals

a3 —24+472 by —2—47%, [cd—2+472% af —2—477,

pi-2+42d—2-47) je{12},

i.e., on
b3, c], je{l,...,6}.

It is also seen that

2 _ 1 2 11 2 _ g1 2_ 1 2 g1
ai =dy, bi=dy, c]=d3, a;=dy s = dig,

where d},d}, ..

.,d}g is the non-decreasing sequence of all numbers

J J

min{ajl- — 24472, bjl. — 2},
min{c; — 2,b; — 2447},
min{c; —2+47% a;,, — 2},

for j € {1,2}. We put a? := 0.

al —2, b —

2, -2

j )
max{ajl- -2, b]l —2 472
max{c; —2— 472 b; — 2},

max{c; — 2,a;,, —2— 4%}
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Let d2,d3,. .., d3s be the non-decreasing sequence of all numbers
bl+4, bl+4, bl4+4, bl+4, bl+4, bl44,

b4, b4, b4, bl4+4, b4, bl44,
ci +4, min{c] +4,b] +4+81/16}, max{c; +4 —87'/16,b7 + 4},
cy+4, min{ch +4,b5 +4+871/16}, max{ci +4 —871/16,bs + 4},
al + (4k + 1) (b —a}) /3244, al + (4k +3) (b} —al)/32 + 4,
ai + (4k +4)(bi —a7)/324+4, ke{0,1,...,7},
o+ (4k 4+ 1)(a) — 1) /3244, c + (4k +3)(al — 1) /32 + 4,
oy + (4k +4)(ah —c})/32+4, ke {0,1,...,7},
ad + (4k + 1) (b2 —ad) /32 + 4, ad + (4k + 3)(b) — ad) /32 + 4,
ay + (4k +4)(by — a3)/32+4, ke {0,1,...,7},
e+ (4k +1)(ad — c)) /32 +4, b+ (4k +3)(ad — ) /32 + 4,
cy+ (4k +4)(ay — c5)/32+4, ke {0,1,...,7},

and
2 2 2
Al +4, B4 G4

min{a; +4+8'/16,b7 + 4}, max{a’ +4,b; +4 —8"'/16},
min{c; +4,b5 +4+87'/16}, max{c; +4 —87"/16,b7 + 4},
min{c? +4+87"'/16,a, + 4}, max{c; +4,a5, +4—8'/16}
for j € {1,...,6}. We denote
al:=2 bi=d, c&.=di ai=d3 - ai,i=d

We remark that, in the sequences of dg, [ € N, values are a number of time.
In the fourth step, we define C' so that

€
|Ct) —Ct+2°)]| < 5 L€ [—2% —2,-2).
We consider the non-decreasing sequence ds, d3, . . . ,dgl,sg of

3_ 03 13 o3 3 _ o3
a; —2°, b;—2°, ¢ —2°,

min{a} — 2° +87%/16,b7 — 2°}, max{a’ —2° b} — 2° —87?/16},
min{c] —2°, b7 — 2° +872/16}, max{c} —2° —87%/16,b} — 2°},
min{c} —2° +87%/16,a},, — 2°}, max{c] —2°,a},, —2° —87%/16}
for j € {1,...,7-8}, 144 numbers b} — 23, and

ci — 2% min{c] — 2%, b1 — 2° +872/16}, max{c] —2° —872/16,b} — 2°},
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cy — 2% min{cy — 2°,by — 2° +87%/16}, max{cy —2° —872/16,by — 2°},
min{a; + (k — 1)(b] — a})/(8-4) — 2° +872/16,a} + k(b1 — a7)/(8 - 4) — 2%},
max{aj + (k — 1)(b] —a})/(8-4) — 2%, a1 + k(b —al)/(8-4) —2° —872/16},
ai +k(by —ay)/(8-4) —2°, ke {l,...,8 -4},
min{c; + (k — 1)(ag — ¢7)/(8 - 4) — 2> + 872/16, ¢, + k(ay — c1)/(8 - 4) — 2°},
max{c; + (k — 1)(ay — ;) /(8 -4) — 2%, ¢} + k(ay — ;) /(8 - 4) — 2° — 872/16},
cl+k(ay—c1)/(8-4)—2% ke{l,... 8 4}
min{ay + (k — 1)(by — a})/(8-4) — 2° +872/16, a5 + k(by — ay)/(8 - 4) — 2°},
max{ay + (k — 1)(by —a3)/(8-4) — 2%, a3 + k(b) — a3)/(8 - 4) — 2° — 872/16},
ay + k(by —ay)/(8-4) —2°, ke {l,...,8-4},
min{cy + (k — 1)(az — c3)/(8 - 4) — 2> + 872/16, ¢y + k(aj — c) /(8 - 4) — 2°},
max{cy + (k — 1)(az — c3)/(8 - 4) — 2%, b + k(ay — c3) /(8 - 4) — 2° — 872/16},
e+ k(ad—ch)/(8-4) 2%, ke{l,... 8 -4},
cd—2%  min{c} — 2%, 02 — 2° + 872/16}, max{c] —2° —872/16,b] — 2°},
c5—2% min{c; — 2°,05 — 2° + 872/16}, max{c; —2° —872/16,b5 — 2°},
c3—2° min{c; — 2°,03 — 2° +87%/16}, max{c; —2° —872/16,b5 — 2°},
c;—2° min{c; — 2°,b] — 2° +87%/16}, max{c] —2° —872/16,b] — 2°},
c2— 2% min{ci —2° b7 — 23 +872/16}, max{ci —2* —87?/16,b2 — 2°},
ca—2%  min{ci — 2%, b3 — 2° +872/16}, max{ci —2° —872/16,b; — 2°},
min{a] + (k — 1)(b] — a3)/8 — 2° + 872/16,a; + k(b — a])/8 — 2°},
max{a; + (k — 1)(b] — a})/8 — 2% a] + k(b} — a7)/8 — 2° — 872/16},
a? +k(b? —a?)/8—-2% ke{l,... 8}
min{c; + (k — 1)(a3 — ¢})/8 — 2° +87%/16, ¢} + k(a3 — ¢)/8 — 2°},
max{c? + (k — 1)(a5 — c})/8 — 2%, ¢ + k(a3 — ) /8 — 2° — 872/16},
A+ k(a3 —c})/8—2% ke{l,.. . 8},

min{ai + (k — 1)(b — a3)/8 — 2° +872/16,ag + k(b3 — a3)/8 — 2%},
max{aZ + (k — 1)(b; —a2)/8 — 2% ai + k(bf — a2)/8 — 2° — 872/16},
ag + k(b —a2)/8—2° ke{l,....8},
min{cg + (k — 1)(a5 — c3)/8 — 2° +87%/16, c; + k(a3 — c3)/8 — 2°},
max{c; + (k — 1)(a? — c3)/8 — 2° ¢t + k(a? — c3)/8 — 2° — 872/16},
ca+ k(a2 —ch)/8—-2% ke{l,. .. 8}
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We put
4. 3 4. 13 4. 13 4 . 73 4 .
al .— dl’ bl — d2, Cl . — d3, AR C7~82 . d21-827 a7'82+1 «— _2
We recall that C' can be increasing or decreasing only on

[a]’b;l] [Czlaa]Jrl] j S {177782}

We proceed further in the same way (as in the third and the fourth step). In the 2n-th
step, we define continuous C' so that

|‘C<t>_0<t+22n 1 H < te[_22n—1_'.._2’_2271,—3_“._2).

2n+1 )

We get the non-decreasing sequence {d>" "'} from

2n—1 2n—1
aj - 2 3

mln{a% 1 22n71 _|_82727L/167 b?nfl o 221171}7 max{a‘?nfl o 22n71’ b?nfl . 22n71 - 82727L/16}7
mm{cQ" 1 2271—17 b?n—l o 22n—1 + 82_2n/16}, maX{C?n—l - 22n—1 - 82_2n/16, b?n—l o 22n—1}’
mln{CQTl 1 22n—1 _|_ 82_2n/16, a?i;l _ 2271—1}’ maX{C?n_l _ 2277“—17 a?—T"Z_II _ 22n—1 _ 82—277,/16}
for j € {1,...,7-8"73} from

bZn—l o 2271—1’ C?n—l . 22n—1

)

cl — 2271 min{c] — 22" b} — 2271 1 82727 /16}, max{c] — 22"t —8*72"/16, b1 — 2*" 1},

cy — 22" min{ch — 22" by — 2771 8272 /16}, max{cy — 22"t —8*2" /16, by — 2*" 1},

min{a} + (k—1)(b] —a})/(8-4*"73) — 22"t 182721 /16, a] + k(b] —a])/(8-4*" %) — 22"~ 1},

max{aj + (k—1)(b; —ay)/(8-4*"%) = 22" al + k(b; —ay)/(8-4*"7%) — 2271 82721 /16,
al + k(b —al)/(8-4*73) =221 ke {l,...,8 43},

min{c; + (k—1)(ay —c) /(8- 4*"7%) — 22"~ 1 1-8*72" /16, c] + k(a2 —c1)/(8-4%"73) — 221}

max{c] + (k—1)(al —cl)/(8-4*"7%) — 22"~ ! cl + k(a —c1)/(8-4*"3) — 221 82721 /16},
ol +k(ay —cp)/(8-4"73) =221 ke {l,...,8 43},

min{ay + (k—1)(by —a3)/(8-4*"73) — 22"~ 182727 /16 al + k(bé —a3)/(8-4%"73) — 221

max{ay + (k—1)(by —ag)/(8-4*"3) — 22"~ a4l + k(by —ay)/(8-4*" %) —22n~1 82721 /16},
as + k(by —ad)/(8-4*"73) — 2271 ke {1,...,8 473},

min{cy + (k —1)(az — c3) /(8- 4*"7%) = 2271 48272 /16, ¢y + k(az — c3) /(8 - 42" %) — 221}

max{cs + (k—1)(a3 —c3)/(8-4*"7%) =221 el + k(as —c3)/(8-4%"73) — 22"~ 1 82727 /16},
cy+k(ay —cy)/(8-4*"7%) =221 ke {l,...,8-4"7%),

2 — 2% min{c? — 22" p? — 2271 1 82727 /16}, max{c] — 22"t — 8272 /16, b7 — 221},
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cg — 27"t min{cg — 22" b — 2271 8272 /16}, max{c; —2*" 1 —8*72"/16, b5 — 2°" 1},
min{a? + (k —1)(b3 — a?) /(8 -42"~*) = 2271 18272 /16, a? 4+ k(b2 — a?) /(8 - 42"~*) — 221}
max{a; + (k—1)(b] —a?)/(8-4*" 1) = 22" a] + k(b] — a3)/(8-4*"%) — 22"~ 1 — 8272 /16},

al+ k(b2 —a2) /(8- 424 — 221 e {1,... 8 421},
min{c} + (k —1)(a3 — ¢)/(8-4°"71) =221 - 82727 /16, ¢ + k(ag —c})/ (84271 =22y,
max{c? + (k—1)(a3 — )/ (8-4*"*) =221+ k(a3 —c})/(8-4"*) — 22"~ —8272"/16},

A4 k(a:—ch)/(8- -4 =227 ke {l,..., 8474,
min{aZ + (k —1)(b3 —a2)/(8-42"~*) — 2271 18272 /16, a2 + k(b2 — a2) /(8 - 4*"~*) — 221}
max{a2 + (k —1)(b3 —a2) /(8- 42"~ — 22" a2 4+ k(b% —a2)/(8-4*"*) — 22"~ 82727 /16},

az + k(b3 —al)/(8- 42" =227t ke {l,...,8-44),
min{ci + (k —1)(a? —c3) /(8- 4*"*) — 2271 18272 /16, c3 + k:(a7 —c2) /(8424 — 221
max{cs+ (k—1)(a2 —c3)/(8-4*"*) =221 2+ k(a—c2)/(8-4>"*%) — 22"~ 1 - 822" /16},

a4 k(a2 —ch)/(8 -4 =21 ke {l,...,8 44,

C%n_2 . 2271—1, mln{CQn 2 22n—17 b%n_Q . 22n—1 + 82_2n/16},
max{c{""? — 22771 — 8272 /16, b7 — 2207,
o2, — 2271 min{cn;?, — 22 b?’;%? L — 2% g2mamy
max{ci,?, — 227 — 8272 /16, 02,7, — 271,

min{a;" 7?4 (k= 1) (0" 7% —ai"7?) /8= 22" 48772 /16, a2+ R (D" —a]" ) /8 - 2207,
max{ai"*+ (k—1)(b}" —aZH) /8221 a4k (b]" % —af" %) /8 - 22T - 8272 16},

2n 2+l€(b2n 2

min{c?"? 4 (k — 1)(@%” 2

maX{CQn 2+(k 1)(a%n 2 2n 2)/8 22n 1 2n 2"—]{5( 2n—2 2n 2)/8 22n 1
2n 2+k’( 2n—2 2n 2)/8 2271—1’ k€{17”" }’
min{a2?;2 , + (k — 1) (0252, a?’”ng 1)/8 =221 18272 /16,
inszf 4t k(b?ém? 4 inézf 4)/8 - 22n—1}’
271823 4t k(b%é%? 4 271823 4)/8 22n_1 - 82_2”/16}7

2n 2)

2”‘2)/8—22”‘1, ke{l,...,8},
/8 227’L 1+82 2n/16 CQn 2+k( 2n— 2

2n 2)/8 22n 1}

— 8272 /16,
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a2+ k(b2 — a2t ,)/8 -2 ke {1,....8),

782n
min{c2,2, + (k= 1)(a2ie? ., | — hary) /8 — 2271 +8°7%"/16,
?%23 4+t k(aingzr? 449 angzg 4)/8 - 22n71}’
max{cgr s + (k= 1)(afgi i,y — ) /8 =227,
Can-a + k(aFgiayy — Fiaia) /8 = 22771 — 877 2"/16},
37;;23 4 ‘l‘k(a?lggffg_l 37;23 4)/8—22n_1, k € {1,...,8},

and from a number of b} — 22"~! such that the total number of &7 ' is 21 - 822, We

denote

2n . 2n—1 2n . 12n—1 2n . 2n—1
a" =dy", bt i=d3" T, ot i=d3

6371827} 2 += dgl~82"*27 airgzi 241 & —22n=3 D,
In the (2n + 1)-th step, we define continuous C' so that

3

gz PEQ@H - F277 24 427,

|cw)—Cci—2")|| <

Now C has constant values on [b7"*", 7", j € {1,...,7- 871}, where we put
a%n+1 — 2 + 22 + . _|_ 227172

and we obtain
2n+1 2n+1 2n+1 2n+1 2n+1
bl ) G ) Qg ) e C7_82n—17 a7-82"_1+1

from the non-decreasing sequence of
2n 2n 2n 2n 2n 2n
ajy; +27°, bt 27, "+ 27,

min{ai" 4+ 2% + 872" /16,02" + 2°"},  max{a}" + 2%, b7" 4 2*" — 8'7*"/16},
min{c]" + 227, 03" + 2% + 81727 /16},  max{c]" + 2*" — 8'7*"/16,b7" 4 27},
min{c;" + 2*" +8'7*"/16, a7}, 4+ 2*"},  max{c]" + 2°", a7}, + 2*" — 8'7*"/16}
for j € {1,...,7-8"?} and

ci +2%", min{e; + 22" by + 27" +8'72"/16}, max{c} + 2*" — 8'7*"/16,b; + 2*"},

cy + 22", min{cy + 22" by + 2" + 872" /16}, max{cy + 2*" — 817" /16, by + 2°"},
min{a; + (k — 1)(b; — a7)/(8 - 4*"7?) + 2*" + 872" /16, a; + k(b — aj)/(8 - 4*"?) + 2*"},
max{aj + (k — 1)(b] — a})/(8 - 4*"72) + 22" a7 + k(b] — a})/(8 - 47"72) + 22" — 872" /16},
ai + k(b} —ay)/(8-4*"2) + 22" ke {l,...,8 4%}
min{e; + (k —1)(ay — 1) /(8- 42"7%) + 22" + 872" /16, 1 + k(ay — 1) /(8 - 4*"7%) + 22"},
max{e; + (k —1)(ay — ¢)/(8 - 47"7%) + 27", 1 + k(ag — ¢7) /(8 - 42" 7%) + 2°" — 817" /16},
o +k(ay —cp)/(8-47"7%) + 2%, ke {l,...,8 4772},
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min{ay + (k — 1)(by — a3)/(8 - 4*"7 %) + 22" +- 872" /16, ay + k(by — ag) /(8 - 4°"72) + 27"},
max{ai 4+ (k — 1)(by — a3)/(8 - 4*"72) + 22" al + k(by — a3)/(8 - 4*"72) + 2*» — 872" /16,
ay + k(by —ay) /(8- 473 + 27", ke {l,...,8-4>"%}
min{cy + (k — 1)(a3 — c3) /(8 - 4*"72) + 22" +- 872" /16, c5 + k(a3 —cy)/(8-47"72) 4 22},
max{cy + (k — 1)(a3 — c3)/(8 - 4*"72) + 27" ¢} + k(ay — c3)/(8 - 4*"72) + 27" — 872" /16},
cy+k(ay —c3)/(8-4*"72) + 22 ke {l,...,8 42}
T4+2% min{c] +2*",b] + 22" +8'7*"/16}, max{c; + 22” — 872" /16, b7 + 22"},
g+ 2%, min{cg + 2%, b5 + 22" + 872" /16},  max{cg + 2°" — 877" /16, 05 + 2°"},
min{ai + (k — 1)(b7 — a7)/(8-4°"7%) + 2°" + 81*2"/16 ai + k(0] —a3)/(8-42"7%) 4+ 2%},

max{a] + (k — 1)(b3 — af)/(8 - 42" 73) + 2", af + k(b] — a])/(8 - 4°"7%) + 22" — 812" /16},
a; + k(b3 —al)/(8- 4% +2", ke{l,...,8 4"}
min{c] + (k — 1)(a3 — ¢3)/(8 - 4*"7%) + 22" + 8172 /16, ¢7 + k(a3 — c})/(8 - 4*"72) + 2%},
max{c? + (k — 1)(a3 — c)/(8 - 4*" ) + 2", ¢? + k(a3 — c3)/(8 - 4*"?) + 2" — 872" /16},
A+ k(as—ch)/(8-4") +22, ke{l,...,8 43}
min{ag + (k — 1)(bg — ag)/(8 - 42"7%) +2°" + 817" /16, a + k(b — ag) /(8 - 47"77) + 22"},
max{ag + (k — 1) (b3 — az)/(8 - 42" 73) + 22" a2 + k(b; — a3)/(8 - 42"73) + 22" — 8172 /16},
ag + k(bg —ag) /(8- 4" +2°", ke {l,.... 8477},
min{cz + (k — 1)(a2 — c3)/(8 - 4*"73) + 22" + 817" /16, c2 + k:(a7 —c2)/(8-47"73) 4 221},
max{cs + (k — 1)(a3 — c2)/(8 - 4*" ) + 2" 2 + k(a3 — c2)/(8 - 4*" %) + 2" — 872" /16},
co+k(az—cg)/(8- 42"+ 2%, ke {l,... 8 423,
"M+ 2%, min{d" T+ 27 5+ 22 48177 /16,
max{c;" ! 4 22" — 872" /16, 67" + 2"},
lians +27, min{cZigl s + 27,0200, + 27 + 8'72/16},
max{c2,, 5 + 22" — 872" /16,027, + 27"},
min{a?" '+ (k — 1)(b7" ' — a2 1) /8 + 22" + 8172 /16, a2 + k(b — a2" 1) /8 + 277,
max{a?" " + (k = 1) (0" — a7 8+ 2%, af" T + (DT — a7 /8 4 270 — 8177 16},

2”1+k(b2”1 a2 1)/8+22", ke{l,...,8},
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Hlln{CZn 1+(k 1)(&3” 1 2n 1)/8+22n—|-81 2n/16 cZn 1—{—]{( 2n—1 _ 2n 1)/8+22n}
max{cQ" 1+<k 1>(ng 1 2n 1)/8+22n 2n— 1+]€( 2n—1 2n 1)/8_'_2271 8172n/16}7
2n 1 4 k( 2n—1 2n 1)/8 + 22n ke {1’ e }7

min{aZis. s + (k — 1) (b5 — a2zn_s) /8 + 22" +8'72"/16,

a2y + k(D2 s — a2l s) /8 + 27",

max{a?’gg,} s+ (k— >(b§n82nl s — ?’gg,} 5)/8 422",
2n 1 s 4 k,(bZTL 1 a?ns%} 3)/8 + 22n o 81—2n/16}7

7 .g2n— 7-82n—3
aZion o + k(W) — a2 5)/8 + 27", ke {l,...,8},
min{e2ip 4+ (= D)2, — 2l 0)/8 4+ 2 +8172/16,
Clgons + KT auayy — i) /84 277},
max{c?’gg,} s+ (k—1)(a 3_%;11 541 c?"sznl 5)/8 4 22",
s + k(a2 | — Zgns) /8 + 27" — 81727 /16},
s T k(a2 s — Clna) /8427, ke {l,....8},

and the corresponding number of b] + 2%
Using this construction, we get a continuous function C' on R. From Theorem 5.20 it

follows that C'is almost periodic. Since

|C@) ]| =0, tel0,1], HC(t)H<Z, te(1,2],
||C(t)—C(t+2)|]<Z, te[-2,0), |]C(t)—C(t—4)||<§, t e (2,6],

te[_2271—1___‘_23_2’_2271—3___._23_2)’

1)~ + 2" || < 5o

|C@) —C@t—2°) |\<2n+2, te(2+22 4 42222422 4. 4 27

we see that
o0

2e
HC(t)H<Zﬁ:5, teR.

j=1

We denote
I, =2+2 4 - 2222422 +... 427,

We will prove that we can choose constant values of C(t), t € I,,, on subintervals with the
total length denoted by 7,41 which is grater than 22"~! for all n € N. We can choose

values of C' on

[4—2+1/16+871/16,4—2+1—1/16 —8'/16] C [2, 6],
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[A—2+1+1/4+1/16+87"/16,4—2+1+3/4—1/16 —87'/16] C [2,6],
[4+871/16,4+1—81/16], [4+1+1/4+871/16,4+ 1+ 3/4 — 87! /16] C [2,6].
Hence,
rg > — + § + @ + E = §
T 64 64 64 64 16
i.e., the statement is valid for n = 1. We use the induction principle with respect to n.
Assume that the statement is true for 1,2,...,n — 1 and prove it for n. Without loss
of generality (consider the below given process), we can also assume that the estima-
tion ro; > 220U~V is valid for j € {1,...,n} (note that 7 = 5/4 > 2°) if we use the
analogous notation.
In view of the construction, we see that we can choose C on any interval

(6.3)

[S ‘l’ 22n + 81_2n/16,t + 22n o 81—2n/16]

if we can choose C on [s,t], where s = bé < cé =1t, 1 < 2n + 1. Especially, we can choose
function C' on
[2211 + 8172n/167 1 T 22n o 817271/16],

[1+1/4+2% +872"/16,1 +3/4 + 2" — 8172"/16],
[~241/16 + 27" +872"/16, —2 + 1 — 1/16 + 2°" — 872" /16],
[<2+1+1/4+1/16+ 22" +8"2"/16, -2 + 1+ 3/4 — 1/16 + 2> — 8' 72" /16]
and on less than 7 - 82"~! — 4 subintervals of I,,. Expressing
L, =[04+22" 1+ 22U 14224+ 2"|U[-2+2*",0 +2*"|U - -

UR+2%+-- - 2271422 2427 4. 427772 4 277
U[_2271—1_____23_2+22n’_22n—3___._23_2_’_2271]

and using the induction hypothesis, the construction, and (6.3), we obtain that we can
choose C' on intervals of the lengths grater than or equal to

1-2-872"/16, 1/2—2-872"/16,
1-1/8—2-872"/16, 1/2—1/8—2-8'"%"/16,
43/16 +22 +2° + - 42773 4 22772 2. 8172 /16 . (7871 —4) .
Summing, we get

1 7 3 11
Topy1 = 1+ -+ <+ <+ —

7
o=l _ 9 _ _ > 9l 6.4
2 8 & 16 + 8 ’ (6-4)

which is the above statement. Analogously, we can prove

Ton > 2272 n €N, (6.5)
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Now we describe the principal fundamental matrix Xo on I, for arbitrary n € N.
Since C' is constant and has the form diag (ia,ia,...,ia) for some a € R on each interval
B3 et e {1,...,6- 4?71}, from

Xo(ts) — Xolt) = /C(T) Xo(r)dr, it €R,

we obtain
| ‘ XC( XQTH—I ‘ {
o o (6.6)
<> (/ I Xl ar+ [/ l16@) - Xelr) | df)
j=1 a; c;

if t <a"t', t € I, where
XEHU(t) = Xe(24 24 +227%), te2+422+--- 42272 07",

XEH(E) i= exp (CE™H)(E = B70) - XEH O, e (b, )
ngnJrl(t) = Xc2n+1(C%n+1), te ( 2n+1 an—H]7

XEHE) = exp (COF) (¢ — 021)) - XA 020 0), ¢ € (i, idial,
XEHH) = X (erghhn), te (g2 422+ 427,

It is seen that X is bounded (see also the below given, where it is shown that X (t) €
U(m) for all t) as almost periodic C. Any interval

24422 1,24 4222 ], 1€{l,...,2""}, nEN,

contains at most 4>"*! subintervals, where C' can be linear. Indeed, it suffices to consider

the construction. We repeat that the length of each one of the considered subintervals is
81727 /16 which implies that the total length of them on

Jo=2422 42222 4 22 22 22 e {1 n),
is less than 2'~!. Thus (consider also (6.6)), there exists K € R such that
" K
|| Xc(t) — X2 (@) || < o tE JLole{l,...,n},neN. (6.7)
From the form diag (ia(t),...,ia(t)) of all matrices C(t), we see that

e[ =Tlalt)], teR.

For simplicity, let a(t) > 0, t € R. Let a} € R, j € {1,...,n}, be arbitrarily chosen.
Considering the construction and combining (6.4) and (6.5), we get that we can choose
constant values of

C(t), te24 - +2 24 (1—-1)2"2+ -+ 22 412",
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on subintervals with the total length grater than 2"~2 for each [ € {1,...,2"} and all
sufficiently large n € N. Since we choose C' only so that

|cW) —Cct—2") || < —, tel,,

Qn+2”
we see that we can obtain
Xé”“(t;‘) = diag (exp (ia?) ,. .., EXD (ia;-‘))
for arbitrary ¢ such that
tr>2422 42 4 42223 =30 1 >+ 3" -3
>t 43" =3 2422 420 o 22 >
because we have
4" > (3" —3%) > 3" —30 > ... > 30— gl 92kl
for sufficiently large n € N and some k = k(n) € {1,...,n} satisfying
2Mh=2 . 272 > o,

We recall that we need to prove the existence of such C', given by the above construction,
for which the vector valued function X 4(t) X¢(t) u, t € R, is not almost periodic for any
ue C™, ||ull, = 1. Since

(Xa(t) - X5(2)" = A(t) - Xa(t) - Xa(t) — Xa(t) - X5(0) - A(t), teR,

and since the constant function given by I is a solution of X’ = AX — X A, X(0) = I,
we have X,4(t) € U(m) for all t. Thus, Xc(t) € U(m), t € R, as well. We add that
Xa(t) X3(t) =1, t € R, implies A*(t) + A(t) = O, t € R.

Let c€ C, |c| =1, and N € U(m) be arbitrarily given. Obviously, for any M € U(m),
we can choose a number a(M, c) € [0,27) so that all eigenvalues of matrix

P := M - diag (exp (ia(M,c)),...,exp (ia(M,c)))

are not in the neighbourhood of ¢ with a given radius which depends only on dimension m.
Indeed, if M has eigenvalues A1, ..., \,,, then the eigenvalues of P are

Avexp (ia(M,c)), ..., Amexp (ia(M,c)) .

Considering Pu — N u and expressing vectors v € C™, ||u ||, = 1, as linear combinations
of the eigenvectors of P, we see that Pwu cannot be in a neighbourhood of N u for some
c € C, |c| =1. Thus (the considered multiplication of matrices and vectors is uniformly
continuous), there exist ¥ > 0 and £ > 0 such that, for any matrices M, N € U(m), one
can find a(M, N) € (0,2n) satisfying

|| M - diag (exp (ia),...,exp(ia))-u — N -ul||; > ¥ (6.9)
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for u e C™, Hqu =1l,a€(a(M,N)—¢&a(M,N)+¢).
We can construct C so that we obtain

Xgn+1(t;b> = diag (exp (ia?) s €XP (ia;‘))

for arbitrarily given a} € [0,27) and any t} satisfying (6.8) if n € N is sufficiently large
and j € {1,...,n}. Especially, for sufficiently large n € N and for

=24 22 42 . 422 3 30,

6.10
ty =17 +3" =31, . l=tn 43" -3 (6.10)

we can choose all Xé"“(t;?) in the form without any conditions. Hence, we obtain diagonal
matrices X2 (¢7), j € {1,...,n}, determined by numbers
exp (ia (Xa(t}), Xa(t] — 3"+ 371 - Xo(th — 3" +371))

on their diagonals.
It is seen from (6.10) that each

theR2+22 4+ 4222422+ + 2772 4 03",
Thus (see (6.7)), for any n > 0, we have
|| Xe(t7) = XEHE) | <n (6.11)

for sufficiently large n = n(n) € N and j € {1,...,n}. From (6.9) and (6.11) it follows
that

| Xa(t) - Xo(t]) - u— Xa(t) —=3"+ 371 Xo(t) —3"+37") - u||, >0 (6.12)
for any u € C™, ||u ||, = 1, sufficiently large n € N, and j € {1,...,n}.
By contradiction, suppose that there exists u € C™, ||u ||, = 1, with the property that
Xa(t) Xe(t)u, t € R, is almost periodic. Applying Theorem 5.5 for
Y(t) = Xa(t)  Xe(t)-u, teR, s, =3", neN, e =1,
we obtain
| Xa(t+3") - Xe(t+3") -u — Xa(t+3") - Xe(t+3™)-ull, <¥, teR, (6.13)
for all ny,ny from an infinite subset of N. If we rewrite (6.13) into
| Xa(t) - Xo(t) - u — Xa(t+3" —3M) - Xo(t+3™ —3™) -u||, <9, teR,

then it is easy to see that (6.12) is not valid for infinitely many n € N. This contradiction
proves the theorem. O
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6.3 Skew-symmetric systems without almost periodic
solutions

Let m # 1. Let us consider systems of m homogeneous linear differential equations of
the form

2(t) = A(t) - 2(t), teR, (6.14)

where A : R — so(m) is an almost periodic function. Let S denote the set of all sys-
tems (6.14). We can identify the function A with the system (6.14) which is determined
by A. Especially, we write A € S. Let Xg = Xg () denote the principal fundamental
matrix of S € § satisfying X (0) = I.

In the vector space R™, we use the Euclidean norm || - |2 (one can also replace it by
the absolute norm or the maximum norm). Let || - || be the corresponding matrix norm in
Mat (R, m) and let ¢ be the metric given by || - ||. Using the boundedness of every almost

periodic function, the distance between two systems A, B € § is defined uniformly on R
by the norm of the matrix valued functions A, B; i.e., we introduce the metric o by (6.2).
For € > 0, symbol O7(A) denotes the e-neighbourhood of a system A in S and O¢(M) the
e-neighbourhood of a matrix M in a given subset of Mat (R, m).

The importance of skew-symmetric systems may be illustrated by the Cameron-Johnson
theorem which states that any almost periodic homogeneous linear differential system can
be reduced by a Lyapunov transformation to a skew-symmetric system if all solutions
of the given system and all of its limit equations are bounded (see [40]). Further, it
is known (see [170]) that the skew-symmetric systems, all of whose solutions are almost
periodic, form a dense subset in the space of all skew-symmetric systems (special cases are
considered in [113, 114] and the corresponding result about unitary difference systems is
mentioned in [176]). This fact also motivates the study of skew-symmetric systems without
almost periodic solutions. Concerning basic results about skew-symmetric systems and
their fundamental matrices, we refer to [33, 71, 137].

Now we repeat the basic motivation in an explicit form.

Theorem 6.2. For any A € S and ¢ > 0, there exists B € O7(A) whose all solutions are
almost periodic.

Proof. See [170, Theorem 1, Remark 3]. ]
To prove the announced result, we need the following lemmas.

Lemma 6.3. There exist £ > 0 and a nez’ghbourhooc{@ (O) of the zero matriz in so(m)
for which the exponential map is a bijection between O (O) and O (I) N SO(m) such that
the maps

Arsexp(A), A€O(0); A~n(4), AcOf(I)NSO(m), (6.15)
are continuous in the Lipschitz sense.

Proof. Tt is well-known that the exponential map is a bijection between O (O) and O¢ (I)N
SO(m) for a sufficiently small £ > 0 and the corresponding neighbourhood O (O) C so(m).
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The fact that the maps in (6.15) are continuous in the Lipschitz sense follows from the
inequality

lexp (X +Y) —exp (X) | < [V [ exp (| X ) -exp([[Y']), X,Y € s0(m),

and, e.g., from the Richter theorem (see, e.g., [92, Theorem 11.1])
1
In (X) = / (X—D[t(X - D) +1"dt, X €OL(1)nSO(m).
0

]

Remark 6.4. Any non-singular matrix has infinitely many logarithms. Here symbol In (A)
denotes the principal logarithm, which is the unique logarithm whose spectrum lies in the
strip {z € C; Im z € [—m,7)}. A

Lemma 6.5. There exists p(¥) € N for all ¥ > 0 with the property that, for any sequence
{Po,Pr,..., Py, ..., Py} CSO(m), n>pv),
one can find matrices Qo, Q4, . .., Qan € SO(m) for which
Qu €O (Py), i€{l,....n}, Pi-Q2P3-Qu Pop1-Qap =D (6.16)

Proof. First we recall that the group SO(m) is transformable (see Example 2.3). This fact
implies the existence of ¢(d) € N for all § > 0 such that, for any sequence

{Po,Pl,...,Pq,...,Pn}CSO(m),
there exist 11,...,7,,...,T, € SO(m) satisfying
ﬂeog(ﬂ)u 26{177n}7 -1y T, = P.

We replace matrices Py, ..., P, 1, P, by PP, ..., Poy_3-Ps,_o, P, 1 Ps, and, using the
transformability of SO(m), we obtain matrices T3, ¢ € {1,...,n}. We put

Ri:=(P,-P) " Th,...,Ry = (Pon_y - Poy))"" - Th,.

Since the multiplication of matrices is continuous in the Lipschitz sense on SO(m) as the
map O — OT, there exists L > 0 such that

Rie(’)fL(]), iE{l,...,n},
and, consequently, there exists K > 0 for which
Pg'Rl EogK(Pz),...,Pgn'Rn €O§K(P2n)-

We see
Tl:Pl'PQ'R17"'7TTL:P2n71'P2n'Rn7

i.e., we have (6.16) for Qo := Py - Ry, ..., Qo := Py, - R, and p(V) := q(V/K). O
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We also need a simple method for constructing almost periodic functions with prescribed
values. This method is a modification of the theorems presented in Section 5.3.

Lemma 6.6. If the sequence of non-negative numbers a(i) for i € N has the property that

o0

Z a(i) < oo,

i=1
then any continuous function 1 : R — so(m) for which
v(t) =9y (t-1), te(1,2],
v(t) =9y (t+2), te(=20]
U(t) € Oy (W (t—4)), te(26]
V()= (t+8), te(-10,-2],
U(t) € Oy (W (t=2")), te(2+2%242°+2%,
Y(t) =9 (t+2°), te(-2°-2°-2-2°-2]

P(t) € Og(n) (@D (t—22”)), tE (2422 4+ 4222 24 2% ... 22072 4 92
w(t) :w(t+22n+1)’ te (_22n+1 . _23_2’_22n71 . _23_2]’

s almost periodic.

Proof. Let € > 0 be arbitrarily given and let k = k(e) € N satisfy

Za(i) <

i=k

. (6.17)

DN ™

From
b(t) € O, (W(t—2"%)), te@+22+- - +2"% 2422 +... 4+ 27,

¢(t> — ¢ (t+22k+1) 7 t c (_22k+1 L 23 o 27_22k—1 L 23 _ 2]’
V(1) € Oy (W (1 =24%)) e 2422+ 42724224 42797,

it follows
Y (t+2%) € 05, ((1), te (=271 = =22 —22427 4. 42277,

G (t—2%) € 0% (b(t), HE (2 — o 2P 224 2 4 2P,
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¥ (t =22 € 02, (W), te (=221 — =2 =224 22 ... 277,
O (t+ 22 € OF ey @(), te (=257 = =28 =224 92 4. 4 2270
U (t+3-2%) € Oy Laprpny (@), t€ (=271 = =28 2,2 427 .. 2272,
U (t+ 22 € O, (W), te (=21 = =20 =224 2% ... 4 2777,
U (427 4 25) € Oy (B0, HE (2257 =222 22 2%,

Thus (see (6.17)), it holds

Y (t+1-27) € OL,(p(1), te (=221 — =2 —2242% ...+ 27?1 Z
If we express any t € R as t = t; + t5, where

tre (=2t = =22 —224 274 4227 =5 2% for j € Z,

then we have

o (W), (t+1-22%)) <o (¢ (b +t2), ¥ (1))

. € €
+o@(t),v(t+(G+1)2")) < gto=6 teR Iel

This inequality implies that we can choose [(g) := 22¢()4-1 for any € > 0 (see Definition 5.1);
i.e., the resulting function 1 is almost periodic. O]

Now we can prove the result that the systems having no non-zero almost periodic
solution form an everywhere dense subset of S.

Theorem 6.7. Let A € S and € > 0 be arbitrary. There exists B € OZ(A) which does not
have an almost periodic solution other than the trivial one.

Proof. Using Lemma 5.3, the almost periodicity of A implies that there exist § € (0,1/3)
and an almost periodic matrix valued function A : R — so(m) satisfying A € OZ/,(A) and

A|[k7k+5} = const. for any k € Z. Indeed, it suffices to define A by
0

A(t) ::A(k+§), telk,k+9], keZ,

A(t) ;:A(k—5)+#[A(H%)—A(k-é)}, telk—0ok), kez,

A(t) ::A(k+g>+M lA(k:+25)—A(k+g>], te(k+9,k+25, keZ,

At) == A(t), t¢ | JIk—d.k+20),

kEZ

where § > 0 is sufficiently small. Thus, we assume without loss of generality that A € S is
constant on all interval [k, k + ], k € Z.
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Every almost periodic function is bounded. Hence, there exists n € (0,1) with the
property that
| Xs (t+s) = Xs ()] <& (6.18)

for any t € R, s € [0,7], and S € O7(A), where £ > 0 is taken from Lemma 6.3. We can
also assume that 0 < 7. Further (see again Lemma 6.3), there exists M € N satisfying

|A-B| <9 if A BeO(0),exp(A) € 0Of (exp(B)) C Of(I)NSO(m). (6.19)

We choose an increasing sequence of numbers n(i) € N\ {1} for i € N arbitrarily so that

. B
=1 > 4 (234 - 5) , ieN, (6.20)

where p(1J) is taken from Lemma 6.5.

Since the sum of skew-symmetric matrices is a skew-symmetric matrix and since the
sum of two almost periodic functions is almost periodic as well (see Corollary 5.9), we have
Ay + Ay € S for any Ay, Ay € S. Thus, it suffices to find C' € SN OZ(0O) for which the
system A 4+ C' does not have any non-zero almost periodic solution. We construct such
a system C' (as continuous function) applying Lemma 6.6 for

a(n(i)) ==, ieN; a(j) =0, j¢&{n(i);ieN}
Let us denote

a; =24 224 422072 g9 92 Ly 92072 4 920

1 1 3 1
1. 2 . __ ;

In the first step of the construction, we put

Ct):=0, te (_2271(1)*1 — =2 292422 4. 4 22n(1)72} ’

C(t):=0, te(a,b]~J(G+d,j+di],

jEN
C(t):=C{ ", te(j+db,j+di] C(ar,bi],

for arbitrary matrices
ot ¢ 0%, (0) N so(m), j€{ar,....b1 — 1},
and we define C' so that it is linear on the intervals
(j+d%,j+d§] : (j+d§,j+dﬂ, jeday,....,by —1}.
In the second step, we put

C(t) — C (t + 22n(1)+1) ’ t e (_22n(1)+1 L 23 _ 2’ _22n(1)—1 . 23 o 2i| 7
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C(t) — C (t - 22n(1)+2) , t e (2 4 22 N 2271(1)’ 9 4 22 N 22n(1)+2] ’

C(t) — C (t + 22n(2)—1) ’ t e (_22n(2)—1 . 23 _ 2’ _22n(2)—3 . 23 o 2] 7

C(t) = C (t=27), te(as,bo] N (j+ds5+d3],
jeN

and we define (' as linear on the intervals
(G+dsj+dy), (j+dyj+d3), je{a,....bo—1}
At the same time, we define
C(t) = C’g_”H € so(m), te (j +d3, 5+ dg] ,j€4ag,...,by — 1},

arbitrarily so that
e —c(t=22@) | <3, te(anba],

We proceed further in the same way. In the i-th step, we put
C(t) — C (t 4 22n(i—1)+1) , t e (_22n(i—1)+1 . 23 - 2’ _22n(i—1)—1 . 23 - 2j| 7

Ct):=C(t—2001) 1 pe (2422 4. 422070 24 92 4 ... 4 o2(mD+2]

C(t) = C (t + 22n(i)71) ’ t c (_22n(i)71 .. 23 o 2’ _2271(1')73 . 23 _ 2i| ’

Ct):=C(t—22"D) e (apb]~ (G +d,j+df], (6.21)
JEN

and we define C as a linear function on the intervals
(G+dij+diy], (G+d,i+d7], jed{a,....bi—1}

and
Ct):=Ci ™" eso(m), te (j+d,j+d], 7€ {a....b—1},

arbitrarily so that
€

lew) —cE=2) ] < 5.

te (Gji,bi] .

For . -
(= maX{H Yy H 1] € {1,...,22"(1)}} < 3

we have

|C@) || <¢ te (=227t .28 99492 ...y o]

)
IOl <C+g, te (—22D=1 989 9492 .4 92
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£ € . '
[CON < ¢t g+t g te (=207 = =20 =224 2% 4o 4 220

i.e., there exists € € (0,¢) with the property that || C(¢) || < &, t € R. Thus, we obtain an
almost periodic (continuous) function C' € SN OZ(0).
We denote

Ii — [aiybi} — |:2_|_22+ _“+22n(i)—2’2_’_22+.__+22n(i)—2+22n(i)j| )

In the construction, we can choose constant values C1, ... CZ"” on 2270 subintervals
of I;, where the length of each one of these intervals is

B
iy —diyy € (5,5) : (6.22)

Each value CY can be chosen arbitrarily from the (¢/2%)-neighbourhood of a skew-symmetric
matrix, which is given by the previous steps of the construction. Further (see (6.21)), the
function C' is determined on intervals

(anai+di], (a+d,a+1+d]], ... (bi—2+4d bj—1+d}], (bi—1+d}b]

by C(t) = C (t — 22®).
We repeat that C is linear on the remaining subintervals of I;. These intervals are
denoted by J}, ..., Jf%(z)“, where

T = (a4 j =1+ dl e+ 1+dy, ], jE{L,.. 20}

| | 6.23
J9 = (gt j— 1+ Ay a+—1+d], je{l,... 200} (6.23)

(2

Especially, we see that the length of each Jij is less than §/22"" and that

i)+1

Tl T Caai+g), T TP e, e {1, 20— 1),
i.e., the total length I¥ of all subintervals J? C [a;, a; + k] is

2kd .
lf < W’ ke {1,...,2271(1)}. (624)

Let us consider S = A+C € O?(A). To describe the principal fundamental matrix Xg,

we define _
Xg(t) .= Xs(t), te [ai,ai + dzl] ,

st*(t) = Xg (ai+dz‘1) , le (ai+d§,ai+d%+1] ,
Xit)=exp (A+C}) (t—ai —djyy)) X& (@ +dlyy), t€ (ai+diy,a+d],
Xi(t) = X5 (0 +d2y,), t€ (a+diy,a+d7,
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XE(t) == X (1) - (Xs (a;+d2)) - X (i + ), te(a+da+1+d],

Xi(t) == Xg (1) - (Xs (i =24+ d2)) - X (b — 2+ d2)
€ (bi—2+d2 b —1+4d!],

Xit)y =X (bi—1+d}), te(b—1+dj,b—1+d,],
Xi(t) := exp ( (A + 032"‘“) (t—bi+1— dgﬂ)) .f(g (b —1+d.,,),
€ (bi—1+di,bi—1+d,,],
Xit) =X (bi—1+d2,), te(bi—1+d,,b—1+d7],
XE(t) = Xo(t) - (Xs (i =1+ d2)) " Xg (b —1+d7}), te(bi—1+d,b].

Since
to

Xg (tg) — Xg (tl) = /S(S) Xg (S) dS, t1,t0 € R,

it is valid that (see also (6.23))

a;+j— 1—|—dz_,'_1

|xs0-% H<Z [ s xs)] as

o 1+d}
o (6.25)

a;i+j— l-l—d2

£ [ Is@Xsl s

i=1 a;i+j— lJralhLl

if t <a;+k ke{l,. . . 220} Considering S € O(A) and Xg (t), X5 (t) € SO(m),
t € R, from (6.24) and (6.25) it follows that there exists N € N satisfying

- Nk
HXS (1) — X () H < ST (6.26)
for t € [a;,a; + k], k € {1,...,220},
Let ng € N be such that
dn(i)2r® 1 ‘
oo <30 ! >ng (i €N). (6.27)
We put X, := —1I, Xy = —I, when m is even, and
1 0 0 0 -1 0O 0 0
0 -1 0 0 :
X, =0 0 ~1 01 esom), X,:=| g 1 0 ole€som)
0 0 -1 0

e}
=)
e}
I
—_
e}
e}
)
—_
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for odd m. If we express
Xé (ai + d12+1) = &Xp ((A + Ozl) (dz2+1 - dzl+1)) : X?@ (ai + dz‘1+1) )

K0+ 14+ d) = Xs (a4 1+dY) - (Xs (0 +d?) ™ X (ar + &2,,),

X (b —1+dl,) = Xg (b — 1+d2) - (X (b —2+d2) " XE (b — 2+ d2,),
Xy (b= 1+ ) = exp ((A+0F) (@ —dlyy) ) - X (b= 1+ dly)
X4 (b)) = Xo (b) - (X (b = 1+d2) - Xg (i —1+d2,,),
then it is seen that we can use Lemma 6.5 to choose values C? on the subintervals
(a;i+j—1+d,a+j—1+d,], je{l,...,2200}
so that we obtain
Xi(ai+2") =1, XL(a;+2"0 4 (2" —1)) = X,
X&(a;+3-2") =1, Xi(a;+3-2"0 4+ (2"0 1)) = X,
Xi(a;+4-2"0 420y =1 X (a; +4-2"0 + 270 (270 —21)) = X,
X (a;+4-270 +3.2°0) = [ XL (a;+4-2°0 132700 4 (220 —91)) = X,

X (@ + 4 (n(i) — 1) 2" 4 27Dy =
X (0 + 4 (n(i) — 1) 20 +3.200) — ],
XL (a; + 4 (n(i) — 1) 27 4 3. 2n0) 4 (20) — 9nO)-1)) = X,
Indeed, it suffices to consider the form of matrices
exp (44 ) (&, - diy)
for which (see (6.18), (6.22))
lexp ((A+CY) (= di)) = I <&,

inequality (6.20) with M € N satisfying (6.19) and with
0 n(i n( n(t n(i)— n(i)—
d?+1_dzl+1>§, om0 1 > onl) _ ol 5 .. 5 o) _ gr()=1 — gn(i)—1

and the fact that we can choose all matrix C/ from the (£/2°)-neighbourhood of a given
skew-symmetric matrix arbitrarily. Note that

a; +4 (n(i) — 1) 2" + 3. 270 4 (270 — 2n()=1) < g, 4 4n(5) - 270 (6.28)
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and a; + 4n(z')2"(i) < b; for sufficiently large ¢ € N, i.e., we can construct the resulting
function C' with the above mentioned properties on I; for all i > ng (see also (6.27)).
Now we use (6.26) and (6.27) in connection with (6.28). For k € {1,...,4n(:i)2"®},

where 7 > ngy, we have

4n(i) 2" 1
HXS () — XL (1) H <N <5 teluaitk, (6.29)
Especially, for all i > ny (i € N), we obtain
. - 1 ,
H X (1) = Xi (1) H <z Je{l.. i), (6.30)

where . ' . . .
sii=a; + 270 shi=a; + 270 (2”(” -1),

Sé =a; +3- 2n(i), si =a; +3- 2”@) + (2”(1) _ 1) ,

sin(i)_g = a; + 4 (n(i) — 1) 270 4 27

Sin(iy_2 = @i + 4 (n(i) — 1) 270 4 9n() 4 (n) _ gr()=1).
Shn(i—1 = @i + 4 (n(i) = 1)2"0 43270,

Shngy = @i+ 4 (n(i) — 1) 2" 43270 4 (270 —20(71)

We recall that we need to prove that any non-trivial solution of S'is not almost periodic.
By contradiction, suppose that the solution

z(t) = Xg(t) - u (6.31)

of the Cauchy problem
2(1) = S - 2(t),  2(0) =,

where u € R™, ||u||le = 1, is almost periodic. Applying Theorem 5.5 for ¢ = 1/3 and
s; = 2" i € N, we obtain

|2 (t+ 2700y — 2 (t 4 270 || < ,teR, (6.32)

for all 4(1),4(2) from an infinite set Ny C N.
It is immediately seen that

max {|| X;-u—ullo, || Xo-u—ull2} > 1. (6.33)

Thus, from the construction, (6.30), (6.33), and from

| Xet) = Xits) -

< Hf(g(t)-u—XS(t) ‘u

2

+ | Xs(t) - u— Xg(s) - ully, + H Xs(s) - u— )N(fg(s) U

2
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for

t=Sin)y S = Sin(i)-1; U= Shn(i)—2: S = Sin(i)—3>
respectively, it follows

1 ; ‘ 1
1<§+HXS(SZJ‘)'“_XS(SZj—l)'u“2+§

or
1 - - 1

for j € {1,...,n(:)}. Hence, we have
max { || Xs (s3;) - u = Xo (siy_o) -, || X (shyoa) - v = Xs (s4) - ull, } > 5 (6:34)
for all j € {1,...,n(i)} and i > ng. Since
53—3322”(i)—1:52—sé,
sk— st =20 ol — gl _ 5t

%

-3 = 271(2) - 271(1')*1 = Sjln(i) - S4n(i)—17

Sjln(i)—2 - Sin(i)
inequality (6.34) implies (see (6.31))

sup || z(t) — z (t + ond) 2771 H2 > - (6.35)
teR 3
for all i > ng and j € {1,...,n(i)}. Of course, we can rewrite (6.32) into
. , 1
sup || z(t) — x (t + 2n(i®) _ gnd) |, < 3 i(1),i(2) € Ny.
teR

Considering (6.35), we see that (6.32) cannot be true for all i(1),i(2) from an infinite
set Ny. This contradiction proves the theorem. O

The presented process can be applied to prove the existence of systems from S with
several properties. For example, we mention the following result.

Theorem 6.8. Let A € S and € > 0 be arbitrarily given. There ezists B € OZ(A) with
the property that

[X5(0); L € R} = SO(m).
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Proof. Let a sequence { X}, .y C SO(m) be dense in SO(m). In the proof of Theorem 6.7,
we can replace considered matrices X, Xy by arbitrary matrices Xy, X;.1. Thus, there is
shown the existence of a system S = A+ C € OZ(A) with the property that (see (6.29))

1Xs (s5) = X5 | < -
for some 33- € Randall j € {1,...,2n(i)}, i > ny. Now it suffices to consider that

T OL )

i—00 22n(i)-1
]

At the end, we remark that the question of generalizations of Theorems 6.1 and 6.7
concerning other homogeneous linear differential systems, which can have only almost pe-
riodic solutions, remains open (contrary to the corresponding discrete case, see Chapters 2
and 4).



Chapter 7

Values of almost periodic and limit
periodic functions

In this chapter, we prove two theorems about almost periodic and limit periodic func-
tions having given values. These theorems correspond to Theorem 3.1, where it is shown
that, for any countable and totally bounded set, there exists a limit periodic sequence
whose range is this set. In the statements of the presented results, we need that the
totally bounded set is the range of a uniformly continuous function ¢ for which the
set {¢(k); k € Z} is finite (in the almost periodic case) or the uniformly continuous func-
tion takes a value periodically (in the limit periodic case). We also construct limit periodic
functions whose ranges contain arbitrarily given totally bounded sequences if one requires
the connection by arcs of the space of values.

7.1 Preliminaries

We put Rj := [0,00). Let X # @ be an arbitrary set and let o : X x X — R be
a pseudometric on X. For given € > 0 and x € X', the e-neighbourhood of x is denoted
by O.(z).

7.2 Functions with given values

At first, we construct an almost periodic function with given values. Concerning a con-
tinuous counterpart of Theorem 3.1 (or directly Definition 5.1 and Lemma 5.4), the given
set of values has to be the totally bounded range of a continuous function. In addition,
any almost periodic function is uniformly continuous (see Lemma 5.3). Considering these
facts, we formulate the following theorem.

Theorem 7.1. Let ¢ : R — X be a uniformly continuous function such that the set
{p(k); k € Z} is finite and the set {p(t); t € R} is totally bounded. Then, there exists an

158
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almost periodic function 1 with the property that
{Y(k); ke Z} ={p(k); k€ Z}, {o(1); t € R} = {p(t); t € R} (7.1)
and that, for any | € Z, there exists q(1) € N for which
bl +s) =v(l+s+54q(1), jeZ sel01) (7.2)

Proof. We construct ¢ : R — X applying Corollary 5.23 similarly as {¢} applying Corol-
lary 1.28 in the proof of Theorem 3.1. Considering that the set {¢(k); k € Z} is finite, let
sufficiently large M, N € Z have the property that ¢(M) = ¢(N) and that, for any [ € Z,
there exists j(I) € {N,N +1,..., M — 1} for which

pl) = (M), wl+1)=¢(l) +1). (7.3)

Without loss of generality, we can assume that N = 0 because, if N < 0, then we can

redefine finitely many the below given ¢; and put ¥ = ¢ on a sufficiently large interval.
Since ¢ is uniformly continuous with totally bounded range (see also (7.3)), for arbi-

trarily small € > 0, there exist li(¢), ..., lne)(€) € Z such that, for any [ € Z, we have

o(p(l+s),o(li+5) <e, s€l0,1],
for at least one integer I; € {l1(€),...,lne ()} Weput g;:=27" i € N, ie.,
Go=027"), .l = lme-9(277), 1€N.
In addition, we assume that
{I; je{1,...,m(i)},i e N} = Z. (7.4)

First we define
G(t) = (1), teo,M]. (7.5)
We choose arbitrary n(1) € N for which 22 M > m(1). There exist (see (7.3))

j117j21a---7]}1n(1) S {0,1,...,M—1}

such that
o) =v(1), el +1)=¢@; +1),
p(l) =¥(j), ey +1) =4(j; + 1),
O(ly1y) = V0ma)s el +1) = V(imay + 1)
We define

Y(s+M+ji) =p(s+1), sel0,1],
Yt) =t — M), te (M2M]~[M +3ji, M+ ji +1],
St2M 4+ ) mp(s + 1), se0,1]

=
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W(t) == b(t —2M), t € (2M,3M]~ [2M + ji,2M + ji + 1],

U(s +m)M + joy) = (s + L), s € [0,1],
Y(t) =yt =m(1)M), e (mL)M, (m(1) +1)M]N [m(1)M + jp,qy, m(D)M + iy + 1],
and we define ¢ as periodic with period M on
[ (22D o P ML (24 2% 4+ 22D M (M, (m(1) 4+ 1) M).
It is easily to see that we construct v as in Corollary 5.23 for
ei:=1L, i€{l,...,2n(1) + 1}, (7.6)

if L > 0 is sufficiently large.
In the second step, we choose n(2) > n(1) +m(2) (n(2) € N) and we put

,QZ}(ﬂ = @D(t + 22n(1)+1M)7 S [_(22n(1)+1 +- 2)M7 Tty _(22n(1)—1 + Q)M)>

¢(t> = w(t — 22n(1)+2]\4)7 te ((2 4+ 2271(1))]\/[’ e (2 N 22n(1)+2)M]’

,QZ}(ﬂ = @D(t + 22n(2)_1M)7 S [_(2271(2)—1 +- 2)M7 Tty _(22n(2)—3 +- Q)M)>

and
g,:=0, ie{2n(1)+2,...,2n(2)}, Eon(2)11 =27 (7.7)

From n(2) > n(1) + m(2) and the above construction, we see that, for each integer j,
1 < j <m(1), there exist at least 2m(2) + 2 intervals of the form

[a,a+ 1] C (2@~ 4. )M, ..., (27D 4 ... L 2)M]
such that a € Z and
Vljg,as1) = ¢\[l;7l;+1], ie., U(s+a)=p(s+ l;), s € [0,1].
Hence, we can define continuous

Y(t) e O (p(t —22"DM)), te (24 +22O )M, (24 -+ 27 M],

€2n(2)+1
for which
V| [220(2) M, 22n(2) M 4+1] = Yo,
Yl g+1) = V) for some k,
ke {24 +2"DM, (24 +27O)M — 1} \ {27},
and

Yl = elosor), Le{@++22)M, 24 +27O)M — 1},
some j(I) € {0,.... M —1L1},.... Ly, 5, Loy
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{o(site i, b+ 10U Ul by + UGG+ U U0, Bye) + 113
C{y@);tel24 -+ 2271(2)*2)]\/[’ (24 F 2211(2))]\/[]}'
In the third step, we choose n(3) > n(2) + m(3) (n(3) € N) and we construct ¢ for
g,:=0, ie€{2n(2)+2,...,2n(3)}, Eon(z)1 i= 277 (7.8)
We have continuous
P(t) € Ocypy (W(E=20M)) .t (24 +27F)M, 24+ + 2O M],
satisfying
1/)|[”+1] _90|[](l O+1]» le {(2++22n(3)_2>Ma7(2++22n(3))M_1}a
at least one j(I) € {0,..., M — 1,1},13, .. .,lf’n(g)},
{o(t);t e (i, 1} + Uy, I3 + 1] U - U3, by + 11}
Cl{o@);te24 - +27BH)M,. .. (2+ -+ 22O M.
In addition, we have
1/)|[l,z+1] = ¢|[0,1], Ledy QQN(Q)M' jEL}
N{=2"O~ L oM, (244270 — 1},
¢’[22n(3)M+1,22n<3)M+2] = Y[p2), 7vZ’|[22n<3>M—1,22n(3>M] = |10,

V|1 = Ylpg  for some k,

ke{@2+ - +270 DM, . (24 -+ 22O M — 1}~ {22 M 41},
Uk 41 = ¥|-1,0 for some £,

ke {2+ - 4+27CM, . (24 - +27O)M — 1}~ 27O M — 1},

Continuing in the same manner, in the i-th step, we choose n(i) > n(i — 1) + m(3)
(n(i) € N) and we construct 1 for

er:=0, ke{2n(i—1)+2,....2n(0)},  egn@yp1:=2"""1. (7.9)

For simplicity, let i — 2 < 22" M (see also the proof of Theorem 3.1 for j 22" replaced
by [5 220 M, j 22O M + 1], 1+ 522G by [1 4 j22"C)IM, 1 + j 223 M + 1], and so on).
Again, for each j(1) € {1,...,i—1}, j(2) € {1,...,m(j(1))}, there exist at least 2m(i) +2
integers
le{—2"O ..M, ... 2+ - +220"H)N — 1}
N{G 2N ey U{14+27OM; j ez U{-14 ;27O M; j e ZIU
U{i =34 270D e ZYU{3 —i+ 220D ez
such that
Pl = 2lfag s
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Thus, we can define continuous
U(t) € Oy ey (W(E=22"OM)), te (4 +22"D2)M, L (24 + 2270 M),
satisfying
¢|[l:l+1} = 90|[j(l),j(l)+1}a le{2+ -+ 22n(i)—2)M’ 24+ 22n(i))M — 1},
at least one j(I) € {0,..., M — 1,11,13, ..., fn(i)},
{o@);t e, b+ Ul +1]U--- UL, ) m(z) + 1]}
Cl{p);te24 - +22O0 )M, . (24 + 22O MT).
In addition, we can define v so that

Ylpiry = Vlo, ey 22n(2)M’ J €L}
N{—@22O~ oM, (244220 — 1),

(7.10)

Ylugry = Ylpa, 1€{1+5270M; j ez}
N{—(2O-1 4 M, (24 + 22O — 1),

Vlpisy = Vl-10, €{-1 +5 23N G e Z}
N{=2"O- L oM, (24 -+ 22D — 1),

Vlpiry = Vli—si—2, [€{i—=3+7] 22—V G e 7}
N{—@22O~ 4o LM, (244220 — 1),

ligey = Vlpoia—g, [€{3—i+ 220"V, j e 7}
N{=2"O- 1 oM (24 -+ 220D — 1),

¢‘ [22'”(")M+i—2,22”(i>M+i—1] = w‘ [i—2,i—1]» w’ [22”“)M+2—i,22”(i)M+3—i] = w’[Q—i,Zi—ﬂa

¢|[k,k+1] = ¢|[i_2,i_1] for some £,
ke {2+ - +220D0 (24422 — 1}~ {22DM 44 — 2},

¢|[k,k+1] = wl[Zfi,Sfi] for some £,
ke{2+ - +220 DM, . (24 + 22O\ M — 1}~ {22O M 42 — 4},
Evidently, it is valid
0(p(@),0(5)) = 27% or o(p(i),¢(j) =0

for all 7, j € Z and some K € N. If we begin the construction by

= 027%), k) = e (277),

then we have to obtain

(k) =k + M), keZ
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Hence, we can construct the above 9 in order that the sequence {1(k)}xez is periodic with
period M which gives (5.14) and the continuity of ). We construct ¢ using the process
from Corollary 5.23 for all ¢ € N and we obtain an almost periodic function ¢ : R — X.
Indeed, we have (7.5) and, summarizing (7.6), (7.7), (7.8), ..., (7.9), ..., we get (5.13)
(see also (3.22)). For periodic {1(k)}kez, the first identity in (7.1) follows from (7.3)
and (7.5) and the second one from the construction, (7.4), and (7.10). As in the proof of
Theorem 3.1, we see that, for any [ € Z, there exists i(l) € N satisfying

Yl k1) = Vlpry, k€ {l + 522N G e Z}.
Thus, we obtain (7.2) for ¢(I) = 22"\, O
As an example which illustrates the previous theorem, we mention the following result.

Corollary 7.2. For any continuous function F' : [0,1] — X, there exists an almost periodic
function 1 with the property that

W), te R ={F(t);t€(0,1)}.

Proof. 1t suffices to show, that there exists a uniformly continuous function ¢ : R — X
for which {@(k); k € Z} = {F(1/2)} and {p(t); t € R} = {F(t); t € (0,1)}, and to apply
Theorem 7.1. For example, one can put

1
ok +s) ::F<—+s>, keN, se [0

2 ’2k+1>’

1 k k k
ok +s) ':F<§+2k+1>’ ke, s€ {2k+1’1_2k+1>’

1 k
gp(/{:—l—s).:F(§+1—8>, keN, se {1_215—+1’1)’

1 k
go(k+s).:F<§—s), keZ~N, s¢c [0’215—1)’

1 k k k
gp(k+s).—F(§—2k_1>, ke Z~N, se [Qk—l’l_Qk—l)’

1 k
QO(IC+S)-:F(§+3_1)7 keZ\N, se [1—m71)'

In the limit periodic case, we obtain:

Theorem 7.3. Let F': R — X be a uniformly continuous function. If the range of F' is
totally bounded and F(p) = F(p + kr) for all k € Z and some p € R, r > 0, then there
exists a limit periodic function f : R — X such that

{F(1); t € R) = {F(t); 1 € R} (7.11)
and that, for everyl € Z, one can find q(1) € N for which
fl+s)=fU+s+7q(), jeZ, se€][0,1] (7.12)
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Proof. We consider the function G : R — X" given by the formula
G(t)=F(rt+p), teR
We see that G(0) = G(k), k € Z, and that
{G(t); t e R} = {F(t); t € R}. (7.13)

Since G is a uniformly continuous function whose range is totally bounded, for all ¢ > 0,
there exists m = m(e) € N\ {1} satisfying

0(G(l+s),G(j+s)) <e (7.14)

foralll € Z, s € [0, 1], and at least one j = j(I) € {—m,...,0,...,m—1}. We can assume
that
m(e) > oo if &—0F. (7.15)

Firstly, we put
X ={G(t); t € R}, (7.16)

m(n):=m(27"), neN,

and
(s +2lm(1)) := G(s), se&[-m(1),m(1)),1cZ.

In the second step, we define a periodic continuous function f2 : R — X with period
22m(1)m(2) arbitrarily so that

f2(s) = f'(s), se[=m(1),m(1)),
12 (s + 2m()m(2) = f'(s), s € [-1,1),
{F2(s); s € [=2m()m(2) + 1,~1) U1, 2m(Dm(2) - 1)} = {G(s); s € [-m(2), m()]}
and

o (f2(t), f1(t)) < % t € R. (7.17)

In fact, using (7.14), one can choose this function f? in such a way that, for each
Jje{—2m(1)m(2),...,2m(1)m(2) — 1}, there exists

i =i(j) € {-=m(2),...,m(2) — 1}

having the property
fA(s+45)=G(s+1), se€l0,1].

Henceforth, we assume that we choose all functions f™ in this way.
In the third step, we define a periodic continuous function f2 : R — X with period
23m(1)m(2)m(3) arbitrarily so that

Fils)=f(s), s €[=2m(1)m(2), 2m(1)m(2)),

2 (s+2m(1)ym(2)k) = f*(s), se[-1,1), k€ Z,
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f? (s + 22m(1)m(2)m(3)) = f*(s), s€[-2,2),
and
o (), /() < 55, 1ER, (7.18)
{FP(s); s € I3} ={G(s); s € [-m(3),m(3)]},
where
I .= {[-2°m(1)m(2)m(3) + 2, -2) U [2,2°m(1)m(2)m(3) — 2) }

~ U 2m)ym2)k - 1, 2m(1)m(2)k + 1) .

In the general n-th step, we define a periodic continuous function f" : R — X with
period 2"m(1)m(2) - - -m(n) arbitrarily so that

fi(s) = f""Hs), se[-2"m(1)m(2)---m(n—1),2"*m(1)m(2)---m(n— 1)),
(s +2m(1)m(2)k) = " (s), se[-1,1), k€ Z,
[ (s +22m(L)m(2)m3)k) = [*7'(s), s€[-2,2), k€,

[P (s+2"*m()m(2) - - -m(n — 1)k) = f*7'(s), s€[-n+2,n—2), k€L,
(s + 2" I (1)m(2) - - - m(n)) = " s), sel-n+1,n-1),

and
o (F1(1), A1) < inl, ER, (7.19)
{f"(s); s € I} = {G(s); s € [-m(n),m(n)]}, (7.20)
where
L ={[-2""mmn)+n—-1,-n+1)U[n—-1,2""-m(n) —n+1)}
\{ U 2m(1)m(2)k — 1,2m(1)m(2)k + 1)U
U 2°m(1)m(2)m(3)k — 2, 2°m(1)m(2)m(3)k + 2) U - -U
keZ
U [2"?m(1)---m(n — 1)k —n+2,2"m(1)---m(n — 1)k +n — 2) }
k€EZ

We can define function f: R — X by

f(t) = lim f"(t), teR, (7.21)

n—oo

because

f(s) = f""(s), nieN,se[-2""m(1)---m(n),2" 'm(1) - -m(n)). (7.22)



7.2 Functions with given values 166

The inequality

o (f(1), f(t)) < o (f" (1), f"(®) + o (f"2(t), S (1) + -+
1 1
< 2_n + gn+1 n
which follows from (7.19) (consider together with (7.17), (7.18)), implies the limit periodi-
city of f defined in (7.21).
The resulting function f satisfies (7.11) and (7.12). Immediately, we obtain (7.11) from
(7.15), (7.20) (see also (7.13), (7.16)), and (7.22). Let n € N be arbitrary. Considering the

construction above, we have

4 (s 4 2m(1) - m(n + 1)) = f7(s), s € [-n,n), j€Z,i€N.

teR, neN,

1

Finally, we get (7.12) for
q(l) = 2" m(D)m(2) - -m(]1] +2), 1€ Z.
U

Remark 7.4. As in Section 3.2, we can formulate Theorem 7.3 in the form when X is
a uniform space with a countable fundamental system of entourages. We refer to the
references mentioned in Section 3.2. A

Remark 7.5. Here, we comment the periodic condition on F' in the theorem above. With-
out the requirement that there exist p € R and r > 0 such that F(p) = F(p + kr), k € Z,
Theorem 7.3 is not valid.

For example, there exists a uniformly continuous function F : R — R? whose range is

(F(t): t € R} = { {x,sin ﬂ .z (0, 1]} | (7.23)

Suppose that a limit periodic function f : R — R? satisfies (7.11) and (7.12). There exist
Jj € Z and a € (0, 1] for which (see (7.11) and (7.23))

(F):teljj+1]) = Hx,sinﬂ;xe [a,l]}. (7.24)

Let us consider ¢(j) from the statement of Theorem 7.3. Since f is uniformly continuous,
there exists b € (0, a) such that

(F):telii+1+q0)]} C Hx,sinﬂ .z € b, 1]}

for all 7 € Z if

[1,sinl] € {f(t); t€[i,i +1+q(j)]} (7.25)
Nevertheless, (7.25) follows from (7.12) and (7.24). Thus, we have
{f(t); t e R} C {{x,siné} ;€ b, 1]} (7.26)

This contradiction (given by (7.11) and (7.26)) shows that the periodic condition on F
cannot be omitted. A
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Immediately, from Theorem 7.3, we get the following consequence.

Corollary 7.6. Let F : R — X be a uniformly continuous function. If the range of F' is
totally bounded and F(p) = F(p + kr) for all k € Z and some p € R, r > 0, then there
exists an almost periodic function f: R — X such that (7.11) is valid and that, for every
l € Z, one can find q(1) € N for which (7.12) is valid.

Important cases of pseudometric spaces are covered by the spaces whose elements can
be connected by arcs.

Corollary 7.7. Let F' : R — X be a uniformly continuous function whose range X :=
{F(t); t € R} is totally bounded. If all z,y € X can be connected in X by continuous
curves which depend uniformly continuously on x and y, then there exists a limit periodic
function f: R — X such that

{F(t);teR} C{f(t); t €R} (7.27)
and that, for everyl € Z, one can find q(1) € N for which (7.12) is valid.

Proof. Let us choose ty € R arbitrarily and consider continuous functions gy : [0,1] — X,
k € Z, for which

1

w0 = F ). o (3) = Flw) a()=F®),

We define G : R — X as
G2k+s):=F(k+s), GR2k+1+s):=g4i(s), keZ, sel0,1).
We can assume (consider directly the statement of the corollary) that, for any € > 0, there
exists () > 0 such that
0(ge(s), qu(s)) <&, s€0,1],
if
0(9(0), 9:(0)) = o (F(k), F(I)) < d(¢)
for arbitrary k,[ € Z.

Thus, there exists a uniformly continuous function G : R — X with a totally bounded
range and with the properties

G @ + Qk) = F(ty), kez,

{F(t); t e R} C{G(t); t € R}. (7.28)
Using Theorem 7.3 for this function G, we get a limit periodic function f : R — X satisfying
{F(t);t e R} ={G(t); t € R} (7.29)
and (7.12). Finally, (7.28) and (7.29) give (7.27). O

Especially, from the proof of Corollary 7.7, we obtain the last result.

Corollary 7.8. Let F' : R — X be a uniformly continuous function whose range X =
{F(t); t € R} is totally bounded. If there exists v € X such that x and F(k) for k € Z
can be connected in X by continuous curves which depend uniformly continuously on F(k),
then one can construct a limit periodic function f: R — X satisfying (7.11) and (7.12).



Author’s papers

All mentioned papers can be found in MathSciNet (18 of them in WoS). The status is on
the date 2015/09/21.

(1)

(8)

(9)

(10)

(11)

Vesely, M.: On orthogonal and unitary almost periodic homogeneous linear difference
systems. In: Proceedings of Colloquium on Differential and Difference Equations
(Brno, 2006), 179-184. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math.,
Vol. 16, Masaryk Univ., Brno, 2007.

Vesely, M.: Construction of almost periodic sequences with given properties. Electron.
J. Differential Equations 2008, no. 126, 1-22.

Vesely, M.: Almost periodic sequences and functions with given values. Arch. Math.
(Brno) 47 (2011), no. 1, 1-16.

Vesely, M.: Construction of almost periodic functions with given properties. Electron.
J. Differential Equations 2011, no. 29, 1-25.

Vesely, M.: Almost periodic homogeneous linear difference systems without almost
periodic solutions. J. Difference Equ. Appl. 18 (2012), no. 10, 1623-1647.

Hasil, P.; Vesely, M.: Criticality of one term 2n-order self-adjoined differential equa-
tions. In: Proceedings of the 9th Colloquium on the Qualitative Theory on Dif-
ferential Equations, no. 18, 1-12, Electron. J. Qual. Theory Differ. Equ., Szeged,
2012.

Hasil, P.; Vesely, M.: Almost periodic transformable difference systems. Appl. Math.
Comput. 218 (2012), no. 9, 5562-5579.

Hasil, P.; Vesely, M.: Critical oscillation constant for difference equations with almost
periodic coefficients. Abstr. Appl. Anal. 2012, art. ID 471435, 1-19.

Vesely, M.: Almost periodic skew-symmetric differential systems. Electron. J. Qual.
Theory Differ. Equ. 2012, no. 72, 1-16.

Hasil, P.; Vesely, M.: Oscillation of half-linear differential equations with asymptoti-
cally almost periodic coefficients. Adv. Difference Equ. 2013, no. 122, 1-15.

Hasil, P.; Vesely, M.: Oscillation and non-oscillation of asymptotically almost pe-
riodic half-linear difference equations. Abstr. Appl. Anal. 2013, atr. ID 432936,
1-12.

168



(12) Hasil, P.; Vesely, M.: Conditional oscillation of Riemann—Weber half-linear differen-
tial equations with asymptotically almost periodic coefficients. Studia Sci. Math.
Hungar. 51 (2014), no. 3, 303-321.

(13) Hasil, P.; Vesely, M.: Limit periodic linear difference systems with coefficient matrices
from commutative groups. Electron. J. Qual. Theory Differ. Equ. 2014, no. 23,
1-25.

(14) Hasil, P.; Mafik, R.; Vesely, M.: Conditional oscillation of half-linear differential
equations with coefficients having mean values. Abstr. Appl. Anal. 2014, atr. ID
258159, 1-14.

(15) Hasil, P.; Vesely, M.: Non-oscillation of half-linear differential equations with periodic
coefficients. Electron. J. Qual. Theory Differ. Equ. 2015, no. 1, 1-21.

(16) Hasil, P.; Vesely, M.: Non-oscillation of perturbed half-linear differential equations
with sums of periodic coefficients. Adv. Difference Equ. 2015, no. 190, 1-17.

(17) Hasil, P.; Vesely, M.: Oscillation constants for half-linear difference equations with
coefficients having mean values. Adv. Difference Equ. 2015, no. 210, 1-18.

(18) Hasil, P.; Vesely, M.: Limit periodic homogeneous linear difference systems. Appl.
Math. Comput. 265 (2015), 958-972.

(19) Dosly, O.; Vesely, M.: Oscillation and non-oscillation of Euler type half-linear dif-
ferential equations. J. Math. Anal. Appl. 429 (2015), no. 1, 602-621.

(20) Hasil, P.; Vesely, M.: Oscillation constant for modified Euler type half-linear equa-
tions. Electron. J. Differential Equations 2015, no. 220, 1-14.

(21) Hasil, P.; Vesely, M.: Values of limit periodic sequences and functions. Math. Slo-
vaca, in press.

(PhD) Vesely, M.: Constructions of almost periodic sequences and functions and homoge-
neous linear difference and differential systems. Ph.D. thesis. Brno, 2011.

169



Bibliography

1]

2]

[10]

[11]

[12]

Agarwal, R. P.. Difference equations and inequalities. Theory, methods, and applica-
tions. Marcel Dekker, Inc., New York, 2000.

Akhmet, M. U.: Almost periodic solutions of the linear differential equation with
piecewise constant argument. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.
16 (2009), 743-753.

Aldrovandi, R.: Special matrices of mathematical physics. Stochastic, circulant and
Bell matrices. World Scientific Publishing Co., Inc., Singapore, 2001.

Alonso, A.1.; Hong, J.; Obaya, G.R.: Almost periodic type solutions of differential
equations with piecewise constant argument via almost periodic type sequences. Appl.
Math. Lett. 13 (2000), no. 2, 131-137.

AlSharawi, Z.; Angelos, J.: Linear almost periodic difference equations. J. Comput.
Math. Optim. 4 (2008), 61-91.

Amerio, L.: Abstract almost-periodic functions and functional equations. Boll. U.M.I.
21 (1966), 287-334.

Amerio, L.; Prouse, G.: Almost-periodic functions and functional equations. Van
Nostrand Reinhold Company, New York, 1971.

Andres, J.; Pennequin, D.: Semi-periodic solutions of difference and differential equa-
tions. Bound. Value Probl. 141 (2012), 1-16.

Auslander, J.; Markley, N.: Locally almost periodic minimal flows. J. Difference Equ.
Appl. 15 (2009), no. 1, 97-1009.

Banzaru, T.: Multivalued almost periodic mappings. Bul. Sti. Tehn. Inst. Politehn.
Timigoara—Ser. Mat.-Fiz.-Mec. Teoret. Apl. 19(33) (1974), no. 1, 25-28.

Banzaru, T.; Crivat, N.: On almost periodic multivalued maps with values in uniform
spaces. Bul. Stiint. Tehn. Inst. Politehn. “Traian Vuia” Timigoara Ser. Mat. Fiz.
26(40) (1981), no. 2, 47-51.

Basit, B.R.; Giinzler, H.: Generalized vector valued almost periodic and ergodic
distributions. J. Math. Anal. Appl. 314 (2006), no. 1, 363-381.

170



BIBLIOGRAPHY 171

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

Bede, B.; Gal, S. G.: Almost periodic fuzzy-number-valued functions. Fuzzy Sets and
Systems 147 (2004), no. 3, 385-403.

Behrouzi, F.: Almost periodic functions on groupoids. Rend. Semin. Mat. Univ.
Padova 132 (2014), 45-59.

Bel'gart, L. V.; Romanovskii, R. K.: The exponential dichotomy of solutions to sys-
tems of linear difference equations with almost periodic coefficients. Russ. Math.
54 (2010), 44-51.

Bernstein, D.S.: Matriz mathematics. Theory, facts, and formulas. Princeton Uni-
versity Press, Princeton, 2009.

Berg, I.D.; Wilansky, A.: Periodic, almost-periodic, and semiperiodic sequences.
Michigan Math. J. 9 (1962), 363-368.

Besicovitch, A.S.: Almost periodic functions. Dover Publications, Inc., New York,
1955.

Bhatti, M.I.; N'Guérékata, G.M.; Latif, M. A.: Almost periodic functions defined
on R™ with values in p-Fréchet spaces, 0 < p < 1. Libertas Math. 29 (2009), 83-100.

Bhatti, M.1.; Latif, M. A.: Almost periodic functions defined on R™ with values in
fuzzy setting. Punjab Univ. J. Math. (Lahore) 39 (2007), 19-27.

Blot, J.; Pennequin, D.: Ezistence and structure results on almost periodic solutions
of difference equations. J. Differ. Equations Appl. 7 (2001), no. 3, 383-402.

Bochner, S.: Abstrakte fastperiodische Funktionen. Acta Math. 61 (1933), no. 1,
149-184.

Bochner, S.: A new approach to almost periodicity. Proc. Nat. Acad. Sci. 48 (1962),
2039-2043.

Bochner, S.; von Neumann, J.: Almost periodic functions in groups. II. Trans. Amer.
Math. Soc. 37 (1935), no. 1, 21-50.

Bochner, S.; von Neumann, J.: On compact solutions of operational-differential equa-
tions. I. Ann. Math. (2) 36 (1935), no. 1, 255-291.

Bogatyrev, B. M.; Eremenko, V. A.: Solution of implicit finite difference systems. In:
Asymptotic methods of nonlinear mechanics, 813, 193. Akad. Nauk Ukrain. SSR,
Inst. Mat., Kiev, 1979.

Bohr, H.: Zur Theorie der fastperiodischen Funktionen. I. Eine Verallgemeinerung
der Theorie der Fourierreihen. Acta Math. 45 (1925), no. 1, 29-127.

Bohr, H.: Zur Theorie der fastperiodischen Funktionen. II. Zusammenhang der fast-
periodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmas-
sige Approximation durch trigonometrische Summen. Acta Math. 46 (1925), no. 1-2,
101-214.



BIBLIOGRAPHY 172

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[42]

[43]

Bohr, H.; Neugebauer, O.: Uber lineare Differentialgleichungen mit konstanten Koef-
fizienten und fastperiodischer rechter Seite. Math.-Phys. Klasse 1926, C 17, 8-22.

Brudnyi, A.; Kinzebulatov, D.: Holomorphic semi-almost periodic functions. Integral
Equations Operator Theory 66 (2010), no. 3, 293-325.

Bugajewski, D.; N'Guérékata, G.M.: On some classes of almost periodic functions
in abstract spaces. Int. J. Math. Sci. 2004, no. 61-64, 3237-3247.

Burd, V.: Method of averaging for differential equations on an infinite interval. Theo-
ry and applications. Lecture Notes in Pure and Applied Mathematics, Vol. 255. Chap-
man & Hall/CRC, Boca Raton, 2007.

Burton, T. A.: Linear differential equations with periodic coefficients. Proc. Amer.
Math. Soc. 17 (1966), 327-329.

Campos, J.; Tarallo, M. Almost automorphic linear dynamics by Favard theory. J.
Differential Equations 256 (2014), no. 4, 1350-1367.

Caraballo, T.; Cheban, D.: Almost periodic and almost automorphic solutions of
linear differential/difference equations without Favard’s separation condition. I. J.
Differential Equations 246 (2009), no. 1, 108-128.

Caraballo, T.; Cheban, D.: Almost periodic and almost automorphic solutions of
linear differential/difference equations without Favard’s separation condition. II. J.
Differential Equations 246 (2009), no. 3, 1164-1186.

Caraballo, T.; Cheban, D.: Almost periodic and almost automorphic solutions of
linear differential equations. Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 1857-1882.

Cenusa, G.: Random vector functions o-almost periodic. Bull. Math. Soc. Sci. Math.
R. S. Roumanie (N.S.) 25(73) (1981), no. 1, 15-31.

Cheban, D.N.: Asymptotically almost periodic solutions of differential equations.
Hindawi Publishing Corporation, New York, 2009.

Cheban, D.N.: Bounded solutions of linear almost periodic systems of differential
equations. Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 3, 155-174; translation in:
Izv. Math. 62 (1998), no. 3, 581-600.

Chvatal, M.: Non-almost periodic solutions of limit periodic and almost periodic
homogeneous linear difference systems. Electron. J. Qual. Theory Differ. Equ. 2014,
no. 76, 1-20.

Cieutat, P.; Haraux, A.: FEzxponential decay and existence of almost periodic solu-
tions for some linear forced differential equations. Port. Math. (N.S.) 59 (2002),
no. 2, 141-159.

Conway, J. H.; Curtis, R.T.; Norton, S. P.; Parker, R. A.; Wilson, R. A.: Atlas of fi-
nite groups. Mazimal subgroups and ordinary characters for simple groups. Clarendon
Press, Oxford, 1985.



BIBLIOGRAPHY 173

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Coppel, W.A.: Almost periodic properties of ordinary differential equations. Ann.
Mat. Pura Appl. 76 (1967), no. 4, 27-49.

Corduneanu, C.: Almost periodic discrete processes. Libertas Mathematica 2 (1982),
159-169.

Corduneanu, C.: Almost periodic functions. John Wiley and Sons, New York, 1968.
Corduneanu, C.: Almost periodic oscillations and waves. Springer, New York, 2009.

Corduneanu, C.: Almost periodic solutions for a class of functional differential equa-
tions. Funct. Differ. Equ. 14 (2007), no. 2-4, 223-229.

Corduneanu, C.: Some comments on almost periodicity and related topics. Commun.
Math. Anal. 8 (2010), no. 2, 5-15.

Crivat, N.: Almost periodic multifunctions with values in generalized uniform spaces.
Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz. 52(66) (2007), no. 1, 69-75.

Crivat, N.: Almost periodic multifunctions with values in generalized uniform spa-
ces (1I). Bul. Stiint. Univ. Politeh. Timig. Ser. Mat. Fiz. 55(69) (2010), no. 2, 16-21.

Demenchuk, A.K.: Irreqular forced almost periodic solutions of ordinary linear dif-
ferential systems. Mathematica 46(69) (2004), no. 1, 67-74.

Demenchuk, A.K.: On irreqular forced almost periodic solutions of linear systems
in a critical nonresonance case. Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat.
Navuk 2005, no. 1, 23-27, 125.

Demenchuk, A. K.: On the existence of almost periodic solutions of linear differential
systems in a noncritical case. Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk
2003, no. 3, 11-16, 124.

Demenchuk, A.K.: On the existence of partially irreqular almost periodic solutions
of linear nonhomogeneous differential systems in a critical nonresonance case. Differ.
Uravn. 40 (2004), no. 5, 590-596, 717; translation in: Differ. Equ. 40 (2004), no. 5,
634-640.

Diagana, T.: Almost automorphic type and almost periodic type functions in abstract
spaces. Springer, Cham, 2013.

Diagana, T.; Elaydi, S.; Yakubu, A.-A.: Population models in almost periodic envi-
ronments. J. Difference Equ. Appl. 13 (2007), 239-260.

Dunlavy, D. M.; Mackey, D.S.; Mackey, N.: Structure preserving algorithms for per-
plectic eigenproblems. Electron. J. Linear Algebra 13 (2005), 10-39.

Duy, T. K.: Limit-periodic arithmetical functions and the ring of finite integral adeles.
Lith. Math. J. 51 (2011), no. 4, 486-506.



BIBLIOGRAPHY 174

[60]

[61]

[62]

[66]

[67]

[68]

Dzafarov, A.S.; Gasanov, G. M.: Almost periodic functions with respect to the Haus-
dorff metric, and their properties. Izv. Akad. Nauk Azerbaidzan. SSR Ser. Fiz.-Tehn.
Mat. Nauk 1977, no. 1, 57-62.

Dzafarov, A.S.; Gasanov, G.M.: Some problems of almost-periodic functions with
respect to the Hausdorff metric. In: Theory of functions and approximations, Part 2
(Saratov, 1986), 45-47. Saratov. Gos. Univ., Saratov, 1988.

Eliasson, L. H.: Reducibility and point spectrum for linear quasi-periodic skew-pro-
ducts. In: Proceedings of the International Congress of Mathematicians (Berlin,
1998). Doc. Math. 1998, Extra Vol. II, 779-787.

Ellis, R.: The construction of minimal discrete flows. Amer. J. Math. 87 (1965),
564-574.

Esclangon, E.: Sur les intégrales quasi-périodiques d’équations différentielles linéai-
res. C. R. Acad. Sci. Paris 158 (1914), 1254-1256.

Fan, K.: Les fonctions asymptotiquement presque-périodiques d’une variable entiére
et leur application a ['étude de l’itération des transformations continues. Math.
Z. 48 (1943), 685-711.

Favard, J.: Sur certains systémes différentiels scalaires linéaires et homogénes a coef-
ficients presque-périodiques. Ann. Mat. Pura Appl. 61 (1963), no. 4, 297-316.

Favard, J.: Sur les équations différentielles linéaires a coefficients presque-périodi-
ques. Acta Math. 51 (1928), no. 1, 31-81.

Favorov, S.; Parfyonova, N.: Almost periodic mappings to complex manifolds. In:
Functional analysis and its applications, 81-84. North-Holland Math. Stud., 197,
Elsevier, Amsterdam, 2004.

Faxing, L.. The existence of almost-automorphic solutions of almost-automorphic
systems. Ann. Differential Equations 3 (1987), no. 3, 329-349.

Feng, Q.; Yuan, R.: Ezistence of almost periodic solutions for neutral delay difference
systems. Front. Math. China 4 (2009), no. 3, 437-462.

Filippov, M. G.: Reducibility of linear almost periodic systems of differential equa-
tions with a skew-symmetric matriz. In: Analytic methods for studying nonlinear
differential systems, 120-127. Akad. Nauk Ukrainy, Inst. Mat., Kiev, 1992.

Fink, A. M.: Almost periodic differential equations. Lecture Notes in Math., Vol. 377.
Springer-Verlag, Berlin, 1974.

Flor, P.: Uber die Wertmengen fastperiodischer Folgen. Monatsh. Math. 67 (1963),
12-17.

Fréchet, M.: Les fonctions asymptotiquement presque-périodiques. Revue Sci. (Rev.
Rose Illus.) 79 (1941), 341-354.



BIBLIOGRAPHY 175

[75]

[76]

[77]

[78]

[79]

[30]

[31]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

[91]

Fréchet, M.: Les fonctions asymptotiquement presque-périodiques continues. C. R.
Acad. Sci. Paris 213 (1941), 520-522.

Fulton, W.; Harris, J.: Representation theory. A first course. Springer-Verlag, New
York, 1991.

Funakosi, S.: On extension of almost periodic functions. Proc. Japan Acad. 43 (1967),
739-742.

Furstenberg, H.: Strict ergodicity and transformation of the torus. Amer. J. Math.
83 (1961), 573-601.

Gal, C. G.; Gal, S. G.; N'Guérékata, G. M.: Almost automorphic functions with values
in p-Fréchet spaces. Electron. J. Differential Equations 2008, no. 21, 1-18.

Gantmacher, F.R.: The theory of matrices. (Vol. 1. Reprint of the 1959 translation.)
AMS Chelsea Publishing, Providence, 1998.

Georgi, H.; Glashow, S.L.: Unity of all elementary-particle forces. Phys. Rev. Lett.
32 (1974), 438-441.

Gockenbach, M. S.: Finite-dimensional linear algebra. Discrete Mathematics and its
Applications (Boca Raton). CRC Press, Boca Raton, 2010.

Gopalsamy, K.; Liu, P.; Zhang, S.: Almost periodic solutions of nonautonomous
linear difference equations. Appl. Anal. 81 (2002), no. 2, 281-301.

Gottschalk, W. H.: Orbit-closure decompositions and almost periodic properties. Bull.
Amer. Math. Soc. 50 (1944), 915-919.

Grande, R.F.: Hierarchy of almost-periodic function spaces. Rend. Mat. Appl. (7)
26 (2006), no. 2, 121-188.

Guan, Y.; Wang, K.: Translation properties of time scales and almost periodic func-
tions. Math. Comput. Modelling 57 (2013), no. 5-6, 1165-1174.

Hamaya, Y.: FEzxistence of an almost periodic solution in a difference equation by
Lyapunov functions. Nonlinear Stud. 8 (2001), no. 3, 373-379.

Han, Y.; Hong, J.: Almost periodic random sequences in probability. J. Math. Anal.
Appl. 336 (2007), no. 2, 962-974.

Haraux, A.: A simple almost-periodicity criterion and applications. J. Differential
Equations 66 (1987), no. 1, 51-61.

Haraux, A.: Nonlinear evolution equations. Global behavior of solutions. Lecture
Notes in Math., Vol. 841. Springer-Verlag, New York, 1981.

Harmer, M.: Hermitian symplectic geometry and extension theory. J. Phys. A-Math.
Theor. 33 (2000), 9193-9203.



BIBLIOGRAPHY 176

[92]

[93]

[94]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

Higham, N. J.: Functions of matrices. Theory and computation. Society for Industrial
and Applied Mathematics, Philadelphia, 2008.

Hong, J.; Yuan, R.: The existence of almost periodic solutions for a class of dif-
ferential equations with piecewise constant argument. Nonlinear Anal. 28 (1997),
no. 8, 1439-1450.

Horn, R.A.; Johnson, C.R.: Matrixz analysis. Cambridge University Press, Cam-
bridge, 1985.

Hu, Z.S.; Mingarelli, A. B.: Favard’s theorem for almost periodic processes on Banach
space. Dynam. Systems Appl. 14 (2005), no. 3-4, 615-631.

Hu, Z.S.; Mingarelli, A. B.: On a question in the theory of almost periodic differential
equations. Proc. Amer. Math. Soc. 127 (1999), 2665-2670.

Hu, Z.S.; Mingarelli, A.B.. On a theorem of Favard. Proc. Amer. Math. Soc.
132 (2004), no. 2, 417-428.

Ishii, H.: On the existence of almost periodic complete trajectories for contractive
almost periodic processes. J. Differential Equations 43 (1982), no. 1, 66-72.

Jaiswal, A.; Sharma, P.L.; Singh, B.: A note on almost periodic functions. Math.
Japon. 19 (1974), no. 3, 279-282.

Jajte, R.: On almost-periodic sequences. Colloq. Math. 13 (1964/1965), 265-267.

Janeczko, S.; Zajac, M.: Critical points of almost periodic functions. Bull. Polish
Acad. Sci. Math. 51 (2003), no. 1, 107-120.

Johnson, R. A.: A linear almost periodic equation with an almost automorphic solu-
tion. Proc. Amer. Math. Soc. 82 (1981), no. 2, 199-205.

Johnson, R. A.: Bounded solutions of scalar almost periodic linear equations. 1llinois
J. Math. 25 (1981), no. 4, 632-643.

Johnson, R.M.: On a Floquet theory for almost periodic, two-dimensional linear
system. J. Differential Equations 37 (1980), no. 2, 184-205.

Kacaran, T.K.; Perov, A.1.. Theorems of Favard and Bohr-Neugebauer for multi-
dimensional differential equations. Izv. Vyss. Ucebn. Zaved. Matematika 1968,
no. 5(72), 62-70.

Katznelson, Y. M.; Katznelson, Y.R.: A (terse) introduction to linear algebra. Stu-
dent Mathematical Library, Vol. 44. American Mathematical Society, Providence,
2008.

Kelley, J.L.: General topology. Graduate texts in Mathematics, Vol. 27. Springer,
New York, 1975.



BIBLIOGRAPHY 177

108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

Kelley, W. G.; Peterson, A.C.: Difference equations. An introduction with applica-
tions. Harcourt/Academic Press, San Diego, 2001.

Khan, L. A.; Alsulami, S. M.: Almost periodicity in linear topological spacesrevisited.
Commun. Math. Anal. 13 (2012), no. 1, 54-63.

Kirichenova, O. V.; Kotyurgina, A.S.; Romanovskii, R. K.: The method of Lyapunov
functions for systems of linear difference equations with almost periodic coefficients.
Siberian Math. J. 37 (1996), 147-150.

Kopeé¢, J.: On wvector-valued almost periodic functions. Ann. Soc. Polon. Math.
25 (1952), 100-105.

Kultaev, T.: Construction of particular solutions of a system of linear differen-
tial equations with almost periodic coefficients. Ukrain. Mat. Zh. 39 (1987), no. 4,
526-529, 544; translation in: Ukrainian Math. J. 39 (1987), no. 4, 428-431.

Kurzweil, J.; Vencovska, A.:. Linear differential equations with quasiperiodic coef-
ficients. Czechoslovak Math. J. 37(112) (1987), no. 3, 424-470.

Kurzweil, J.; Vencovska, A.: On a problem in the theory of linear differential equa-
tions with quasiperiodic coefficients. In: Ninth international conference on nonlinear
oscillations, Vol. 1 (Kiev, 1981), 214-217, 444. Naukova Dumka, Kiev, 1984.

Lakshmikantham, V.; Trigiante, D.: Theory of difference equations. Numerical me-
thods and applications. Monographs and Textbooks in Pure and Applied Mathe-
matics, Vol. 251. Marcel Dekker, Inc., New York, 2002.

Lan, N.T.. On the almost periodic solutions of differential equations on Hilbert
spaces. Int. J. Differ. Equ. 2009, art. ID 575939, 1-11.

Levitan, B.M.: Pocti-periodiceskie funkcii. Gosudarstv. Izdat. Tehn.-Teor. Lit.,
Moscow, 1953.

Levitan, B.M.; Zikov, V.V.: Favard theory. Uspekhi Mat. Nauk 32 (1977),
no. 2(194), 123-171, 263; translation in: Russian Math. Surveys 32 (1977), no. 2,
129-180.

Li, Y.; Li, B.: Almost periodic time scales and almost periodic functions on time
scales. J. Appl. Math. 2015, art. ID 730672, 1-8.

Li, Y.; Wang, C.: Almost periodic functions on time scales and applications. Discrete
Dyn. Nat. Soc. 2011, art. ID 727068, 1-20.

Li, Y.; Wang, C.: Almost periodic solutions to dynamic equations on time scales and
applications. J. Appl. Math. 2012, art. ID 463913, 1-19.

Lin, F.; Ni, H.: The ezistence and stability of almost periodic solution. Ann. Dif-
ferential Equations 23 (2007), no. 2, 173-179.



BIBLIOGRAPHY 178

[123]

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

Lipnitskii, A. V.: Lower bounds for the norm of solutions of linear differential systems
with a linear parameter. Differ. Uravn. 50 (2014), no. 3, 412-416; translation in:
Differ. Equ. 50 (2014), no. 3, 410-414.

Lipnitskii, A. V.: On the discontinuity of Lyapunov exponents of an almost periodic
linear differential system affinely dependent on a parameter. Differ. Uravn. 44 (2008),
no. 8, 1041-1049; translation in: Differ. Equ. 44 (2008), no. 8, 1072-1081.

Lipnitskii, A. V.. On the singular and higher characteristic exponents of an almost
periodic linear differential system that depends affinely on a parameter. Differ. Uravn.
42 (2006), no. 3, 347-355, 430; translation in: Differ. Equ. 42 (2006), no. 3, 369-379.

Lizama, C.; Mesquita, J. G.: Almost automorphic solutions of non-autonomous dif-
ference equations. J. Math. Anal. Appl. 407 (2013), no. 2, 339-349.

Lizama, C.; Mesquita, J. G.; Ponce, R.: A connection between almost periodic func-
tions defined on timescales and R. Appl. Anal. 93 (2014), no. 12, 2547-2558.

Maak, W.: Fastperiodische Funktionen. Springer-Verlag, Berlin, 1950.

Malkin, I. G.: Some problems of the theory of nonlinear oscillations. Springer-Verlag,
New York, 1991.

Mauclaire, J.-L.: Suites limite-périodiques et théorie des nombres. I. Proc. Japan
Acad. Ser. A Math. Sci. 56 (1980), no. 4, 180-182.

Mauclaire, J.-L.; Sur la théorie des suites presque-périodiques. I. Proc. Japan Acad.
Ser. A Math. Sci. 61 (1985), no. 5, 153-155.

Mauclaire, J.-L.; Sur la théorie des suites presque-périodiques. II. Proc. Japan Acad.
Ser. A Math. Sci. 61 (1985), no. 6, 190-192.

Meisters, G.H.: On almost periodic solutions of a class of differential equations.
Proc. Amer. Math. Soc. 10 (1959), 113-119.

Miller, A.: Almost periodicity. Old and new results. Real Anal. Exchange 2006, 30th
Summer Symposium Conference, 69-83.

Minh, N.V.; Naito, T.; Shin, J.S.: Almost periodic solutions of differential equations
in Banach spaces: some new results and methods. Vietnam J. Math. 29 (2001), no. 4,
295-330.

Moody, R.V.; Nesterenko, M.; Patera, J.: Computing with almost periodic functions.
Acta Crystallogr. Sect. A 64 (2008), no. 6, 654-669.

Moshchevitin, N.G.: Differential equations with almost periodic and conditionally
periodic coefficients: recurrence and reducibility. Mat. Zametki 64 (1998), no. 2,
229-237; translation in: Math. Notes 64 (1998), no. 1-2, 194-201.

Muchnik, A.; Semenov, A.; Ushakov, M.: Almost periodic sequences. Theoret. Com-
put. Sci. 304 (2003), no. 1-3, 1-33.



BIBLIOGRAPHY 179

[139]

[140]

141]

[142]

[143]
[144]

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Muni, G.: Functions of & almost periodic with respect to a homeomorphic group.
Boll. Un. Mat. Ital. B (5) 17 (1980), no. 1, 232-243.

Nerurkar, M. G.; Sussmann, H. J.: Construction of ergodic cocycles that are funda-
mental solutions to linear systems of a special form. J. Mod. Dyn. 1 (2007), 205-253.

Nerurkar, M. G.; Sussmann, H.J.: Construction of minimal cocycles arising from
specific differential equations. Israel J. Math. 100 (1997), 309-326.

N’Guérékata, G.M.: Almost automorphic and almost periodic functions in abstract
spaces. Kluwer Academic/Plenum Publishers, New York, 2001.

N’Guérékata, G. M.: Topics in almost automorphy. Springer-Verlag, New York, 2005.

Opial, Z.: Sur les solutions presque-périodiques d’une classe d’équations différen-
tielles. Ann. Polon. Math. 9 (1960/1961), 157-181.

Ortega, R.; Tarallo, M.: Almost periodic linear differential equations with non-se-
parated solutions. J. Funct. Anal. 237 (2006), no. 2, 402-426.

Palmer, K. J.: On bounded solutions of almost periodic linear differential systems. J.
Math. Anal. Appl. 103 (1984), no. 1, 16-25.

Pankov, A. A.; Tverdokhleb, Y.S.: On almost periodic difference operators. Dopov.
Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2000, no. 2, 24-26.

Papaschinopoulos, G.: FEzxponential separation, exponential dichotomy, and almost
periodicity of linear difference equations. J. Math. Anal. Appl. 120 (1986), 276-287.

Petukhov, A.P.: The space of almost periodic functions with the Hausdorff metric.
Mat. Sbh. 185 (1994), no. 3, 69-92; translation in: Russian Acad. Sci. Sb. Math.
81 (1995), no. 2, 321-341.

Pinto, M.; Robledo, G.: Cauchy matriz for linear almost periodic systems and some
consequences. Nonlinear Anal. 74 (2011), no. 16, 5426-5439.

Precupanu, A.: Relations entre les fonctions et les suites presque-automorphes. An.
Sti. Univ. “Al 1. Cuza” lasi Sect. I a Mat. (N.S.) 17 (1971), 37-41.

Radové, L.: Theorems of Bohr-Neugebauer-type for almost-periodic differential equa-
tions. Math. Slovaca 54 (2004), no. 2, 191-207.

Ragimov, M.B.: On a certain theorem of Bohr. Azerbaidzan. Gos. Univ. U¢en. Zap.
Ser. Fiz.-Mat. Nauk 1968, no. 4, 61-65.

Ritter, G. X.: A characterization of almost periodic homeomorphisms on the 2-sphere
and the annulus. General Topology Appl. 9 (1978), no. 3, 185-191.

Sell, G.R.: A remark on an example of R. A. Johnson. Proc. Amer. Math. Soc.
82 (1981), no. 2, 206-208.



BIBLIOGRAPHY 180

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163)]

[164]

165

[166]

167]

[168]

[169]

[170]

Seynsche, 1.: Zur Theorie der fastperiodischen Zahlfolgen. Rend. Circ. Mat. Palermo
55 (1931), 395-421.

Sharma, N.: Almost periodic functions on fuzzy metric space. Jhanabha 23 (1993),
129-131.

Sharma, P.L.; Anki Reddy, K. C.; Funakosi, S.: Remarks on uniform space valued
almost periodic functions depending on parameters. Math. Sem. Notes Kobe Univ.
4 (1976), no. 1, 87-90.

Shcherbakov, B. A.: The nature of the recurrence of the solutions of linear differential
systems. An. Sti. Univ. “Al. I. Cuza” lagi Sect. I a Mat. (N.S.) 21 (1975), 57-59.

Shtern, A.1.: Almost periodic functions and representations in locally convex spaces.
Uspekhi Mat. Nauk 60 (2005), no. 3(363), 97-168; translation in: Russian Math.
Surveys 60 (2005), no. 3, 489-557.

Shubin, M. A.: Local Favard theory. Moscow Univ. Math. Bul. 34 (1978), no. 2,
32-37.

Sljusarcuk, V.E.: Bounded and almost periodic solutions of difference equations in
a Banach space. In: Analytic methods for the study of the solutions of nonlinear
differential equations, 147-156. Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev,
1975.

Song, Y.: Periodic and almost periodic solutions of functional difference equations
with finite delay. Adv. Difference Equ. 2007, art. ID 68023, 1-15.

Stamov, G. T.: Almost periodic solutions of impulsive differential equations. Lecture
Notes in Math., Vol. 2047. Springer, Heidelberg, 2012.

Suleimanov, S. P.: Almost periodic functions of several variables with respect to Haus-
dorff metrics and some of their properties. Akad. Nauk Azerbaidzan. SSR Dokl.
36 (1980), no. 9, 8-11.

Tarallo, M.: Fredholm’s alternative for a class of almost periodic linear systems.
Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2301-2313.

Tarallo, M.: The Favard separation condition for almost periodic linear systems. J.
Dynam. Differential Equations 25 (2013), no. 2, 291-304.

Thanh, N.T.: Asymptotically almost periodic solutions on the half-line. J. Difference
Equ. Appl. 11 (2005), no. 15, 1231-1243.

Tkachenko, V.1.: Linear almost periodic difference equations with bounded solutions.
In: Asymptotic solutions of nonlinear equations with a small parameter, 121-124.
Akad. Nauk Ukrain., Inst. Mat., Kiev, 1991.

Tkachenko, V.1.: On linear almost periodic systems with bounded solutions. Bull.
Austral. Math. Soc. 55 (1997), no. 2, 177-184.



BIBLIOGRAPHY 181

[171] Tkachenko, V.1.: On linear homogeneous almost periodic systems that satisfy the
Favard condition. Ukrain. Mat. Zh. 50 (1998), no. 3, 409-413; translation in:
Ukrainian Math. J. 50 (1998), no. 3, 464—469.

[172] Tkachenko, V.1.: On linear systems with quasiperiodic coefficients and bounded so-
lutions. Ukrain. Mat. Zh. 48 (1996), no. 1, 109-115; translation in: Ukrainian Math.
J. 48 (1996), no. 1, 122-129.

[173] Tkachenko, V.1.: On reducibility of linear quasiperiodic systems with bounded solu-
tions. In: Proceedings of the 6th Colloquium on the Qualitative Theory of Differen-
tial Equations (Szeged, 1999), no. 29, 1-11. Proc. Colloq. Qual. Theory Differ. Equ.,
Electron. J. Qual. Theory Differ. Equ., Szeged, 2000.

[174] Tkachenko, V.1.: On reducibility of systems of linear differential equations with
quasiperiodic skew-adjoint matrices. Ukrain. Mat. Zh. 54 (2002), no. 3, 419-424;
translation in: Ukrainian Math. J. 54 (2002), no. 3, 519-526.

[175] Tkachenko, V.I.: On uniformly stable linear quasiperiodic systems. Ukrain. Mat.
Zh. 49 (1997), no. 7, 981-987; translation in: Ukrainian Math. J. 49 (1997), no. 7,
1102-1108.

[176] Tkachenko, V.1.: On unitary almost periodic difference systems. In: Advances in
difference equations (Veszprém, 1995), 589-596. Gordon and Breach, Amsterdam,
1997.

[177] Tornehave, H.: On almost periodic movements. Danske Vid. Selsk. Mat.-Fysiske
Medd. 28 (1954), no. 13, 1-42.

[178] Varadarajan, V.S.: Supersymmetry for mathematicians. An introduction. In:
Courant Lecture Notes in Mathematics, Vol. 11. New York University, Courant In-
stitute of Mathematical Sciences, New York, 2004.

[179] Walther, A.: Fastperiodische Folgen und Potenzreihen mit fastperiodischen Koef-
fizienten. Abh. Math. Sem. Hamburg Universitédt VI (1928), 217-234.

[180] Wang, C.; Agarwal, R.P.: A further study of almost periodic time scales with some
notes and applications. Abstr. Appl. Anal. 2014, art. ID 267384, 1-11.

[181] Weston, J.D.: Almost periodic functions. Mathematika 2 (1955), 128-131.

[182] Yang, X.T.: Stability and boundedness of solutions and existence of almost periodic
solutions for difference equations. Acta Math. Sci. Ser. A Chin. Ed. 28 (2008), no. 5,
870-878.

[183] Yoshizawa, T.: Stability theory and the existence of periodic solutions and almost
periodic solutions. Applied Mathematical Sciences, Vol. 14. Springer-Verlag, New
York, 1975.

[184] Zaidman, S.: Almost-periodic functions in abstract spaces. Research Notes in
Mathematics, Vol. 126. Pitman Advanced Publishing Program, Boston, 1985.



BIBLIOGRAPHY 182

[185]

[186]

187]

[188]

[189]

[190]

[191]

Zhang, H.; Li, Y.: Almost periodic solutions to dynamic equations on time scales. J.
Egyptian Math. Soc. 21 (2013), no. 1, 3-10.

Zhang, S.: Almost periodicity in difference systems. In: New trends in difference
equations (Temuco, 2000), 291-306. Taylor & Francis, London, 2002.

Zhang, S.: Almost periodic solutions for difference systems and Lyapunov functions.
In: Differential equations and computational simulations (Chengdu, 1999), 476-481.
World Sci. Publ.; River Edge, 2000.

Zhang, S.. Almost periodic solutions of difference systems. Chinese Sci. Bull.
43 (1998), no. 24, 2041-2046.

Zhang, S.: FEwistence of almost periodic solutions for difference systems. Ann. Dif-
ferential Equations 16 (2000), no. 2, 184-206.

Zhang, S.; Zheng, G.: Almost periodic solutions of delay difference systems. Appl.
Math. Comput. 131 (2002), no. 2-3, 497-516.

Zhang, S.; Zheng, G.: FExistence of almost periodic solutions of neutral delay dif-
ference systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 9 (2002),
no. 4, 523-540.



