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1. Introduction and summary

1.1. Introduction

Functional data analysis is an active area of statistics that deals with data that can be
seen as mathematical functions. These could be curves, surfaces, images etc. Due to
the development of modern technology, contemporary data sets indeed often consist of
data units that are complex object. A functional data set is a collection of observations
of such functions (mathematically regarded as realizations of random processes, i.e.,
random variables in a function space), whereas more traditional data sets consist of
observations of numbers or vectors. For a general background, see, e.g., Bosq (2000),
Ramsay and Silverman (2005), Ferraty and Vieu (2006), Ferraty and Romain (2011),
Horváth and Kokoszka (2012), Hsing and Eubank (2015) or Kokoszka and Reimherr
(2017).

My research concentrates on the development of statistical methodology driven by
applications. This text comprises five research articles containing my and my co-authors’
contributions to the field of functional data analysis accompanied by this introductory
section, which summarizes the contents of the papers. The presentation is simplified to
provide only the basic ideas and results of each paper. Thus, for example, references to
preceding and subsequent relevant publications are not included and results are described
in a stylized way rather than as rigorous formal statements.
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The papers included in the appendix are:

(A) Panaretos, V. M., Kraus, D., and Maddocks, J. H. (2010). Second-order comparison
of Gaussian random functions and the geometry of DNA minicircles. Journal of
the American Statistical Association, 105(490):670–682.

(B) Kraus, D. and Panaretos, V. M. (2012). Dispersion operators and resistant second-
order functional data analysis. Biometrika, 99(4):813–832.

(C) Kraus, D. (2015). Components and completion of partially observed functional
data. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
77(4):777–801.

(D) Kraus, D. and Stefanucci, M. (2019). Classification of functional fragments by
regularized linear classifiers with domain selection. Biometrika, 106(1):161–180.

(E) Kraus, D. (2019). Inferential procedures for partially observed functional data.
Journal of Multivariate Analysis, 173:583–603

Four papers (A, B, C, D) have been published in the Journal of the American Sta-
tistical Association, Biometrika and Journal of the Royal Statistical Society: Series B
(Statistical Methodology), which are regarded by the scientific community among the
leading 5–7 journals in the field of methodological statistics. Paper E has been pub-
lished in the Journal of Multivariate Analysis, which is a standard, respected journal
in the field. Two papers (C, E) are single-authored, the other three are collaborative
with equal contribution of each co-author. The papers have been published with peer-
reviewed supplements, which are included as well.

1.2. Summary of Paper A

Paper A (Panaretos et al., 2010) studies methods of statistical inference on the covariance
structure of random functions. Although its main focus is the development of statistical
methodology and related theory, the motivation for this work comes from another field,
namely molecular biology.

The understanding of the mechanical properties of the DNA molecule constitutes
a fundamental biophysical task, as important biological processes can be affected by
properties such as stiffness and shape. In addition to holding the genetic code, the DNA
base-pair sequence may influence the geometric properties of the molecule. However,
empirical detection of this effect on stereological data acquired through the electron
microscope had previously been elusive. The data set of interest consists of closed
curves (DNA minicircles obtained from short strands of DNA) in R3 of two types: both
types have identical base pair sequences, except for a short base-pair window, where
two different sequences are present (one of them, a TATA box, is of special interest).
Biophysical considerations suggest this will have a significant effect on the geometry of
the minicircle, and the goal is to compare these two groups to probe for such an effect.
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Motivated by the need of two-sample comparison of loops, as exemplified in DNA
minicircle experiments, this article considers the problem of second-order comparison
of two samples of random functions, within a functional data analysis framework. In
particular, given realisations of n1 and n2 independent copies of two continuous zero
mean Gaussian processes X and Y on a compact set, we consider the problem of testing
the hypothesis that their covariance operators RX ,RY are equal against the alternative
that they are different. Although this problem is now well studied, by the time of
writing of this paper it had received relatively little attention. Our paper proposes a test
based on the approximation of the Hilbert–Schmidt distance of the empirical covariance
operators of the two samples of functions based on the Karhunen–Loève expansion.
The asymptotic distribution of the test statistic is determined and its performance is
investigated computationally. The application of our methodology to the data set of two
groups of minicirles characterized by the presence or absence of a TATA box suggests
the potential existence of significant differences in the two groups, which eluded previous
analyses as these focused on the mean (the shape of the minicircle), whereas we detect
the differences in the covariance structure (the flexibility/stiffness).

Let us give a more detailed description of the contents of Paper A.
Since this work is data-driven, the paper first explains the scientific background and

questions in molecular biology and the source, properties and pre-processing of available
data. To perform a functional data analysis of the minicircles it is required to register the
data. Each curve has thus been centered and scaled, so that the center of mass is at zero
and the length of the curve is one. Since the data were obtained by electron microscopy
of the minicircles imbedded in a liquid, the reconstructed curves are not aligned (they are
subject to a random unobservable orthogonal transformation). We describe a procedure
that rigidly aligns curves by their intrinsic characteristics: each curve was individually
aligned using the coordinate system induced by its moments of inertia tensor. We thus
arrive at a functional data set consisting of smooth curves indexed by the arc length
taking values in R3 (corresponding to the coordinates on the three principal axes of
inertia).

We assume that we have two independent collections X1, . . . , Xn1 and Y1, . . . , Yn2 of iid
Gaussian processes on [0, 1], considered as random elements of the Hilbert space L2[0, 1]
of coordinate-wise square-integrable R3-valued functions with the inner product 〈f, g〉 =∫ 1
0 f(t)Tg(t)dt (but everything readily extends to more general cases). Assuming, with-

out loss of generality, that the mean functions are zero, the processes are characterized by
their respective covariance kernels RX(s, t) = cov{Xi(s), Xi(t)}) = E{Xi(s)Xi(t)

T}, and
RY (s, t), respectively. Associated with the covariance kernel is the covariance operator
RX : L2[0, 1] → L2[0, 1] defined as RX(f)(t) = cov{〈Xi, f〉, Xi(t)} =

∫ 1
0 RX(t, s)f(s)ds.

The Karhunen–Loève theorem allows for a representation of the process by a stochastic

Fourier series with respect to the orthonormal eigenfunctions {ϕ(j)
X }∞j=1 of the operator

RX ,

Xi(t) =

∞∑

j=1

√
λ
(j)
X ξijϕ

(j)
X (t),
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where {λ(j)X }∞j=1 is the nonincreasing sequence of corresponding eigenvalues and {ξij} is
an iid array of standard Gaussian random variables. The empirical covariance kernel may
be used to “optimally” reduce infinite-dimensional inferential problems to multivariate
ones. Letting R̂X stand for the empirical covariance kernel, we denote its eigenvalues by
λ̂k,n1

X and its eigenfunctions by ϕ̂k,n1

X . The finite-dimensional reduction is then achieved

by retaining a finite number of principal components 〈Xi − X̄, ϕ̂k,n1

X 〉, k = 1, . . . ,K in
lieu of each Xi, and similarly for the second sample. The dimension reduction afforded
by the Karhunen–Loève expansion is the tool we employ to construct our test.

We wish to test the null hypothesis RX = RY against the alternative RX 6= RY .
We propose the use of a test statistic based on the norm of the difference of the two
empirical covariance operators. The Hilbert–Schmidt norm of a trace-class operator R
is defined as

‖R‖HS =

√∫ 1

0

∫ 1

0
trace{R(s, t)TR(s, t)}dsdt.

A test may be based on the squared Hilbert–Schmidt distance ‖R̂X − R̂Y ‖2HS. The
sampling distribution of this quantity will depend on the unknown covariance operators
even asymptotically. To be able to “normalize” the test statistic, we employ the property
that for any orthonormal system {ei} of L2[0, 1], we have

‖R‖2HS =
∞∑

i=1

‖Rei‖2 =
∞∑

i=1

∞∑

j=1

〈Rei, ej〉2

‖R̂X − R̂Y ‖2HS. In practice, we need to truncate the series to obtain a finite-dimensional
reduction and choose the contrasts {ei} so that the truncation retains the bulk of the
norm. For each of the two empirical operators, the optimal contrasts will coincide with
their eigenfunctions, but we need to use a common basis. We thus choose the eigenfunc-
tions ϕ̂k,NXY of the empirical covariance operator of the pooled sample as a compromise
for the common coordinate system. Our proposed test statistic is a linear combination
of the terms 〈(R̂X − R̂Y )ϕ̂i,NXY , ϕ̂

j,N
XY 〉2, i, j = 1, . . . ,K with weights corresponding to

their asymptotic covariance structure. Theorem 1 in the paper shows that under the
null hypothesis and certain assumptions, this test statistic is asymptotically chi-squared
distributed with K(K + 1)/2 degrees of freedom, which is the basis of a hypothesis test.

The paper then introduces a modified test statistic that can be useful when one a pri-
ori knows that the eigenfunctions of both covariance operators are are equal. Then one
can focus only on the diagonal terms (those with i = j), which leads to a test statistic
with asymptotic chi-squared distribution with K degrees of freedom. Furthermore, we
consider variance-stabilized variants of these statistics, where we apply a log transfor-
mation to the diagonal terms and Fisher’s z-transformation to the off-diagonal terms.
We then discuss methods to choose the truncation level.

To assess the behaviour of the proposed tests under the null hypothesis and under
various alternatives we carry out a number of simulations. We consider one situation
with equal covariance functions and several alternative configurations. The general and
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diagonal test statistics are considered under various fixed choices of K and with au-
tomatically selected K. The study provides a useful insight into the performance and
capabilities of the tests depending on the type of deviation from the null hypothesis.
Next, we present an analysis of the data set of DNA minicircles. First, we show both
graphically and numerically that there is no important difference between the means of
the two types of curves. Then we focus on the comparison of their second order proper-
ties. The analysis shows a significant difference on the third (most important) principal
axis of inertia and also jointly in the plane given by the third and second axis.

A proof of Theorem 1 is provided in the Appendix. Additional plots and tables are
available in a supplementary file. In addition, the supplementary file contains a more
detailed study of the problem of comparing the complete spectrum.

1.3. Summary of Paper B

Paper B (Kraus and Panaretos, 2012) focuses on the second-order structure of a random
function, which is key to understanding the nature of the functional observations that
it induces, as it is inextricably linked with the smoothness properties of the stochastic
fluctuations of the function. These second-order properties are encapsulated in the co-
variance operator. The link with the smoothness properties of the random function is
then given by the Karhunen–Loève expansion, which provides an optimal Fourier repre-
sentation of the random function, using a basis comprised by the eigenfunctions of this
operator. A natural inference problem is that of comparing the covariance structures of
two samples of functional data, in order to decide whether they share the same fluctua-
tion properties. We focus on situations where the data are not Gaussian, and indeed may
be characterized by the presence of influential observations. The infinite-dimensional na-
ture of the data means that an observation can be atypical in many ways, the deviation
from the mean being only one; observations close to the mean may contain unusual fre-
quency components. Detection of such observations via exploratory techniques may be
non-trivial. Such influential observations might significantly influence the estimation of
the covariance, and, even more profoundly, the quality of the estimators of its spectrum.
The sensitivity of the empirical covariance operator and its spectrum to the presence
of influential observations can have an impact on testing procedures for the covariance
operator.

To cope with these issues, this paper introduces a class of operators that we term dis-
persion operators that are implicitly defined through a variational problem, motivated by
M -estimators of location for the tensor product of the centred functional observations.
It is then proposed that these operators be used as proxies for the covariance operator,
when inferences on the second-order structure are to be drawn for non-Gaussian and
potentially contaminated functional samples. The implicit definition of a dispersion op-
erator gives rise to a score equation, as the dispersion operator is a zero of the Fréchet
derivative of the variational problem with respect to the operator argument. This func-
tional score equation is then used as a basis to construct a test for the second-order
comparison of two functional samples. The test is based on the distance of the func-
tional score equation under the null hypothesis from zero, measured by an appropriately
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renormalized Hilbert–Schmidt distance. This work is motivated by and illustrated on
a data set of DNA strands, which indeed is contaminated by atypical curves.

We now recapitulate the contributions of Paper B in more detail.
First, the paper introduces the notion of a dispersion operator as a substitute for the

usual covariance operator that is more suitable for contaminated data while still charac-
terizing the second-order structure of the random function. To describe the second-order
properties of a random element X in a separable Hilbert space H (without loss of gen-
erality L2[0, 1]), one typically considers the covariance operator

C = E{(X − µ)⊗ (X − µ)},

where ⊗ stands for the tensor product and µ = E(X) is the mean. The covariance
operator can be seen as the Hilbert–Schmidt operator that solves the variational problem

min
R∈HS(H,H)

E{‖(X − µ)⊗ (X − µ)−R‖2}

(HS(H,H) are Hilbert–Schmidt operators from H to H). The empirical covariance
operator can be represented as the solution to the above optimization problem with
expectation computed with respect to the empirical distribution of the data. This being
essentially a least squares problem, both the empirical covariance operator and methods
based on it will be sensitive to the presence of atypical observations in the dataset. We
obtain procedures pertaining to the second-order structure of X that are more resistant
to departures from normality and to the presence of influential observations by replacing
the squared norm in the variational problem defining the covariance by a less sensitive
loss function. This gives rise to a new class of second-order characteristics, which we call
dispersion operators. Within this class, the most useful new choice of the loss function
leads to what we call the spatial dispersion operator. It is defined via M -estimation of
the location of (X − µ)⊗ (X − µ) as

arg min
R∈HS(H,H)

E{‖(X − µ)⊗ (X − µ)−R‖ − ‖(X − µ)⊗ (X − µ)‖},

where µ is a suitable element of H with the interpretation of a location parameter (the
spatial median is a natural choice). The empirical spatial dispersion operator minimizes
the sample version of the objective. By taking Fréchet derivative we arrive at an equiv-
alent definition of the dispersion operator as a Z-estimator solving a score equation.

Proposition 1 in the paper establishes the existence and uniqueness of the (population)
dispersion operator under non-restrictive assumptions on the data-generating distribu-
tion. In Corollary 1 we show that the sample dispersion operator exists and is unique
under weak assumptions on the observed data, and that it is consistent for the true
dispersion operator. We continue our theoretical analysis by showing an interesting link
between the spectra of the dispersion and covariance operator. Although the operators
are in general different, they both carry useful information on second-order properties.
Proposition 2 shows that the dispersion operator has the same set of eigenfunctions as
the covariance operator.
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Having defined the notion of a dispersion operator, we then construct a two-sample
second-order test based upon it. Let there be two independent random samples of
functions, whose location parameters are µ1, µ2 and dispersion operators are R1,R2.
The goal is to test the null hypothesis H0: R1 = R2 against the general alternative
H1: R1 6= R2. We propose to employ the general idea of score tests, that is, to base
the test on the estimating score for the general model, without assuming H0, evaluated
at the null estimate of the parameter. As the centres µ1, µ2 are not restricted under
the null hypothesis, they can be estimated separately. On the other hand, the common
null estimator of the dispersion is estimated by R̂, which minimizes a combination of
objectives for each sample under the restriction induced by the null. Equivalently, R̂
solves a score equation under H0. After a reparametrization, we arrive at a score operator
whose component corresponding to the difference between the two dispersion operators
reflects the validity of H0. When the null hypothesis holds, the score operator is expected
to be close to the zero operator, otherwise it should be far from the zero operator. To
perform the test, we need to measure its distance from the zero operator and assess the
significance of the resulting test statistic. We especially develop one way of doing it. It
is based on spectral truncation of the score operator, which is an infinite dimensional
object (a Hilbert–Schmidt operator on H). We use a projection of this operator on
a finite dimensional subspace, in particular the one defined by the tensor products of
the eigenfunctions of the dispersion operator. The test statistic is then obtained by
combining the projection coefficients in a quadratic form. Theorem 1 establishes the
weak convergence of the score operator to a mean zero Gaussian random operator under
the null hypothesis and provides a consistent estimator of its covariance operator (which
is an operator on operators). Then it provides the asymptotic null distribution of the
score test statistic.

Next, the paper presents empirical results. In a simulation study, we investigate the
behaviour of the test based on the spatial dispersion and the non-resistant L2 test under
the null hypothesis without and with contamination and the impact of contamination on
the power of these tests under various alternative and contamination scenarios. We also
apply the proposed methodology to the data set of DNA minicircles studied in Paper A.
The supplementary document contains proofs of theoretical results.

1.4. Summary of Paper C

It is standard in the field of functional data analysis to assume that all functions are
observed on the same domain. In Paper C (Kraus, 2015), we develop methods of analysis
for functional data that are observed incompletely in the sense that each function might
be observed only on a subset of the domain, whereas no information about the curve is
available on the complement of this subset.

Our work is motivated by an ambulatory blood pressure monitoring data set that is
part of the “Swiss Kidney Project on Genes in Hypertension.” The data set consists
of automatically recorded temporal heart rate profiles of several hundred participants.
Due to either the failure of the recording device or participant’s discomfort some values
have not been measured and the time points corresponding to unobserved values form
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series (intervals) of non-negligible length. The resulting data set thus consists of partially
observed curves (functional fragments). Since there is only a relatively small fraction of
complete curves, removing incomplete curves would considerably reduce (and possibly
destroy) the accuracy of the statistical analysis. Therefore, this type of functional data
necessitates the development of special methodological approaches, which is the subject
of this paper. Before the appearance of this paper, relatively little work had been
published on missing data in the functional context.

In this paper we introduce a formal framework for analysing incompletely observed
functional data and develop basic nonparametric, fully functional (infinite-dimensional)
inferential procedures. We first focus on the main building blocks of the analysis of the
second-order properties: estimation of the covariance operator and principal component
analysis. We propose an estimator of the covariance operator and its eigenvalues and
eigenfunctions for partially observed functions and derive their properties. We deal with
the estimation of projections (principal scores) of individual incomplete functions which
is especially challenging. We develop a procedure that enables to predict the value of
a principal score of a function when only a fragment of the function is available and
direct computation is thus impossible. Next, we propose a method that can recover the
unobserved part of the function from the observed part, using the information about the
distribution of the data that it learns from the sample. We develop automatic procedures
for the selection of the tuning parameter of the method that is based on generalised
cross-validation for incompletely observed functions. We quantify the uncertainty of
the predictions of unobserved quantities and provide approximate prediction regions
(intervals and bands) covering the unobserved random quantity with high probability.
Simulations confirm the usefulness and good performance of the proposed methodology.

We now describe the main methodological, theoretical and numerical contributions of
Paper C.

First, the paper formalizes the framework of partially observed functional data. Func-
tional data X1, . . . , Xn are seen as independent identically distributed random vari-
ables in the separable Hilbert space of square integrable functions on a bounded do-
main. Without loss of generality, we consider the space L2([0, 1]) with inner product
〈f, g〉 =

∫ 1
0 f(t)g(t)dt, f, g ∈ L2([0, 1]) and norm ‖f‖ = 〈f, f〉1/2. In traditional func-

tional data analysis, it is assumed that the functions X1, . . . , Xn are observed on the
whole interval [0, 1]. We consider situations where each curve Xi is observed only on
a subset of [0, 1]. Specifically, let the observation periods be Oi ⊂ [0, 1], i = 1, . . . , n.
Then the observed data for the ith curve are Xi(t), t ∈ Oi. We collectively denote
the observed part of the curve as XiOi , which can be seen as a random element of the
space L2(Oi). The values of Xi on the complement of Oi, Mi = [0, 1] \ Oi, are not
observed; the missing part of the trajectory is denoted as XiMi . The observation periods
Oi, i = 1, . . . , n are modelled as random subsets of [0, 1]. We assume that the observa-
tion periods are independent of the functions X1, . . . , Xn, that is, the data are missing
completely at random.

Next, the paper focuses on the estimation of the main characteristics of the distribution
that generates the data, that is, the mean function and the covariance operator. Let the
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mean function be µ = EX1. The covariance operator R : L2([0, 1])→ L2([0, 1]) is defined
as Rf = E{〈f,X1 − µ〉(X1 − µ)} =

∫ 1
0 ρ(·, t)f(t)dt, where ρ(s, t) = cov{X1(s), X1(t)}

is the covariance kernel of the stochastic process X1. Like in the multivariate case, the
mean function µ at point t ∈ [0, 1] can be estimated by the sample mean of observed
values at this point. The estimator R̂ of the covariance operator R is defined through
an estimator of its covariance kernel ρ. We estimate ρ(s, t) by the sample covariance
computed from all complete pairs of functional values at s and t. It is seen that µ̂(t) is an
unbiased estimator of µ(t). Similarly, if we subtract 1 in the denominator of ρ̂(s, t), the
estimator becomes unbiased for ρ(s, t). For the estimators µ̂ and R̂ to be consistent, we
need to assume that the observation pattern asymptotically provides enough information.
The exact formulation of such assumptions is provided in equations (2) and (3) in the
paper. Under these weak assumptions, we obtain a consistency result in Proposition 1
of the paper. In particular, we show that the L2 distance between the µ̂ and µ and the
Hilbert–Schmidt distance between R̂ and R̂ converge to zero in quadratic mean (and
hence in probability). Interestingly, the properties of the estimators are unaffected by
the fact that the functions are observed only partially. The full (dense) observation
regime, albeit only on subsets of the domain, preserves the convergence rates known for
complete functional data.

The paper then focuses on principal component analysis, which is probably the most
fundamental method for functional data since it provides insight into the complex co-
variance structure of functional data, can be used to identify main sources of variability
and quantify their importance and to reduce the dimension of the data. The theoretical
foundation of functional principal component analysis is the Karhunen–Loève theorem
stating that there exist random variables βij and nonrandom functions ϕj such that the
stochastic process Xi admits the decomposition

Xi(t) = µ(t) +

∞∑

j=1

βijϕj(t), t ∈ [0, 1],

where the series converges in mean square, uniformly in t. Here ϕj , j = 1, 2, . . . are
the orthonormal eigenfunctions of the operator R and βij , j = 1, 2, . . . are uncorrelated
mean zero variables with variances λj , where λ1 ≥ λ2 ≥ · · · > 0 are the eigenvalues of R.
Functional principal component analysis is the empirical version of the Karhunen–Loève
expansion that aims to estimate the elements involved in the expansion. In the case of
completely observed functional data, to estimate the eigenvalues λj and eigenfunctions
ϕj , one performs eigen-decomposition of the usual sample covariance operator. When
the functions are observed partially, one can proceed similarly and define the estima-
tors λ̂j and ϕ̂j as the eigenvalues and eigenfunctions of the operator R̂ given by the
kernel ρ̂. The paper shows that the asymptotic properties of the empirical eigenvalues
and eigenfunctions remain unchanged by the incompleteness of the observed functions.
Proposition 2 in the paper establishes that first, the empirical eigenvalues are consistent
estimators of the true eigenvalues and this consistency is uniform over all indices, and
second, the empirical eigenfunctions are consistent estimators of the true eigenfunctions,
up to the usual sign ambiguity. The rates of convergence are parametric due to the full
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observation regime on subsets.
The paper then moves to the most challenging contributions which are methods of in-

ference for individual curves based on their incomplete observation. These are prediction
rather than estimation problems since they aim to provide information on random tar-
gets: the principal scores βij and the missing part of the curve XiMi . In the standard sit-

uation of complete functional data, the scores are easily estimated by β̂ij = 〈Xi− µ̂, ϕ̂j〉.
When the functional observations are incomplete, the direct computation of 〈Xi− µ̂, ϕ̂j〉
is impossible because the last term in the expression

〈Xi − µ̂, ϕ̂j〉 = 〈XiOi − µ̂Oi , ϕ̂jOi〉+ 〈XiMi − µ̂Mi , ϕ̂jMi〉
is not available. In Section 3.2 of the paper we develop a procedure to estimate (or rather
predict) the missing quantity 〈XiMi − µ̂Mi , ϕ̂jMi〉 from the observed data and establish
its theoretical properties (Theorem 1, Proposition 3). We skip the description of this
part in this summary and instead describe the results on prediction of the missing part
of an incomplete curve.

This task of function reconstruction (completion) is studied in Section 4 of the paper.
In the population version of the problem, the best prediction of XM by a function of XO

in the sense of the mean integrated prediction squared error is the conditional expectation
E(XM |XO). It is in general a nonlinear operator from L2(O) to L2(M) and similarly
to the case of principal scores, we consider its best continuous linear approximation.
Assuming for simplicity that the functional variable has mean zero, the minimisation
problem to be solved is

min
A :‖A ‖∞<∞

E ‖XM −AXO‖2,

where the solution is looked for in the class of continuous (bounded) linear operators from
L2(O) to L2(M) (by ‖ · ‖∞ we denote the operator norm). We see (by Fréchet differenti-
ation or direct computation) that solving this minimisation is equivalent to solving the
(normal) equation A ROO = RMO. This suggests the solution Ã = RMOR−1OO and the

best linear prediction of XM in the form X̃M = ÃXO. From now on, we assume the ex-
istence of a bounded solution, that is, we assume that ‖RMOR−1OO‖∞ <∞. Similarly to
the case of principal scores, the inverse problem A ROO = RMO to be solved is ill-posed,
that is, small perturbations of the right-hand side RMO can lead to large perturbations of
the solution (recall that ROO is compact, hence its inverse is unbounded); perturbations
of the right-hand side indeed need to be considered since RMO will be only estimated
from the data in the sample version of the problem. Regularization (i.e., modification of
an ill-posed inverse problem into a well-posed inverse problem) is necessary for a stable
solution. Using ridge regularisation we obtain the solution Ã (α) = RMO(ROO+αIO)−1

(α > 0 is a regularization parameter, IO is the identity operator of L2(O)). The reg-

ularised best linear prediction equals X̃
(α)
M = Ã (α)XO. Practically, when the sample

X1O1 , . . . , XnOn is observed on the subsets O1, . . . , On, we replace the covariance op-

erator by its estimate and set Â
(α)
i = R̂MiOiR̂

(α)−1
OiOi

. The mean function needs to be
estimated as well. For the ith curve, the best linear prediction of XiMi is estimated by

X̂
(α)
iMi

= µ̂Mi + Â
(α)
i (XiOi − µ̂Oi).
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Under the assumption that the optimal reconstruction operator Ã (α) is Hilbert–Schmidt,
Theorem 1 of the paper proves the consistency of the estimated best linear reconstruc-
tion. That is, we show that, as the size of the training sample increases and the amount
of regularization decreases, the L2-distance between the theoretical best reconstruction
and its regularized estimate converges to zero in quadratic mean and provide the rate of
this convergence. It was later pointed out in the literature that our results are obtained
under unnecessarily strong assumptions. Therefore, in a follow-up paper (Kraus and
Stefanucci, 2020, not included here), we generalize the consistency result by relaxing the
assumption that the true optimal linear reconstruction operator is Hilbert–Schmidt. It
turns out that it is not even necessary to assume that the optimal reconstruction oper-
ator is bounded, and the ridge regularization method (which is Hilbert–Schmidt) still
performs optimally in the limit. The follow-up paper explains this in the context of the
Reproducing Kernel Hilbert Space theory.

The paper provides an estimator of the asymptotic covariance operator of the pre-
dictive distribution (error between the prediction and the target random process) and
proves its consistency (Proposition 5). This enables the construction of prediction inter-
vals. To address the problem of selection of the regularization parameter α, the paper
develops a generalized cross-validation procedure for partially observed data. A simula-
tion study is carried out to address the following goals: to investigate the performance
of generalized cross-validation as a selector of the regularization parameter, to verify
the validity and accuracy of the prediction intervals and bands and to explore the effect
of the observation pattern. Finally, the performance of the proposed methodology is
illustrated on the motivating data set of incomplete heart rate temporal profiles. Proofs
of all formal statements are provided in the appendix and in a supplement.

1.5. Summary of Paper D

In Paper D (Kraus and Stefanucci, 2019), we consider classification of a functional ob-
servation into one of two groups. We formulate the theoretical (population) problem of
determining the best classifier as a quadratic optimization problem on a function space,
or, equivalently, as a linear inverse problem. These problems are ill-posed but, unlike in
most inverse problems, this is not a complication but rather an advantage in the sense
that the more ill-posed the problem is, the better optimal misclassification probability.
We use regularization techniques, such as the method of conjugate gradients with early
stopping and ridge regularization, to solve the optimization problem, yielding a class of
regularized linear classifiers. The optimal misclassification rate is the limit along the
regularization path of solutions which themselves may not converge.

We study the empirical (sample) version of the problem, where the objective function
in the constrained minimization must be estimated from finite training data. We show
that it is possible to construct an empirical regularization path towards the possibly
non-existent unconstrained solution so that the classification error converges to its best
value, possibly zero. We do this for conjugate gradient, principal component and ridge
classification, in a truly infinite-dimensional manner, in the sense that the convergence
takes place along a path with decreasing regularization and holds without restrictions

12



on the mean difference between classes. All our methodology and theory is developed
in the setting of partially observed functional data, where trajectories are observed only
on subsets of the domain. The principal difficulty for inference with fragments is that
temporal averaging is precluded by the incompleteness of the observed functions. Our
formulation as an optimization problem enables us to overcome this issue under certain
assumptions because only averaging across individuals in the training data is needed, and
not individual curves. We propose a domain selection strategy that looks for the best
classifier with domain ranging from a minimum common domain of the training sample
to the entire domain of the function to be classified. Our simulation study confirms that
domain selection can considerably reduce the misclassification rate. Further simulations
compare the performance of the three types of regularization. Among other findings,
this study shows that the principal component and conjugate gradient classifiers often
achieve comparable error rates but the latter usually needs a lower dimension of the
regularization subspace, in agreement with a theoretical result we provide. Application
to a data set on the geometric features of the internal carotid artery in patients with
and without aneurysm demonstrates the utility of the proposed methodology.

A more detailed overview of the results of Paper D follows.
We consider classification of a Gaussian random function, X, into one of two groups of

Gaussian random functions. Group 0 has mean µ0, group 1 has mean µ1. Both groups
have covariance operator R. We first assume that µ0, µ1 and R are known, which
corresponds to the asymptotic situation with an infinite training sample. We consider
the class of centroid classifiers that are based on one-dimensional projections of the form
〈X,ψ〉, where ψ is a function in L2(I). Given ψ, the optimal classifier based on 〈X,ψ〉
assigns X to the class Cψ(X) given by

Cψ(X) = 1{Tψ(X)>0},

where Tψ(X) = 〈X − µ̄, ψ〉〈µ, ψ〉 with µ̄ = (µ0 + µ1)/2 and µ = µ1 − µ0. The misclassi-
fication probability of this classifier is

1− Φ

( |〈µ, ψ〉|
2〈ψ,Rψ〉1/2

)
.

The task to find the best function ψ ∈ L2(I) leads to the maximization of the argument
in Φ above. We discuss when this problem can be solved within L2 (i.e., there is an L2-
function ψ that achieves the best error rate), when it cannot be solved within L2 (i.e.,
the best error rate is achieved by a linear functional but it is unbounded, not of the form
〈X,ψ〉) and what value the optimal error rate can take (remarkably, it may be zero,
corresponding to perfect classification). This discussion connects the Hájek–Feldman
dichotomy between Gaussian measures, the theory of reproducing kernel Hilbert spaces
and constrained convex optimization. The optimization to be solved corresponds to the
task to maximize 〈µ, ψ〉 subject to 〈ψ,Rψ〉 = 1, which translates into the unconstrained
quadratic optimization problem to minimize 〈ψ,Rψ〉/2−〈µ, ψ〉, i.e., to the linear inverse
problem Rψ = µ.
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This formulation is the starting point for the definition of regularized classifiers. Re-
gardless of whether there is a solution (i.e., whether ψ = R−1µ exists in L2(I)), one
can consider an approximating, regularized problem that can be solved. Regularization
is typically used to solve ill-posed inverse problems, whose solution exists, in a stable
way. There, the path of regularized solutions converges to the solution to the prob-
lem of interest. Here no solution may exist, but paths of regularized solutions towards
the possibly non-existent solution still turn out to be useful, since the misclassification
probability converges to the optimal value along these paths. We consider three regu-
larization methods: the principal component method (which solves the optimization in
a subspace spanned by leading principal components), the conjugate gradient method
(which uses the numerical method of conjugate gradients with early stopping) and the
ridge method (which solves the optimization in a ball). In Propositions 1 and 3 in the pa-
per we provide an asymptotic analysis of these methods which shows that as the amount
of regularization decreases, the misclassification rate along the regularization path con-
verges to the optimal value. This is true even when there is no bounded solution to
the problem (i.e., R−1µ 6∈ L2(I)) and also in the “even more ill-posed” case of perfect
classification (i.e., R−1/2µ 6∈ L2(I)). Proposition 2 compares the two methods that use
a subspace for regularization, i.e., principal components and conjugate gradients, and
shows that the error rate of the former is always higher than or equal to that of the
latter when the same dimension is used.

We then present the empirical version with a finite training data set. Motivated by
a medical dataset, we do it in the case of incomplete curves. Incompleteness can occur
in the training data, with each curve possibly observed on a different domain, and in the
new curve we wish to classify. A simple approach would be to consider all curves on the
intersection of their observation domains, if it is non-empty, or to discard incomplete
curves. However, such restrictions may be too severe and can be avoided. For group
j let there be a training sample consisting of nj independent curves Xj1, . . . , Xjnj that
may be observed incompletely with values known only on a subset Oji of the domain.
Then, similarly to Paper C, the mean µj of group j can be estimated by the cross-
sectional average and the covariance kernel ρ(s, t) can be estimated by the empirical
covariance using pairwise complete observations of groupwise centred curves. Let the
new, independent curve to be classified, Xnew, be observed on the domain Onew. The
empirical classifier Ĉψ̂ trained on partially observed curves is defined like the theoretical
one but with unknown quantities replaced by their estimators. The projection direction
ψ̂ is constructed by conjugate gradient, principal component or ridge regularization
applied to estimates µ̂ and R̂ (defined through the estimated kernel ρ̂(s, t)), restricted
to the domain of the new curve to be classified (or, possibly, a subset of that domain).

In the theoretical analysis, we study the behaviour of classifiers for incomplete training
samples of increasing size with decreasing amount of regularization. We study the con-
jugate gradient method with increasing number of steps, principal component method
with increasing number of eigenfunctions and ridge method with decreasing ridge pa-
rameter in Theorems 1, 2 and 3, respectively. The theorems show that under specific
regularity conditions they all asymptotically achieve the optimal (Bayes) misclassifica-
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tion probability along the empirical regularization path as if there were infinite training
data. This holds regardless of whether the theoretical best projection classifier exists as
a bounded linear functional and whether the best error rate is positive or zero. Similarly
to the problem of function reconstruction in Paper C and the follow-up paper Kraus and
Stefanucci (2020), classification is also a prediction rather than an estimation task and
we observe a similar interesting phenomenon that involves a possibly non-convergent
regularization path along which the predictive performance converges to its optimum.

Further, we propose a domain selection procedure that aims to find the best domain on
which the classification is performed. The method searches for the best domain between
two extremes, the common domain of all training curves and the domain of the curve
to be classified, to capture the location in the domain, where maximum discrimination
between the two classes is.

The numerical part of the paper presents a simulation study, which compares the
behaviour of the different regularization methods, investigates the performance of cross-
validation for the selection of the regularization parameters, studies the impacts of par-
tial observation and demonstrates the usefulness of the domain selection procedure. In
a data example, we analyze a set of curves describing the blood vessel morphology in
persons with and without aneurysm. The analysis shows an improvement of classifica-
tion accuracy in comparison with existing methods due to the use of incomplete data
and domain selection. Further generalizations and numerical results are contained in
the supplementary document.

1.6. Summary of Paper E

Inspired by the data set of heart rate profiles, Paper E (Kraus, 2019) deals with another
aspect of partially observed functional data. Although some advanced procedures, such
as goodness-of-fit tests, regression, classification and reconstruction methods, have been
developed for functional fragments, basic methods of inference about the fundamental
characteristics of functional variables were still missing at the time of writing. In par-
ticular, the asymptotic distribution of estimators of the mean function and covariance
operator, K-sample tests of equal means or covariances, and confidence intervals for
eigenvalues and eigenfunctions had not been studied yet in the setting of incomplete
functions. Users who wish to perform these basic tasks had the only option: to omit the
partially observed functions and apply existing procedures to the complete data only.
This approach is not only clearly sub-optimal due to a possibly large loss of information
and resulting decay of power and accuracy, but also hardly or totally inapplicable in
situations where the data contain few or no complete curves.

In this paper, we address this deficiency of existing methodology and develop essential
methods of inference about the mean and covariance structure of incomplete functional
data. We find appropriate assumptions on the observation pattern that enable us to
establish the asymptotic distribution of estimators of µ and R. We develop tests for
comparing the mean functions in K populations of functional data based on samples of
fragments. Next, we propose several tests of equal covariance operators in K samples.
We also construct confidence intervals for the eigenvalues and eigenfunctions estimated
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from incomplete data. The practical implementation of methods for functional fragments
is more complicated than for complete curves. The main difficulty is that temporal aver-
aging (e.g., in inner products for dimension reduction) is impossible due to missing val-
ues. This leads to asymptotic distributions whose parameters follow rather complicated
formulas. More importantly, since dimension reduction is not possible, the asymptotic
distributions are, upon discretization, characterized by large objects (matrices or arrays)
that are difficult or even impossible to store and manipulate in computer memory. The
bootstrap turns out to be a solution to this problem. We provide specific algorithms
for resampling functional fragments for mean and covariance testing and for confidence
intervals for eigenelements. Our simulation study shows that the proposed methods are
superior to the currently only available approach based on omitting incomplete curves.

Let us now describe the contributions of Paper E more specifically.
First, we focus on inference about the mean of functional data. We consider estimation

of the mean function µ by the cross-sectional average of available observations as before.
In Kraus (2015, Proposition 1) (Paper C) it was shown that under non-restrictive as-
sumptions on the observation pattern such an estimator, µ̂, is consistent. Paper C goes
further and provides the asymptotic distribution of the estimator, which is essential in
the derivation of the limiting distribution of a test statistics. The paper introduces sets
of conditions on the observation pattern. Then it is shown in Theorem 1 that the estima-
tor µ̂ is asymptotically distributed as a Gaussian process and a consistent estimator of
the limiting covariance operator is provided. Next, we consider K independent samples
of incompletely observed functional data. Our aim is to test the null hypothesis that
all K mean functions are equal against the general alternative that the null does not
hold. In the literature on complete functional samples there exist two main approaches
to comparing mean functions. One is based on the L2 distance between the means
and one uses projections on finite dimensional subspaces. We explore both approaches
in the fragmentary setting. Test statistics are constructed and their null asymptotic
distributions are obtained under appropriate assumptions.

Next, we develop methods of second-order inference for functional fragments. The
covariance function ρ(s, t) can be estimated by the empirical covariance using pairwise
complete observations. We previously showed that under certain assumptions on the ob-
servation pattern, the operator R̂ with kernel ρ̂(s, t) consistently estimates R. Paper E
provides a deeper asymptotic study. We determine conditions on the pattern of missing-
ness that guarantee the weak convergence of the properly normalized difference between
R̂ and R to a Gaussian random operator (Theorem 3). These conditions in particular
do not require the existence of any completely observed curves in the data. An estima-
tor of the limiting covariance structure is provided. Then we study the estimators λ̂m
and ϕ̂m of the eigenvalues and eigenfunctions of R. The estimators are obtained by the
eigendecomposition of R̂. Theorem 4 establishes their asymptotic distributions with the
help of perturbation theory. The theorem generalizes the classic results for completely
observed functions. Next, we study tests for equality of covariance operators of several
populations. Tests of this null hypothesis can be based on the differences between the
estimators R̂j and a null estimator R̂. We propose two types of tests measuring the
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importance of these contrasts: one approach is based on the Hilbert–Schmidt norm of
the contrasts and one is based on their projections on a subspace. We give the asymp-
totic distribution of the Hilbert–Schmidt and projection statistics in Theorem 5. As an
alternative we explore an approach (previously proposed by other authors for complete
curves) that takes into account the fact that covariance operators do not form a linear
subspace of the Hilbert space of Hilbert–Schmidt operators and uses the square root
distance instead of the difference of covariances.

Section 4 of the paper deals with practical issues that arise due to partial observation.
Functional data procedures are practically implemented by discretization. Functions
then correspond to vectors (possibly with missing values), operators on the function
space correspond to matrices and operators on operators correspond to four-way ar-
rays. The direct implementation of the confidence sets and tests using the asymptotic
distributions may be excessively demanding in terms of computer memory, especially
in the case of covariance inference. Projection covariance tests for complete functions
can avoid the computation, storage and manipulation with large arrays by computing
principal scores of each function with respect to the required low number d of eigenfunc-
tions (for example, our Paper A here does it). This dimension reduction approach is
not applicable in the case of incomplete functions because the principal scores cannot be
computed (temporal averaging is precluded by the incompleteness of the curves). Similar
problems arise with Hilbert–Schmidt norm tests which involve a large eigenproblem that
cannot be reduced due to missingness. To overcome these difficulties we use the boot-
strap. We propose algorithms for mean and covariance testing and for the construction
of confidence intervals that are based on the resampling of functional fragments.

In the numerical part of the paper, we perform a simulation study whose main goal is
to investigate the impact of partial observation on the performance of the different mean
and covariance tests and compare the proposed tests using complete and incomplete
curves with the simple approach using complete curves only. We also analyze the data
set of incomplete heart rate curves. All technical proofs are collected in the appendix.
A supplement provides further numerical results.
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Second-Order Comparison of Gaussian Random
Functions and the Geometry of DNA Minicircles

Victor M. PANARETOS, David KRAUS, and John H. MADDOCKS

Given two samples of continuous zero-mean iid Gaussian processes on [0,1], we consider the problem of testing whether they share the
same covariance structure. Our study is motivated by the problem of determining whether the mechanical properties of short strands of
DNA are significantly affected by their base-pair sequence; though expected to be true, had so far not been observed in three-dimensional
electron microscopy data. The testing problem is seen to involve aspects of ill-posed inverse problems and a test based on a Karhunen–
Loève approximation of the Hilbert–Schmidt distance of the empirical covariance operators is proposed and investigated. When applied to
a dataset of DNA minicircles obtained through the electron microscope, our test seems to suggest potential sequence effects on DNA shape.
Supplemental material available online.

KEY WORDS: Covariance operator; DNA shape; Functional data analysis; Hilbert–Schmidt norm; Karhunen–Loève expansion; Regu-
larization; Spectral truncation; Two-sample testing.

1. INTRODUCTION

The understanding of the mechanical properties of the DNA
molecule constitutes a fundamental biophysical task, as impor-
tant biological processes, such as the packing of DNA in the
nucleus or the regulation of genes, can be affected by properties
such as stiffness and shape (Vilar and Leibler 2003; Tolstorukov
et al. 2005). The study of these properties can focus on differ-
ent scales, and accordingly involves a variety of mathematical
models and techniques. At a coarse-grained level, the behav-
ior of short (of the order of 150 base pairs) strands of DNA is
likened to that of a continuous elastic rod. By means of a re-
action called cyclization, two ends of this elastic rod bend and
twist and bind together to form a loop called a DNA minicir-
cle. These three-dimensional cyclic structures are an excellent
specimen for examining the elastic properties of DNA since a
minicircle is in a naturally stressed state without the applica-
tion of external forces. Furthermore, the short length of these
strands will amplify the dependence of the mechanistic behav-
ior on intrinsic factors such as the specific base pair sequence.

Such sequence-dependent shape characteristics are of special
interest as they potentially reveal a dual purpose of the DNA
base-pair sequence: in addition to holding the genetic code,
the sequence may influence the geometric properties of the
molecule. While in principle certain particular subsequences
are expected to have a strong effect on the mechanical proper-
ties of DNA, empirical detection of this effect on stereological
data acquired through the electron microscope has been elusive
(Hagerman 1988; Amzallag et al. 2006). A specific example
is that of a subsequence called the TATA box, which promotes
gene transcription. It is thought that the mechanical properties
of this subseqence are intimately related with its function, and
that its presence in a DNA minicircle will enhance its flexibility.
Nevertheless, exploratory comparisons between reconstructed
minicircles from microscope images containing TATA boxes
with reconstructed minicircles with no TATA box did not re-
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veal any effects due to the presence of the sequence (Amzallag
et al. 2006).

Motivated by the need of two-sample comparison of loops,
as exemplified in DNA minicircle experiments, this article con-
siders the problem of second-order comparison of two samples
of random functions, within a functional data analysis frame-
work. In particular, given realisations of n1 and n2 independent
copies of two continuous zero mean Gaussian processes X and
Y on a compact set, we consider the problem of testing the hy-
pothesis H0 :RX = RY against the alternative HA :RX �= RY ,
where the covariance operators RX,RY are not necessarily sta-
tionary. The literature on hypothesis testing for functional data
is mostly concentrated on tests pertaining to the mean func-
tion (Fan and Lin 1998), as encountered, for instance, in func-
tional linear models (Cardot et al. 2003; Cuevas, Febrero, and
Fraiman 2004; Shen and Faraway 2004) or functional change
detection (Berkes et al. 2009). Hall and Van Keilegom (2007)
studied the important issue of the effect that the data smooth-
ing step may have on two-sample testing. Second-order tests
for functional data analysis pertaining to serial correlation were
also investigated (e.g., Gabrys and Kokoszka 2007; Horváth,
Hušková, and Kokoszka 2010). Although the seeds of func-
tional two-sample covariance tests can be found in Grenan-
der (1981), the problem of second-order comparison of func-
tional data has—interestingly—so far received relatively little
attention. A related recent article by Benko, Härdle, and Kneip
(2009) proposed two-sample bootstrap tests for specific aspects
of the spectrum of functional data, such as the equality of a sub-
set of the eigenfunctions, or—assuming that the eigenfunctions
are shared—equality of a subset of eigenvalues.

In this article, we consider the difficulties associated with
this testing problem, and it is seen that the extension of
finite-dimensional procedures can lead to complications, as the
infinite-dimensional version of the problem constitutes an ill-
posed inverse problem. As an alternative solution, we propose
a test based on the approximation of the Hilbert–Schmidt dis-
tance of the empirical covariance operators of the two samples
of functions based on the Karhunen–Loève expansion. The as-
ymptotic distribution of the test statistic is determined and its
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performance is investigated computationally. The application
of our methodology to an electron microscope dataset of two
groups of minicirles characterized by the presence or absence
of a TATA box suggests the potential existence of significant
differences in the two groups, which eluded previous analy-
ses as these focused on the mean (the shape of the minicircle),
whereas we detect the differences in the covariance structure
(the flexibility/stiffness).

The article is organized as follows. The next section de-
scribes the three-dimensional functional dataset of DNA mini-
circles, from acquisition to registration, and includes a prelimi-
nary exploratory analysis. The first part of the third section then
provides some functional data analysis background. Section 3.2
introduces our spectral test statistic and develops its asymptotic
distribution, while Section 3.3 treats the problem of tuning the
amount of regularization. In Section 4 the power and level of the
test under various scenarios is investigated by means of simula-
tion. Section 5 presents the results of a two-sample analysis of
the DNA minicircles through the spectral test statistics, and the
article concludes with a short discussion.

2. DNA MINICIRCLE DATA

The dataset of interest was reconstructed from electron mi-
crographs imaged by Jan Bednar at the Laboratory of Ultra-
structural Analysis of the University of Lausanne, Switzerland.
A total of 99 DNA minicircles of 158 base-pair length were
vitrified and imaged under two different angles, yielding two
projected images of the same specimen, which were then used
to reconstruct three-dimensional structural models (Jacob et al.
2006). The reconstructed data consist of 99 closed curves (DNA
minicircles) in R3 of two types: both types have identical base
pair sequences, except for a 14 base-pair window where 65
curves contain the TATA sequence, while the remaining 34 con-
tain a different sequence, called a CAP sequence. Biophysical
considerations suggest that the presence of a TATA box will
have a significant effect on the geometry of the minicircle, and
the goal is to compare these two groups to probe for such an
effect.

In its reconstructed form, each curve is represented as a com-
bination of periodic B-spline basis functions taking values in
R3. To perform a functional data analysis of the minicircles it
is required to register the data. Each curve has thus been cen-
tered and scaled, so that the center of mass is at zero and the
length of the curve is one. The nature of the experimental setup
in single-particle electron microscopy requires that the minicir-
cles be imbedded unconstrained in the aqueous solution, so that
the reconstructed curves are not aligned: the original (x, y, z)-
coordinates for the different curves are not directly comparable
as each curve was subjected to a random unobservable orthog-
onal transformation. It is thus necessary to align the curves.
Landmark alignment methods (e.g., Gasser and Kneip 1995)
are not applicable as the exact DNA sequence is not detectable
from an electron micrograph. On the other hand, more flexi-
ble methods such as warping (e.g., Gervini and Gasser 2004;
Tang and Müller 2008) are inappropriate since nonrigid align-
ment will alter the second-order properties that are of princi-
pal interest. As an alternative, we rigidly align curves by their
intrinsic characteristics: each curve was individually aligned

using the coordinate system induced by its moments of iner-
tia tensor (e.g., Arnold 1989), which is described as follows.
Consider an object in three dimensions described by a mass
distribution μ—for example, for a DNA minicircle, μ will be
the uniform measure supported on the curve. Suppose that the
object is rotating around an axis, which without loss of gen-
erality, is given by span(u) := {λu :λ ∈ R} for some u ∈ S2.
Let r(u,x) := ‖(I − uu�)x‖ denote the distance of a point x
from the subspace span(u). The moment of inertia of the object
around the axis u is given by

J (u) :=
∫

R3
r2(u,x)μ(dx) =

∫
R3

‖(I − uu�)x‖2μ(dx).

Given a coordinate system defined by an orthonormal basis, say
the canonical basis (e1, e2, e3), we can use only these basis vec-
tors to compactly represent the moment of inertia with respect
to any other axis passing by the origin. Define the inertia matrix
as

J :=
{∫

R3
x�(e�

i ejI − eie�
j )xμ(dx)

}
i,j

.

Notice that the diagonal elements of the above matrix are the
moments of inertia with respect to the axes of the coordinate
system. The moment of inertia around any unit vector u can
now be recovered as J (u) = u�Ju. Since the tensor is sym-
metric, it possesses real eigenvalues and orthonormal eigenvec-
tors forming a basis, which admit the following interpretation:
the first eigenvector, say w1, determines the axis (first principal
axis of inertia, PAI1) around which the curve is most difficult
to rotate, in the sense that the corresponding angular moment
is maximized: w�

1 Jw1 ≥ u�Ju for any other u ∈ S2. The pro-
jection on the plane orthogonal to w1 is “most spread” in this
sense. The second eigenvector determines the axis within the
first principal plane around which the projected curve is most
difficult to rotate. That is, within the first principal plane, the
projection on the line orthogonal to PAI2 is most spread. Hence,
PAI3 carries the most spatial information, whereas PAI1 con-
tains the smallest amount of information. Then, for each curve,
the starting point was determined as the point where the projec-
tion on the first principal plane intersects the horizontal (PAI2)
positive semi-axis and the orientation was chosen as counter-
clockwise in this plane (i.e., at the beginning the PAI3 coordi-
nate increases from zero and PAI2 is positive).

The projections onto the principal axes of the minicircle
curves are depicted in Figures 1 and 2. The data appear to be
well aligned, and seem to be elliptical on average within the
principal plane of inertia. Deviations from this principal plane,
on the other hand, seem to be lacking systematic structure. The
effectiveness of this alignment method is of crucial importance,
as we will not be able to otherwise proceed with the testing
problem (procrustean alignment of the curves will require us to
optimize a sum of squares criterion with respect to 99 orthogo-
nal transformations).

A visual inspection reveals five curves (plotted with dashed
lines) that appear to be “standing out” of the rest—outliers in
a broad sense. Judging whether or not a curve (an infinite di-
mensional object) is an outlier or not can be far trickier than
in the vector case. In particular, it can be that there are fur-
ther “outlying curves” that do not appear to stick out of the
crowd, but are nevertheless intrinsically different from the rest.
For this reason, we pursue a robust analysis for the mean curve



672 Journal of the American Statistical Association, June 2010

Figure 1. Projection of DNA curves on the first principal plane. Five removed outlying observations plotted in dashed lines. The mean curves
(in white) are computed without outlying observations.

using a functional median introduced in Gervini (2008). The
idea is simple: an iterative robust procedure will assign weights
to each curve, and we can then detect outlying curves by look-
ing at small weights. The method confirms our visual intuition,
and reveals no further outliers. The outlying observations are
removed, and after this preprocessing stage we are left with 94
aligned smooth curves.

3. METHODS

3.1 Background: FDA and Karhunen–Loève Expansions

We adopt a functional data analysis perspective (Ramsay
and Silverman 2005; Ferraty and Vieu 2006) and model each
curve as the realization of a stochastic process indexed by
the closed interval [0,1] and taking values in R3 (but every-

Figure 2. Coordinates of DNA curves on the principal axes of inertia. Five removed outlying observations plotted with dashed lines. Mean
curves (in white) are computed without outlying observations.



Panaretos, Kraus, and Maddocks: Second-Order Functional Comparisons and DNA Geometry 673

thing readily extends to the case of Rd). In particular, we as-
sume that we have two independent collections X1, . . . ,Xn1

and Y1, . . . ,Yn2 , of iid Gaussian processes on [0,1], con-
sidered as random elements of the Hilbert space L2[0,1] of
coordinate-wise square-integrable R3-valued functions with the
inner product 〈f,g〉 = ∫ 1

0 f(t)�g(t)dt. Here, f(t)� represents
the transpose of the vector-valued function f(t) ∈ R3. Assum-
ing, without loss of generality, that the mean functions are
zero, the processes are characterized by their respective co-
variance kernels RX(s, t) = cov(Xi(s),Xi(t)) = E{Xi(s)X�

i (t)},
and RY(s, t), respectively. Associated with the covariance ker-
nel is the covariance operator RX :L2[0,1] → L2[0,1] de-
fined as RX(f)(t) = cov(〈Xi, f〉,Xi(t)) = ∫ 1

0 RX(t, s)f(s)ds.
Throughout the article, we will be assuming RX to be contin-
uous, so that RX is bounded and the X process is continuous
(resp. the Y process).

Inference for iid collections of infinite-dimensional random
elements is often carried out in practice by an “optimal” re-
duction to a finite-dimensional setting, using finitely many ap-
propriately chosen contrasts in a functional principal compo-
nent analysis (e.g., Ramsay and Silverman 2002, 2005; Hall
and Hosseini-Nasab 2006; also see Dauxois, Pousse, and Ro-
main 1982 for distributional asymptotics). This procedure ex-
ploits the Karhunen–Loève theorem (e.g., Adler 1990), which
allows for a representation of the process by a stochastic Fourier
series with respect to the orthonormal eigenfunctions {ϕ(j)

X }∞j=1
of the operator RX ,

Xi(t) =
∞∑

j=1

√
λ

(j)
X ξijϕ

(j)
X (t),

where {λ(j)
X }∞j=1 is the nonincreasing sequence of correspond-

ing eigenvalues and {ξij} is an iid array of standard Gaussian
random variables. Convergence of the series is in mean square,
uniformly in t ∈ [0,1].

Thus, in a practical setting, the empirical covariance ker-
nel may be used to “optimally” reduce infinite-dimensional in-
ferential problems to multivariate ones. Letting R̂X stand for
the empirical covariance kernel, R̂X(s, t) := 1

n1

∑n1
i=1(Xi(s) −

X(s))(Xi(t) − X(t))�, we denote its eigenvalues (or principal
scores) by {̂λk,n1

X }n1
k=1 and its eigenfunctions (or principal com-

ponents) by {ϕ̂k,n1
X }n1

k=1. The finite-dimensional reduction is then
achieved by retaining a finite number of principal components
{〈Xi − X, ϕ̂

k,n1
X 〉}K

k=1 in lieu of each Xi. These are zero mean
and uncorrelated random variables, with corresponding sample
variances λ̂

k,n1
X . Similarly, for the second sample, the analogous

quantities are RY , RY , λ(j)
Y , ϕ(j)

Y (and their empirical “hat” coun-
terparts). The dimension reduction afforded by the Karhunen–
Loève expansion is the tool we will next employ to construct
our test.

3.2 Second-Order Comparison of Gaussian Processes

Let {Xi}n1
i=1 and {Yi}n2

i=1 constitute two iid random samples
of Gaussian processes indexed by the interval [0,1] and taking
values in R3 (or indeed Rd). As mentioned in the previous sec-
tion, these are regarded as random elements of the Hilbert space
L2[0,1] of square-integrable R3-valued functions (where inte-
gration is to be understood coordinate-wise). Assuming that the

covariance operators RX and RY associated with the processes
are continuous, we wish to test the hypothesis pair{

H0 : RX = RY ,

HA : RX �= RY .
(1)

A natural first approach to developing a test for the hypoth-
esis pair in Equation (1) is to attempt to extend tests developed
for the finite-dimensional version of the problem, which was
extensively studied. The majority of test statistics for the equal-
ity of covariance matrices of Gaussian vectors are based on the
determinant, trace, or maximum/minimum eigenvalues of ma-
trices such as: S1S2S−1, S1S−1

2 , S2(S1 + S2)
−1 (Roy 1953; Pil-

lai 1955; Kiefer and Schwartz 1965; Giri 1968); here, S1 and
S2 are the empirical covariance matrices corresponding to each
sample, and S is the pooled empirical covariance matrix. Evi-
dently, such tests cannot immediately be carried over to the case
of Gaussian processes: inversion of an empirical covariance op-
erator will be required, which transforms the construction of the
test statistic into an ill-posed inverse problem.

The operator R̂n1
X (resp. R̂n2

Y ) will be of rank at most n1
(resp. n2) as its image is the subspace spanned by {Xi}n1

i=1 (resp.
{Yi}n2

i=1). Therefore, we cannot talk of its inverse, except if we
restrict the operator on span{Xi}n1

i=1 (resp. span{Yi}n1
i=1), but the

two spans will not coincide in general and the two empirical op-
erators will not be diagonalized by the same basis. Furthermore,
since the processes are assumed to be second order, the opera-
tors RX and RY are necessarily bounded (in fact compact), and

it must be the case that λ
(k)
X , λ

(k)
Y

k→∞−→ 0, the rate of conver-
gence depending on the degree of smoothness of the Gaussian
processes (the smoother the process, the faster the rate). Thus,
for any finite n1 and n2, however large, a test statistic employ-
ing an “inverse” of R̂X composed with R̂Y will be unstable to
perturbations of the Y-data.

In the infinite-dimesional case, we propose the use of a
test statistic based on the norm of the difference of the two
empirical covariance operators. Recall that for trace-class
operators, one may define the Hilbert–Schmidt norm. Con-
sider an integral operator R : f �→ ∫ 1

0 R(·, s)f(s)ds such that∫ 1
0

∫ 1
0 trace{R(s, t)�R(s, t)}ds dt < ∞. The Hilbert–Schmidt

norm of the operator R is defined as

‖R‖HS :=
√∫ 1

0

∫ 1

0
trace{R(s, t)�R(s, t)}ds dt.

Assuming that the covariance operators in question are Hilbert–
Schmidt, a test may be based on the squared Hilbert–Schmidt
distance ‖R̂N

X − R̂N
Y ‖2

HS of their empirical counterparts. Of
course, the sampling distribution of this latter quantity will de-
pend on the unknown covariance operators even asymptotically.
To be able to “normalize” the test statistic, we employ a very
useful property of the Hilbert–Schmidt norm: for any orthonor-
mal system {ei}∞i=1 of L2[0,1], we have

‖R‖2
HS =

∞∑
i=1

‖Rei‖2
L2 . (2)

Therefore, we may use a basis to obtain a countable expression
for ‖R̂N

X − R̂N
Y ‖2

HS. In practice, one will need to truncate a se-
ries such as the above to obtain an “optimal” finite-dimensional
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reduction, that is, the choice of contrasts {ei} should be such
that the truncated version of Equation (2) retains the bulk of the
norm.

For each of the two empirical operators, the optimal con-
trasts will coincide with their eigenfunctions, as dictated by the
Karhunen–Loève expansion, but to use the relation in Equa-
tion (2) we need to use a common basis. As a compromise, we
thus choose the eigenfunctions {ϕ̂k,N

XY } corresponding to the em-
pirical covariance operator of the pooled sample of N = n1 +n2

curves and base our test on

K∑
k=1

‖(R̂N
X − R̂N

Y )ϕ̂k,N
XY ‖2

L2,

which by Parseval’s theorem, may be further approximated by

K∑
i=1

K∑
j=1

〈(R̂N
X − R̂N

Y )ϕ̂i,N
XY , ϕ̂

j,N
XY 〉2. (3)

With this quantity in mind, the following theorem, whose proof
may be found in the Appendix, provides the basis for our test:

Theorem 1. Let {Xn}n1
n=1 and {Yn}n2

n=1 be two collections of
zero mean iid continuous Gaussian random functions indexed
by the interval [0,1] and taking values in Rd , possessing co-
variance operators RX and RY with distinct eigenvalues. Let
R̂n1

X and R̂n2
Y denote the empirical covariance operators based

on {Xn}n1
n=1 and {Yn}n2

n=1. For N = n1 + n2, let R̂N
XY denote

the empirical covariance operator of the pooled collection, and
{ϕ̂k,N

XY }N
k=1 the corresponding eigenfunctions. Finally, let λ̂

k,n1
X,XY ,

λ̂
k,n2
Y,XY denote the empirical variance of the kth Fourier coef-

ficient of {Xn}n1
n=1 and {Yn}n2

n=1, respectively, with respect to

the eigenfunctions {ϕ̂n,K
XY }N

n=1. Assuming that E[‖X1‖4
L2] < ∞,

E[‖Y1‖4
L2 ] < ∞, and n1/N → θ ∈ (0,1) as N = n1 + n2 → ∞,

it follows that, under the hypothesis H0 :RX = RY ,

TN(K) := n1n2

2N

K∑
i=1

K∑
j=1

(〈(R̂n1
X − R̂n2

Y )ϕ̂i,N
XY , ϕ̂

j,N
XY 〉2)

/((
n1

N
λ̂

i,n1
X,XY + n2

N
λ̂

i,n2
Y,XY

)
×

(
n1

N
λ̂

j,n1
X,XY + n2

N
λ̂

j,n2
Y,XY

))
w−→ χ2

K(K+1)/2

as N → ∞, for any finite K ≤ rank(RX) = rank(RY) ≤ ∞.

Under the alternative hypothesis, the test statistic will con-
verge to a sum of K(K + 1)/2 dependent shifted chi square ran-
dom variables.

Our proposed test procedure is thus to reject the hypothesis
H0 :RX = RY at level α, whenever the test statistic exceeds the
corresponding critical value,

TN(K) ≥ χ2
K(K+1)/2,1−α.

Of course, conducting the test requires the selection of a spec-
tral truncation level, K. This choice must be made judiciously,
as it has a direct bearing on the power of the test:

1. Conservative choices of K [i.e., choosing K 

rank(RX) ∧ rank(RY)] may result in Type II error due to
differences in the higher frequency covariance structure,
especially in situations where the two covariances share
the same eigenfunctions, but have different eigenvalues at
higher frequencies.

2. Greedy choices of K [choosing K > rank(RX) ∧
rank(RY)] will inflate the variance of the test statistic
since an element of ill-posedness will enter when dividing
with the empirical eigenvalues of higher order terms.

In the latter sense, the test can also be thought of as an L2-
regularized test. These aspects are further considered quanti-
tatively in Section 4. It should be noted that the problem of
choosing K is directly analogous to the choice of a cutoff point
in principal component analysis and the choice of a bandwidth
in a nonparametric problem; thus we deal with it using empir-
ical eigenvalue scree-plots as well as penalized goodness-of-fit
criteria (see Sections 3.3 and 5.1).

A more user-friendly expression for the test statistic T can
be given if we introduce some additional notation. Let λ̂

ij,N
X,XY :=

〈R̂n1
X ϕ̂i,N

XY , ϕ̂
j,N
XY 〉 = n−1

1

∑
i〈Xi − X, ϕ̂i,N

XY 〉〈Xi − X, ϕ̂
j,N
XY 〉 be the

empirical covariance of the ith and jth Fourier coefficients of
the X-curves, with respect to the basis {ϕ̂k,N

XY }k≥1 (resp. λ̂
ij,N
Y,XY ).

For simplicity, we also write λ̂
jj,N
X,XY ≡ λ̂

j,N
X,XY (resp. λ̂

jj,N
Y,XY ). Then

we may re-express the test statistic as

TN(K) := n1n2

2N

K∑
i=1

K∑
j=1

((̂λ
ij,N
X,XY − λ̂

ij,N
Y,XY)2)

/((
n1

N
λ̂

i,n1
X,XY + n2

N
λ̂

i,n2
Y,XY

)
×

(
n1

N
λ̂

j,n1
X,XY + n2

N
λ̂

j,n2
Y,XY

))
.

If for some reason, we a priori know the eigenfunctions of RX

and RY to be equal, then the following test statistic may be used
instead of T :

T1 =
K∑

k=1

n1n2

N

(̂λ
k,N
X,XY − λ̂

k,N
Y,XY)2

2((n1/N )̂λ
k,N
X + (n2/N )̂λ

k,N
Y )2

.

The motivation for this statistic is that when the eigenfunctions
coincide, then

K∑
k=1

‖(R̂n1
X − R̂n2

Y )ϕ̂k,N
XY ‖2

L2 ≈
K∑

k=1

(̂λ
k,N
X,XY − λ̂

k,N
Y,XY)2.

It follows as an immediate corollary to Theorem 1 that, under
H0, the statistic T1 is asymptotically chi-square distributed with
K degrees of freedom [assuming n1/N → θ ∈ (0,1)]. One may
also wish to consider modified versions of the test statistics T
and T1, obtained via suitable variance-stabilizing transforma-
tions. In the case of the test statistic T , we apply a log trans-
formation to the diagonal terms of the sum in Equation (3), and
Fisher’s z-transformation to the off-diagonal terms to obtain a
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test statistic with the same asymptotic distribution as T (an im-
mediate corollary to Theorem 1),

T∗ =
K∑

k=1

n1n2

N

(log λ̂
k,N
X,XY − log λ̂

k,N
Y,XY)2

2

+
∑

1≤j<k≤K

n1n2

N

(
1

2
log

√
λ̂

j,N
XY λ̂

k,N
XY + λ̂

jk,N
X,XY√

λ̂
j,N
XY λ̂

k,N
XY − λ̂

jk,N
X,XY

− 1

2
log

√
λ̂

j,N
XY λ̂

k,N
XY + λ̂

jk,N
Y,XY√

λ̂
j,N
XY λ̂

k,N
XY − λ̂

jk,N
Y,XY

)2

.

A variance-stabilized alternative to T1 may also be similarly
constructed by retaining only the first component of T∗ (the
diagonal terms), yielding

T∗
1 =

K∑
j=1

n1n2

N

(log λ̂
j,N
X,XY − log λ̂

j,N
Y,XY)2

2
.

The latter statistic is approximately χ2-distributed with K de-
grees of freedom. Simulations conducted in Section 4 seem to
suggest that the modified tests achieve a level closer to the nom-
inal level, and consequently, may provide higher power.

In the infinite rank case, one might wish to let K to grow
along with N, allowing for the comparison of progressively
finer and finer differences (located at the extreme tails of the
operator spectra) as sample size increases. As noted previ-
ously, any such attempt will necessarily lead to instabilities:
due to the fast decay of the eigenvalues, we are attempting
to compare extremely small quantities, based on the empir-
ical tails of the spectra, which are highly unstable. This in-
stability will manifest itself through the very large integrated
mean squared errors involved when estimating higher order
eigenfunctions, whose available bounds grow for fixed N de-
pending inversely on the rate of decay of the spectrum (see
also Bosq 2000, lemma 4.3); the ill-posedness is especially se-
vere for smooth processes. Controlling the rate of growth of
K with respect to both N and the rate of decay of the true
eigenvalues will thus be necessary—decreasing the amount of
regularization requires an increase in sample size, depending
also on the spectral decay properties. Modifying the test sta-
tistic to obtain a central limit theorem as KN → ∞ will re-
quire a very slow rate of growth of KN with respect to N
since:

1. Although the truncation level grows as KN , the number of
summands in the test statistic grows like K2

N .
2. While these K2

N summation terms do become independent
as N grows (allowing for a CLT phenomenon), no mixing
concept applies. In effect this means that one has to look
at the convergence in distribution to independence of a
random vector of increasing dimension (= K2

N ). For any
fixed dimension the required weak convergence will be at
a rate of N−1/2—therefore KN must grow slow enough
to allow the N−1/2 rate to compensate for the K2

N rate of
increase of the dimension.

3. The required global convergence to independence is reg-
ulated by the convergence of the empirical eigenfunctions
to the true ones; this in turn depends on the spacings be-
tween the true eigenvalues. For K components, the rate
of convergence of the Kth empirical eigenfunction decays
like N−1/2 max{(λK−1 − λK)−1, (λK − λK+1)

−1}. There-
fore, when we let KN grow, it has to be at a rate slow
enough to annihilate the blow-up of the inverse spacing
of order KN .

The study of these intricacies is rather technical, and further
development is contained in the supplement.

3.3 On the Selection of Truncation Level

By analogy to finite-dimensional principal component
analysis (PCA), the choice of a truncation parameter K can
be made on the basis of scree plots and cumulative variance
plots. A visual inspection of the scree plots can be employed
to identify inflection points, which combined with the informa-
tion provided by the cumulative variance plots, can suggest an
appropriate truncation level K for use in testing. Note that the
decrease of the scores λ̂

k,N
X,XY and λ̂

k,N
Y,XY is not monotone, since

the basis {ϕ̂k,N
XY } does not correspond to the eigenbasis of either

of the two groups of curves. Therefore, a little more care needs
to be taken, although the basic idea still holds.

The truncation of the Hilbert–Schmidt norm expansion effec-
tively induces smoothing upon the curves, and can be regarded
as a choice of a regularization tuning parameter. Consequently,
potentially more automatic criteria can be based on tuning the
amount of smoothing so as to minimize a penalized goodness-
of-fit error. Concentrating on the X-curves, a natural definition
of goodness-of-fit error is,

PEX(K) :=
n1∑

n=1

∥∥∥∥∥
K∑

k=1

〈X∗
n, ϕ̂

k,N
XY 〉ϕ̂k,N

XY − X∗
n

∥∥∥∥∥
2

L2

=
n1∑

n=1

‖X̃n(K) − X∗
n‖2

L2,

where X∗
i is the ith mean-corrected curve. Of course, the above

criterion is nonincreasing in K since it accounts only for the fit,
and there is no penalty for the “complexity” of X̃n(K). Such
a penalty is often based on the norm of the image of X̃n(K)

through a suitably chosen differential operator (in the spirit
of Ramsay and Silverman 2005, section 5.3.3). The choice of
penalty reflects the qualitative specification of what “parsimo-
nious” is in a given context. In the present scenario, a sample of
curves is available, and so the penalty can be made to be data-
dependent, by penalizing deviations from the average smooth-
ness properties of the observed curves. These smoothness prop-
erties are naturally reflected by the norm of the reproducing
kernel Hilbert space (RKHS) generated by the empirical co-
variance operator of the X-sample, R̂X , yielding the penalized
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fit criterion,

PFCX(K) =
n1∑

n=1

‖X̃n(K) − X∗
n‖2

L2︸ ︷︷ ︸
GOFX(K)

+ 2
∑N

j=1 λ̂
j,N
XY

n1

n1∑
n=1

n1∑
j=1

1

λ̂
j,N
X

〈X̃n(K), ϕ̂
j,N
X 〉2

︸ ︷︷ ︸
PENX(K)

. (4)

When the null hypothesis is true, we expect to have ϕ̂
j,N
X ≈

ϕ̂
j,N
XY ; this essentially reduces PFCX(K) to the Gaussian pseudo-

likelihood-based Akaike information criterion (AIC) employed
by Yao, Müller, and Wang (2005a) (see also Yao, Müller, and
Wang 2005b). The analogous quantity PFCY(K) can similarly
be defined for the Y-curves. Since the sample size for the two
groups are not equal, the natural choice of K is then given
by minimizing the sum of goodness-of-fit terms [GOFX(K)

and GOFY(K)] plus the convex combination of the smoothness
penalties [PENX(K) and PENY(K)]:

arg min
K

{
GOFX(K) + GOFY(K)

+ n1

N
PENX(K) + n2

N
PENY(K)

}
.

In practice, the number of terms taken in the sum comprising
the penalty may be less than ni, to avoid dividing by terms that
are numerically zero. A variant of this selection criterion can
be based on the leave-one-out cross-validated prediction error,
where one whole curve is left out at a time (Rice and Silverman
1991). The performance of the selection criterion is investigated
in simulations presented in the next section.

4. A SIMULATION STUDY

To assess the behavior of the proposed tests under the null hy-
pothesis and under various alternatives we carry out a number
of simulations. We consider one situation with equal covari-
ance functions (simulation scenario A) and several alternative
configurations (scenarios B–I). The two test statistics T and T∗
introduced in the previous section are considered under vari-
ous choices of K, the truncation level, and for the automatic
selection K∗ given by the penalized fit criterion. The number
of observations in each sample is 50. The tests are replicated
5000 times under H0 and 1000 times under HA, respectively, at
the 5% nominal level of significance using the asymptotic χ2

approximation.
In the first eight scenarios, the Gaussian processes in both

samples are of the form

3∑
j=1

ξj

√
2 sin(2π j(t + δj))

+
3∑

j=1

ζj

√
2 cos(2π j(t + ηj)), t ∈ [0,1],

where the coefficients ξj, ζj are independent Gaussian random
variables with mean zero and var(ξj) = vj, var(ζj) = wj (the
variance terms where chosen so as to induce “elbow” effects
as one expects to see in practice). Various values of vj, wj, δj,
ηj used in A–H are reported together with the corresponding
results in Table 1 (the shift parameters δj, ηj are reported only
for F, the only case where they are nonzero). The last scenario
deals with rough processes (infinitely many components).

Results for scenario A show that the true level for all variants
of the test is close to the nominal level, provided the number of

Table 1. Empirical rejection probabilities on the nominal level 5%, sample size n1 = n2 = 50, number of replications 5000 for A, 1000 for
B–I. Here, uX = (vX,wX) (resp. uY ) and K∗ is the automatic truncation choice given by the penalised fit criterion

K

Parameters Test 1 2 3 4 K∗

A uX = (12,7,0.5,9,5,0.3) T 0.045 0.049 0.044 0.044 0.047
uY = (12,7,0.5,9,5,0.3) T∗ 0.051 0.056 0.057 0.056 0.059

B uX = (14,7,0.5,6,5,0.3) T 0.422 0.264 0.185 0.150 0.148
uY = (8,7,0.5,6,5,0.3) T∗ 0.443 0.315 0.223 0.174 0.175

C uX = (15,10,0.5,4,3,0.3) T 0.186 0.331 0.218 0.169 0.167
uY = (11,6,0.5,4,3,0.3) T∗ 0.201 0.366 0.269 0.207 0.208

D uX = (12,7,0.5,9,3,0.3) T 0.040 0.204 0.836 0.973 0.962
uY = (12,7,0.5,2,5,0.3) T∗ 0.047 0.221 0.848 0.984 0.980

E uX = (12,7,0.5,9,3,0.3) T 0.047 0.246 0.644 0.964 0.962
uY = (12,7,0.5,3,9,0.3) T∗ 0.055 0.267 0.686 0.976 0.975

F uX = uY = (12,7,4,0.5,0.3,0.1) T 0.257 0.693 0.909 1.000 1.000
δX = (0.15,0.15,0.15) T∗ 0.273 0.706 0.916 1.000 1.000

G uX = (12,7,0.5,8,6,0.3) T 0.042 0.040 0.054 1.000 1.000
uY = (12,7,0.5,8,0,0.3) T∗ 0.047 0.048 0.068 1.000 1.000

H uX = (12,7,0.5,9,5,0.3) T 0.044 0.140 0.500 1.000 1.000
uY = (12,7,0.5,0,5,0.3) T∗ 0.049 0.154 0.520 1.000 1.000

I Brownian motion versus T 0.719 0.608 0.483 0.377 0.493
Ornstein–Uhlenbeck process T∗ 0.731 0.644 0.532 0.443 0.546



Panaretos, Kraus, and Maddocks: Second-Order Functional Comparisons and DNA Geometry 677

components K does not exceed the effective complexity of the
covariance operator (which is 4 in this case). The slight conser-
vatism of T is removed by variance stabilizing transformations
used in T∗. Indeed, the stabilized statistics seem to be prefer-
able because they also provide slightly higher power (as is seen
in the remaining simulations).

Under scenario B, both covariance operators are of effec-
tive complexity 4 and possess the same sequence of eigenfunc-
tions (the same set with the same order), but the sequences of
eigenvalues differ (the largest eigenvalue is different). Not sur-
prisingly, the power decreases as K increases because there is
no difference in the components other than in the first one, so
adding them increases the degrees of freedom without any sig-
nificant contribution to the test statistic. Configuration C is sim-
ilar to B, but with the two largest eigenvalues being different.
The highest power is achieved with K = 2, as expected. When
compared to the next few scenarios, where there are differences
associated with the eigenfunctions also, the power in B and C
is clearly lower. This is due to the fact that the test statistic
takes the comparison of the eigenfunctions—where there are
no differences—into account, and thus is not as powerful in de-
tecting differences that lie only on the eigenvalues (the diagonal
form of the tests T1 and T∗

1 will be more powerful in this case).
In scenario D, the effective complexity of the operators is

the same in Equation (4), the operators have the same set of
eigenfunctions (in different order) and different sequences of
eigenvalues. The difference of the covariance operators is not
detected by tests with one component because the largest eigen-
value and the corresponding eigenfunction are the same in both
samples. When the choice of K is close to the true effective
complexity, the power of the tests is very high (this includes the
automatic choice). The same is true for the next four scenarios
as well.

Under scenario E, both operators (of effective rank 4) have
the same sequence of eigenvalues, and the same set of eigen-
functions, but the latter are permuted to correspond to different
eigenvalues. This scenario illustrates a situation where the diag-
onal form of the test statistics (T1 and T∗

1 ) will be inapplicable.
It is interesting to make the comparison with scenario D, where
the sets of eigenfunctions are the same for both samples as well.
In D the sequences of eigenvalues differ also, hence more infor-
mation is on the diagonal.

Scenario F differs from the previous configurations in that
the sets of eigenfunctions are completely different (sines versus
shifted sines). The eigenvalues are the same, and the effective
operator rank is 3 in both cases.

In the next configuration, scenario G, the first three eigenval-
ues and eigenfunctions are the same in both samples. The co-
variance operators have different effective ranks: 4 in the first
sample, 3 in the second sample. Therefore, it is not surprising
that the departure from H0 is not detected by tests with less than
4 components while it is clearly detected by four-component
tests. Note that with the automatic choice K∗, the alternative is
always detected.

Configuration H is again a situation with different effective
ranks of operators (4 versus 3) but unlike the previous situ-
ation, only the first eigenfunction and eigenvalue coincide in
both samples. The next two eigenvalues are different and the
corresponding eigenfunctions differ as well. Thus, as of K = 2,

the tests start detecting the alternative, with highest power for
K = 4.

Under scenario I, curves in both samples come from distrib-
utions with covariance operators with infinite rank, namely the
standard Brownian motion W(t) and the Ornstein–Uhlenbeck
process U(t) satisfying dU(t) = −θU(t)dt +dW(t) with θ = 1.
The covariance operators of the two processes differ in all com-
ponents. The major portion of the difference is captured by tests
with one component, then the power slowly decays.

A general observation when focusing on the behavior of the
tests when the number of components K was selected using the
selection criterion introduced in the previous section is that the
power and level are comparable with those when employing
the true effective rank. Under scenario A, the selection criterion
chose K = 4 in 96.3% of simulations and K = 5 in 3.7% of
simulations. Doing the same for the alternative configurations,
it turned out that the power is similar to the power of tests with
fixed values of K close to the values most frequently selected
by the selection criterion. Hence this automatic dimension re-
duction technique appears to be useful in practice.

It should be mentioned that the role of the selection crite-
rion is to probe the effective complexity of the data and not
the complexity of the difference between the two samples. The
selection rule is not related to the null hypothesis or the alterna-
tive and does not reflect validity or invalidity of either of them.
This explains the reliability of the post-selection test. Note that
a completely different approach can be based on the selection
of the “most different” components (the most likely alternative)
using a criterion involving the test statistic in the spirit of data-
driven smooth tests (e.g., Ledwina 1994).

5. ANALYSIS OF DNA MINICIRCLES

5.1 Finite-Dimensional Approximation

Figure 3 shows the empirical variance of the scores with
respect to the basis {ϕk,N

XY } separately for the TATA and CAP

groups (̂λk,N
X,XY and λ̂

k,N
Y,XY , respectively, in the notation used pre-

viously) as well as for the pooled sample (̂λj,N
XY ). The plots

also display cumulative proportions of the total variance ex-
plained by the corresponding components. Separate plots are
constructed for the analysis carried out marginally on each prin-
cipal axis and jointly on the principal plane.

When inspecting the marginal plots for the projections on
each axis of inertia, we observe that four or at most five prin-
cipal components should constitute an adequate choice. When
looking at the marginal plot for the projection onto the prin-
cipal plane of inertia, it seems that setting K = 6 or K = 7 is
more than adequate (accounting for at least 85% and 90% of
the variance, respectively, and with a clear “elbow” effect).

The reason for placing special emphasis on the principal
plane is that, as one can observe from Figure 2, the DNA mini-
circle curves tend to be planar on average, and the more inter-
esting signal is not to be found in the deviations from the pla-
nar aspect of the structure, but within the planar structure itself
(see the discussion at the end of the next section). The penal-
ized prediction error criterion introduced in Section 3.3 yields
K = 7 components in the principal plane.
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Figure 3. Empirical variances (scree plot) and cumulative proportions of variance explained by components for the TATA (circles) and CAP
(diamonds) group and for both groups together (squares).

5.2 First-Order Inference

As was mentioned in the Introduction, a previous exploratory
analysis of the data (Amzallag et al. 2006) that used clustering
of the minicircles with respect to a Procrustean metric did not
reveal any observable differences between the geometry of the
two groups. The clustering distance used (a mean-square-based
pairwise Procrustean distance) induces clustering with respect
to the mean shape of the minicircles, which can be seen to be es-
sentially identical between the two groups (Figure 2). To probe
this finding more formally, we test the hypothesis of equal mean
curves versus a general alternative, based on a variant of the test
proposed by Berkes et al. (2009). We reject the hypothesis of
equal mean curves when the value of the statistic

K∑
j=1

n1n2

N

(〈X, ϕ̂
j,N
XY 〉 − 〈Y, ϕ̂

j,N
XY 〉)2

λ̂
j,N
XY

is large compared to a χ2
K distribution (the approximation em-

ploys results in Dauxois, Pousse, and Romain 1982). The re-
sults of this comparison are displayed in Table 2. The corre-

Table 2. p-values for comparison of mean functions
in the TATA and CAP group for various truncation
levels K, for the full three-dimensional curves, and
their projections onto the prinipal plane of inertia

K PAI1, 2, 3 PAI2, 3

1 0.40 0.64
2 0.68 0.69
3 0.85 0.64
4 0.60 0.55
5 0.34 0.58
6 0.46 0.61

sponding values of the test statistic are insignificant and one
cannot reject the null hypothesis; indeed, the results of the test
do not vary much with K.

As discussed in the previous section, it seems, in fact, that
the interesting “signal” of the minicircles is effectively planar
(see Figure 2). It is, therefore, interesting to test the hypothesis
that the mean function of the PAI1 coordinate is zero—for this
will suggest that our analysis should concentrate on the prinic-
ipal inertia plane (the projection of the Gaussian processes on
this plane is obviously a Gaussian process). To this aim, we
use the one-sample version of the test statistic used for mean
comparison (which in the one-sample situation, is in fact an ap-
proximate likelihood-ratio statistic; Grenander 1981). For the
TATA group the p-value of the test with K = 4 components is
0.29. For the CAP curves the p-value is 0.30 (also using four
components). Hence the tests show no significant systematic
deviation of the curves from the first principal plane, and their
three-dimensional nature seems to only be due to random vari-
ation around a planar mean shape. For this reason, in the next
section we concentrate on the comparison of the curves pro-
jected onto the principal plane of inertia.

5.3 Second-Order Inference

As the first-order comparison of the two minicircle groups
did not reveal any significant differences, we turn our attention
to the detection of second-order differences. Indeed, since the
scientific hypothesis is that one type of curve (TATA) is more
flexible, it may be intuitively expected that a detectable differ-
ence will lie in the covariance structure rather than the mean
structure.

We test the hypothesis that both groups of curves share the
same covariance operator by employing the test statistic T∗.
The results are summarized in Table 3. Marginal tests on each
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Table 3. p-values for the comparison of covariance functions in the
TATA and CAP group on different principal inertia axes using

the test statistic T∗ under various truncation levels K

p-value

K PAI3 PAI2 PAI1 PAI2, 3

1 0.252 0.313 0.976 0.167
2 0.001 0.118 0.823 0.005
3 0.000 0.087 0.782 0.025
4 0.001 0.022 0.886 0.051
5 0.001 0.053 0.555 0.009
6 0.010 0.087 0.327 0.005
7 0.019 0.098 0.360 0.023
8 0.046 0.173 0.148 0.094

inertia axis show that the covariance functions of the projections
onto PAI3 seem significantly different for the two groups (with
either the empirical selection K = 4 or the automatic choice
K = 5). Differences of projections onto PAI2 appear marginally
insignificant depending on the choice of K (the empirical choice
is K = 5 and the automatic choice is K = 7). No significant dif-
ference is observed for PAI1, indicating that random deviations
from the first principal plane may have the same covariance
structure in the two groups (which is in keeping with our previ-
ous finding that the deviations from the principal plane can be
thought to be residual). Since the curves appear to be planar on
average, it is the covariance of their planar components where
most structure is to be found. Indeed, when our test is carried

out for the projection of the curves onto the principal plane of
inertia using K = 6 (empirical) or K = 7 (automatic), it rejects
the null hypothesis of no flexibility differences, at the 1% and
3% significance levels, respectively. In fact, the test based on
T∗

1 gives even more significant results, yielding a p-value that is
numerically zero.

In the frequency domain, these differences can already be
seen in the scree plots (Figure 3), where the TATA curves are
seen to be more flexible in the sense that the variances of their
Fourier coefficients are more inflated when compared to the
CAP curves. Since the covariance kernels associated with the
two operators under comparison are matrix-valued functions,
there is no easy way to visualize the detected differences in the
time domain. Figure 4 contains surface and contour plots of
the empirical covariance kernels restricted to the third principal
axis—the axis where the most significant differences were de-
tected. The plot reveals differences both in terms of the norm as
well as in terms of the structure.

6. CONCLUDING REMARKS

Motivated by the problem of comparison of groups of DNA
minicircles, we introduce and study a testing procedure for two
sample-comparison of Gaussian processes with respect to their
covariance structure.

The proposed test function is based on an approximation
of the Hilbert–Schmidt distance between the empirical covari-
ance operators of the two groups, by means of the Karhunen–
Loève representation of the pooled sample. The approximation

Figure 4. Surface and contour plots of the empirical covariance kernels corresponding to the TATA and CAP projections onto the third axis
of inertia.
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was seen to admit a regularization interpretation, the problem
of testing presenting aspects of ill-posedness. The asymptotic
distribution of the test function was established, and variance-
stabilized variants with similar asymptotic properties were pro-
posed. Finite-sample simulations under the null and various al-
ternatives were used to investigate the performance of the pro-
posed test. It should be noted that the results obtained read-
ily extend to random functions defined over arbitrary compact
Euclidean domains, and taking values in Euclidean spaces of
arbitrary dimension (i.e., random fields).

The test was then carried out for a sample of 94 DNA mini-
circles of two different types. One type is believed to possess
higher flexibility than the other, but this eluded empirical con-
firmation via electron microscopy. Our test rejected the hypoth-
esis that the curves share the same covariance structure on their
principal plane of inertia (the signals are essentially planar),
providing support for the potential existence of differences be-
tween the geometry of the two groups. Interestingly, the differ-
ence was detected in the second-order characteristics, whereas
previous analyses focused on first-order characteristics.

An important aspect of our testing procedure, as is the case
with any spectral truncation regularization procedure, is the
choice of truncation level K for the series representation of
the Hilbert–Schmidt norm. A careless choice of truncation
can affect the power of the test procedure. Our proposed ap-
proach for the choice of K was through visual inspection of
functional PCA scree plots, combined with penalized predic-
tion error minimization. Interesting further work will be to in-
vestigate LASSO-type component selection. Yet a further ap-
proach will be to consider adaptive modifications of the pro-
posed tests that will automatically choose the level K based
on the data; for example, tests based on statistics of the form
maxK(TN(K) − βK log N), for some tuning parameter β > 0.

The asymptotic approximations for the distributions of the
test statistics investigated hold for Gaussian processes. Depar-
tures from this assumption will affect the limiting law of the
statistics. In simulations we observed that the test derived under
the Gaussian assumption used in a non-Gaussian case becomes
conservative when the scores have lighter tails than the normal
distribution and anticonservative in the opposite case. Our tests
are based on sums of squares of components which are asymp-
totically normal independent variables. When the data are not
Gaussian, these components have asymptotically a multivari-
ate normal distribution with unknown covariance structure. The
limiting covariance matrix can be estimated and a chi-square
test statistic can be based on the corresponding quadratic form
(see also Horváth, Hušková, and Kokoszka 2010 for a similar
approach in a different context). Some simulations showed that
the convergence to the limiting distribution might be slow and
one has to use only a small value of K, especially for the off-
diagonal test.

Of course, testing whether a process is Gaussian is a re-
search project in itself, but informal qq-plots constructed for
the Karhunen–Loève coefficients of the minicircle data did
not reveal any noteworthy departures from normality. For the
benefit of the doubt, however, we also employed permutation
tests based on our test statistics, with similar results—but with
slightly more inflated p-values (Panaretos and Kraus 2009).

APPENDIX

Proof of Theorem 1

Introduce the notation Xif := 〈Xi, f〉Xi and Yif = 〈Yi, f〉Yi, so that
R̂n

X = n−1 ∑
i Xi and R̂n

Y = n−1 ∑
i Yi. These are viewed as random

elements of the Hilbert space of Hilbert–Schmidt operators acting on
L2[0,1]. Under the hypothesis H0 :RX = RY , the collections {Xi}
and {Yi} are iid random operators with mean RX = RY and common
covariance S := E[Xi ⊗Xi]−RX ⊗RX = E[Yi ⊗Yi]−RY ⊗RY ,
where ⊗ denotes the tensor product, (u ⊗ v)w = 〈v,w〉Hu for any ele-
ments v,w,u of a Hilbert space (H, 〈·, ·〉H). In addition, our moment
assumptions imply that E‖Xi‖2

HS < ∞. We may, therefore, apply the
Hilbert space central limit theorem (e.g., Bosq 2000, theorem 2.7) to
conclude that

√
n1(R̂n1

X − RX)
w−→ Z1 and

√
n2(R̂n2

Y − RY )
w−→ Z2 as n1,n2 → ∞,

where Z1 and Z2 are independent Gaussian random operators with
mean 0 and covariance operator S. Now, given i, j, consider the se-
quence of random variables

Wi,j
N = 〈√

n1n2/N(R̂n1
X − R̂n2

Y ) sgn[〈ϕ̂i,N
XY ,ϕi〉]ϕ̂i,N

XY ,

sgn[〈ϕ̂j,N
XY ,ϕj〉]ϕ̂j,N

XY

〉
.

On the one hand, the strong law in Hilbert space implies that ‖R̂N
XY −

RX‖HS
a.s.−→ 0 under the hypothesis H0. Consequently, convergence

also occurs with probability 1 in the strong operator topology, so that
by Bosq (2000, lemma 4.3)∥∥ sgn[〈ϕ̂k,N

XY ,ϕk〉]ϕ̂k,N
XY − ϕ̃k

∥∥L2
a.s.−→ 0 ∀k ≥ 1. (A.1)

On the other hand, as N → ∞ with n1/N → θ ∈ (0,1) we will have√
n2

N

√
n1R̂n1

X −
√

n1

N

√
n2R̂n2

Y
w−→ √

1 − θZ1 − √
θZ2 = Z ,

(A.2)

with Z a zero-mean Gaussian random operator with covariance S.
Combining Equations (A.1) and (A.2) with the Hilbert space Slutsky
lemma establishes that, for all i, j ∈ {1, . . . ,K},

Wi,j
N

w−→ 〈Z ϕi,ϕj〉.
For the next step, we note that Z , being a Gaussian process itself, also
admits a Karhunen–Loève decomposition, with respect to the eigen-
functions of S. These eigenfunctions can be retrieved directly from
the definition of S and the Karhunen–Loève expansion of the typical
X process, X = ∑

i
√

λiξiϕi. Defining the operator �ijf := 〈ϕi, f〉ϕj,
we immediately see that X = ∑

i,j
√

λiλjξiξj�ij and RX = ∑
j λj�jj.

Hence, upon recalling that the {ξi} are an iid standard Gaussian array
we may write

S = E[X ⊗ X ] − RX ⊗ RX

=
∑

i,j,q,p

√
λiλjλpλqE[ξiξjξpξq]�ij ⊗ �qp −

∑
i,j

λiλj�ii ⊗ �jj

=
∑
i�=j

λiλj�ii ⊗ �jj +
∑
i�=j

λiλj�ij ⊗ �ji +
∑
i�=j

λiλj�ij ⊗ �ij

+
∑

i

3λ2
i �ii ⊗ �ii −

∑
i

λ2
i �ii ⊗ �ii −

∑
i�=j

λiλj�ii ⊗ �jj

= 2
∑

i

λ2
i �ii ⊗ �ii +

∑
i�=j

λiλj(�ij ⊗ �ji + �ij ⊗ �ij),

since E[ξiξjξpξq] is 1 whenever pairs of indices are equal but not all
indices are totally coincident, 3 when all indices are equal, and zero
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otherwise. Regrouping the summation by adding the terms that are
symmetric with respect to their indices, we further obtain

S = 2
∑

i

λ2
i �ii ⊗ �ii

+
∑
i<j

λiλj(�ij ⊗ �ji + �ij ⊗ �ij + �ji ⊗ �ij + �ji ⊗ �ji)

= 2
∑

i

λ2
i �ii ⊗ �ii

+
∑
i<j

λiλj{�ij ⊗ (�ij + �ji) + �ji ⊗ (�ij + �ji)}

=
∑

i

(
√

2λi)
2�ii ⊗ �ii +

∑
i<j

λiλj(�ij + �ji) ⊗ (�ij + �ji).

It is straightforward to verify that {�ij + �ji}i<j ∪ {�ii}i≥1 consti-
tutes a complete orthogonal system of operators for the Hilbert space
of Hilbert–Schmidt operators acting on L2[0,1]. We may, therefore,
represent Z in a Karhunen–Loève expansion as

Z = √
2
∑

i

λiζii�ii +
∑
i<j

λ
1/2
i λ

1/2
j ζij(�ij + �ji)

for {ζij}∞i,j=1 an iid array of standard Gaussian variables. Consequently,
we may express the Gaussian process Z ϕk as

Z ϕk = √
2

∞∑
i=1

λiζii〈ϕi,ϕk〉ϕi

+
∑
i<j

λ
1/2
i λ

1/2
j ζij(〈ϕi,ϕk〉ϕj + 〈ϕj,ϕk〉ϕi)

= √
2λkζkkϕk +

∑
i<j

λ
1/2
i λ

1/2
j ζij〈ϕi,ϕk〉ϕj

+
∑
i<j

λ
1/2
i λ

1/2
j ζij〈ϕj,ϕk〉ϕi

= √
2λkζkkϕk +

∑
k<j

λ
1/2
k λ

1/2
j ζkjϕj +

∑
i<k

λ
1/2
i λ

1/2
k ζikϕi,

where we used the fact that {ϕi} is an orthonormal system. It follows
that for arbitrary k,n ∈ {1, . . . ,K}, the random variable 〈Z ϕk,ϕn〉
admits the representation

〈Z ϕk,ϕn〉 = √
2λkζkk〈ϕk,ϕn〉 +

∑
k<j

λ
1/2
k λ

1/2
j ζkj〈ϕj,ϕn〉

+
∑
i<k

λ
1/2
i λ

1/2
k ζik〈ϕi,ϕn〉

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

2λkζkk if k = n

λ
1/2
k λ

1/2
n ζkn if k < n

λ
1/2
k λ

1/2
n ζnk if k > n.

It follows that 〈Z ϕk,ϕk〉 iid∼ N (0,2λ2
k) independently of 〈Z ϕm,

ϕn〉 iid∼ N (0, λmλn), m �= n. Consequently, we have

1

2

〈Z ϕk,ϕk〉2

λ2
k

iid∼ χ2
1 ,

independently of

1

2

〈Z ϕm,ϕn〉2 + 〈Z ϕn,ϕm〉2

λmλn
= 〈Z ϕm,ϕn〉2

λmλn
∼ χ2

1 .

The continuous mapping theorem now implies that

1

2

(Wij
N)2 + (Wji

N)2

λiλj
= n1n2

2N

K∑
i=1

K∑
j=1

〈(R̂n1
X − R̂n2

Y )ϕ̂
i,N
XY , ϕ̂

j,N
XY 〉2

λiλj

w−→ χ2
K(K+1)/2.

To complete the proof, we note that

n1

N
λ̂

k,n1
X,XY + n2

N
λ̂

k,n2
Y,XY

p−→ θλk + (1 − θ)λk = λk ∀k ∈ {1, . . . ,K},
so that the result follows from the application of Slutsky’s lemma.

SUPPLEMENTAL MATERIALS

Additional plots and tables and detailed study: Additional
plots and tables are available in a supplementary file. In
addition, the supplementary file contains a more detailed
study of the problem of comparing the complete spectrum,
extending the discussion in the last part of Section 3.2.
(Supplement.pdf)
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Supplemental File: Second–Order Comparison of Gaussian

Random Functions and the Geometry of DNA Minicircles

This supplementary note contains additional plots and tables in Section 1. In addition,

Section 2 contains a more detailed study of the problem of comparing the complete spectrum,

extending the discussion in the last part of Section 3.2 in the main body of the paper.

1 Supplementary Figures and Tables

This section contains figures and a table not presented in the main body of the paper. The

first two figures contain plots of the projected aligned curves onto their principal axes of

inertia, including their superimposition. The third figure contains scree plots with respect to

the mixed eigenbasis for the two groups separately, as well as jointly. The last figure depicts

the Normal QQ plots of the Karhunen-Loève residuals, as described in the discussion section

of the paper.

Finally, a complete table containing the results of the simulations for level and power

corresponding to Section 4 is also given. In addition to the main test statistic proposed in

the paper, the complete table also presents simulations for the diagonal form of the statistic

(which compares only the eigenvalues). It is observed that when the difference lies only in

the eigenvalues, this test statistic performs more powerfully, as would be expected. However,

in the cases where differences also lie in the eigenfunctions, it is outperformed by the full

version of the test statistic.
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Figure 1: Projection of DNA curves on the first principal plane. Five removed outlying observations plotted in green.
Mean curves (yellow and cyan) computed without outlying observations.
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Figure 4: QQ plots corresponding to the centred Fourier coefficients when projecting onto the first four empirical
eigenfunctions for each sample of curves, respectively. The exact distribution of these quantities will not be Gaussian,
even if the processes are Gaussian. However, asymptotically, their distribution will be Gaussian. There do not appear
systematic deviations, except for the plot corresponding to the third Fourier coefficient in the TATA group, which seems
to suggest lighter upper tails as compared to the Gaussian.
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Table 1: Empirical rejection probabilities on the nominal level 5 %, sample size n1 = n2 = 50,

number of replications 5000 for A, 1000 for B–I. Here, uX = (vX ,wX) (resp. uY ) and K∗ is the

automatic truncation choice given by the penalised fit criterion.

K
Parameters Test 1 2 3 4 K∗

A uX = (12, 7, 0.5, 9, 5, 0.3) T 0.045 0.049 0.044 0.044 0.047
uY = (12, 7, 0.5, 9, 5, 0.3) T ∗ 0.051 0.056 0.057 0.056 0.059

T1 0.045 0.046 0.045 0.047 0.047
T ∗1 0.051 0.054 0.056 0.061 0.061

B uX = (14, 7, 0.5, 6, 5, 0.3) T 0.422 0.264 0.185 0.150 0.148
uY = (8, 7, 0.5, 6, 5, 0.3) T ∗ 0.443 0.315 0.223 0.174 0.175

T1 0.422 0.317 0.265 0.219 0.222
T ∗1 0.443 0.350 0.306 0.267 0.267

C uX = (15, 10, 0.5, 4, 3, 0.3) T 0.186 0.331 0.218 0.169 0.167
uY = (11, 6, 0.5, 4, 3, 0.3) T ∗ 0.201 0.366 0.269 0.207 0.208

T1 0.186 0.380 0.312 0.279 0.273
T ∗1 0.201 0.420 0.358 0.317 0.314

D uX = (12, 7, 0.5, 9, 3, 0.3) T 0.040 0.204 0.836 0.973 0.962
uY = (12, 7, 0.5, 2, 5, 0.3) T ∗ 0.047 0.221 0.848 0.984 0.980

T1 0.040 0.202 0.766 0.803 0.799
T ∗1 0.047 0.217 0.783 0.822 0.820

E uX = (12, 7, 0.5, 9, 3, 0.3) T 0.047 0.246 0.644 0.964 0.962
uY = (12, 7, 0.5, 3, 9, 0.3) T ∗ 0.055 0.267 0.686 0.976 0.975

T1 0.047 0.227 0.477 0.597 0.594
T ∗1 0.055 0.250 0.509 0.620 0.617

F uX = uY = (12, 7, 4, 0.5, 0.3, 0.1) T 0.257 0.693 0.909 1.000 1.000
δX = (0.15, 0.15, 0.15) T ∗ 0.273 0.706 0.916 1.000 1.000

T1 0.257 0.474 0.521 0.567 0.637
T ∗1 0.273 0.496 0.544 0.594 0.655

G uX = (12, 7, 0.5, 8, 6, 0.3) T 0.042 0.040 0.054 1.000 1.000
uY = (12, 7, 0.5, 8, 0, 0.3) T ∗ 0.047 0.048 0.068 1.000 1.000

T1 0.042 0.047 0.051 1.000 1.000
T ∗1 0.047 0.061 0.062 1.000 1.000

H uX = (12, 7, 0.5, 9, 5, 0.3) T 0.044 0.140 0.500 1.000 1.000
uY = (12, 7, 0.5, 0, 5, 0.3) T ∗ 0.049 0.154 0.520 1.000 1.000

T1 0.044 0.139 0.478 0.992 0.992
T ∗1 0.049 0.155 0.497 0.993 0.993

I Brownian motion versus T 0.719 0.608 0.483 0.377 0.493
Ornstein–Uhlenbeck process T ∗ 0.731 0.644 0.532 0.443 0.546

T1 0.719 0.627 0.547 0.476 0.551
T ∗1 0.731 0.666 0.596 0.542 0.595

6



2 Comparing the Full Spectrum

The test procedure developed in the paper employs an optimal finite dimensional reduction

in order to regularise the problem of testing. This is motivated by a Parseval decomposition

of the Hilbert-Schmidt distance between the two operators,

‖RX −RY ‖2HS =
K∑

k=1

‖ (RX −RY )ϕkXY ‖2L2 + ε,

where ε can be made arbitrarily small by appropriate choice of K. By making such a choice,

the statistic will be (eventually) able to detect departures from the null hypothesis unless

one operator is contained within a ball of small radius centred at the other operator; in this

latter case, the test will still be able to detect the difference (eventually), except if this small

difference lies completely at the high frequency end of the spectrum (in which case, for all

practical purposes, the difference is irrelevant).

We are willing to tolerate this small level of “bias”, in order to control the overall type

II error of the problem. Comparison of the higher order terms of the operator spectrum

on the basis of a finite sample is an ill-defined estimation problem: the fast decay of the

spectrum means that we are attempting to compare extremely small quantities that have

variance roughly proportional to their magnitude. In addition, the estimators of higher order

eigenfunction will be characterised by very large integrated mean squared errors (available

bounds grow for fixedN depending inversely on the rate of decay of the spectrum). Therefore,

by trying to increase K in order to eliminate the small type II error introduced by the

truncation, we are in effect causing an overall blow-up of the type II error.

If one nevertheless wishes to compare even the finest differences in the spectrum, then

one needs to let K grow to infinity along with N , K = KN and modify the test statistic so

as to obtain a Gaussian limit. Regularisation now manifests itself by the imposition of an

allowed rate of growth of KN . That is, a rate of growth of K relative to N that does not

7



allow overwhelming instabilities due to the growing K. As one might expect, this growth

will depend inversely on the rate of decay of the true eigenvalues (a lot of data is required

to compare the finest details of the two procsses). Inevitably, in fact, this rate will be rather

slow due to the following:

(a) Although the truncation level will grow as KN , the number of terms being compared

is K2
N .

(b) While these K2 summation terms do become independent as N grows (allowing for a

CLT phenomenon) no mixing concept applies. In effect, this means that one has to look

at the convergence in distribution to independence of a random vector of increasing

dimension (= K2
N). For any fixed dimension, the weak convergence will be at a rate of

N−1/2. Therefore, if one wishes to use Lp norms in order to use the Hilbert structure

of the problem, KN must grow slow enough to allow the N−1/2 rate to compensate for

the K2
N rate of increase in dimension.

(c) This required “global convergence” to independence is regulated by the convergence

of the empirical eigenfunctions to the true ones; this in turn depends on the spacings

between the true eigenvalues: the rate of convergence of the Kth empirical eigenfunc-

tion behaves like N−1/2λ−1K . Therefore, when we let K grow, it has to be at rate slow

enough, to allow N−1/2 to annihilate the blow-up of the inverse eigenvalues.

The above heuristics are made precise in the proof of the next theorem, which provides

a sufficient regularisation rate for asymptotically comparing the whole spectrum of infinite

rank processes.

Theorem 1. Let {Xn}n1
n=1 and {Yn}n2

n=1 be two collections of zero mean iid continuous

Gaussian random functions indexed by the interval [0, 1] and taking values in Rd, possessing

covariance operators RX and RY . Suppose that both operators are of infinite rank and have

distinct eigenvalues. Let R̂n1
X and R̂n2

Y denote the empirical covariance operators based on

8



{Xn}n1
n=1 and {Yn}n2

n=1. For N = n1 + n2, let R̂N
XY denote the empirical covariance operator

of the pooled collection, and {ϕ̂k,NXY }Nk=1 the corresponding eigenfunctions. Finally, let λ̂k,n1

X,XY ,

λ̂k,n2

Y,XY denote the empirical variance of the kth Fourier coefficient of {Xn}n1
n=1 and {Yn}n2

n=1,

respectively, with respect to the eigenfunctions {ϕ̂n,KXY }Nn=1. Assuming that E[‖X1‖4L2 ] < ∞,

E[‖Y1‖4L2 ] < ∞, and n1/N → θ ∈ (0, 1) as N = n1 + n2 → ∞, it follows that, under the

hypothesis H0 : RX = RY ,

SN :=
n1n2

2N
√
KN(KN + 1)/2

KN∑

i=1

KN∑

j=1

〈
(R̂n1

X − R̂n2
Y )ϕ̌i,NXY , ϕ̌

j,N
XY

〉2
−
√
KN(KN + 1)

2

w−→ N (0, 1),

as N →∞, for any KN ↑ ∞ such that K7
Nλ
−3/2
3KN/2

= o(
√
N), where

ϕ̌k,NXY =
ϕ̂k,NXY√

n1

N
λ̂k,n1

X,XY + n2

N
λ̂k,n2

Y,XY

.

Proof of Theorem 2. Let {ZNk} denote the triangular array of random variables defined as

ZNk :=
1√

KN(KN + 1)/2

(
n1n2

N

〈
(R̂n1

X − R̂n2
Y )ϕ̌

i(k),N
XY , ϕ̌

j(k),N
XY

〉2
− 1

)
, i(k) 6= j(k)

and

ZNk :=
1√

KN(KN + 1)/2

(
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌

i(k),N
XY , ϕ̌

i(k),N
XY

〉2
− 1

)
, otherwise,

where (i(k), j(k)) is the the kth element of the index array {(i, j) : i ≤ j ≤ KN}, when

enumerating row-wise. Clearly, for κN = KN(KN + 1)/2,

SN =

κN∑

k=1

ZNk.
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Write ZN := (n1n2/N)1/2(R̂n1
X − R̂n2

Y ) and define

Z̃Nk :=

√
n1n2

N

〈
(R̂n1

X − R̂n2
Y )sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉]ϕ̌i(k),NXY , sgn[〈ϕ̌j(k),NXY , ϕ̌j(k)〉]ϕ̌j(k),NXY

〉
, i(k) 6= j(k)

and

Z̃Nk :=

√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉]ϕ̌i(k),NXY , sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉]ϕ̌i(k),NXY

〉
, otherwise,

where we use the notation ϕ̌k := λ
− 1

2
k ϕk. The corresponding natural filtration is denoted by

FN,k := σ(Z̃Nm; 1 ≤ m ≤ k), and notice that {ZNk} is also adapted to the filtration {FN,k}.
Finally, we will write ZNj := (ZN1, . . . , ZNj)

> (resp. Z̃Nj). We will show that

(A)
∑κN

k=1 E
[
ZNk1{|ZNk|≤1}|FN,k−1

] P−→ 0.

(B)
∑κN

k=1 Var
[
ZNk1{|ZNk|≤1}|FN,k−1

] P−→ 1.

(C)
∑κN

k=1 P[|ZNk| > ε|FN,k−1] P−→ 0, ∀ ε > 0.

The conclusion will then follow from an “almost-martingale” central limit theorem for

triangular arrays, Shorack (5, Thm. 12.2). Fix some N , let d = κN , and let ζ ∼ Nd(0, I).

Letting d∞ denote the Kolmogorov metric, we obtain

d∞
(
Z̃Nd, ζ

)
≤ d∞

(
Z̃Nd,

{√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d

m=1

)

+ d∞

({√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d

m=1

, ζ

)

First we concentrate on the second term of the right hand side. From the proof of Theorem

1 and Pólya’s theorem we know that this term converges to zero. In fact, recalling that

R̂n1
X = n−11

∑ni
i=1 Xi (resp. R̂n2

Y ) and that the ϕk are the eigenfunctions of the common

covariance operator, the convergence can be seen to be due to the standard multidimensional

10



central limit theorem. We therefore have the following Berry-Esseen upper bound (e.g.

DasGupta (2, Cor. 11.1)),

d∞

({√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d

m=1

, ζ

)
≤ Cd

1
4√
N
.

Turning our attention to the first term in our triangle inequality, and letting νi(k) :=

sgn[〈ϕ̌i(k),NXY , ϕ̌i(k)〉], we note that

E

∥∥∥∥∥Z̃Nd −
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d

m=1

∥∥∥∥∥
1

=

=
d∑

k=1

E
∣∣∣∣Z̃Nk −

√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣

where, for every 1 ≤ k ≤ d we have

∣∣∣∣Z̃Nk −
√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣

=
∣∣∣
〈
ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY

〉
−
〈
ZN ϕ̌i(k), ϕ̌j(k)

〉∣∣∣

=
∣∣∣
〈
ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY

〉
− 〈ZNνi(k)ϕ̌

i(k),N
XY , ϕ̌j(k)〉+ 〈ZNνi(k)ϕ̌

i(k),N
XY , ϕ̌j(k)〉 −

〈
ZN ϕ̌i(k), ϕ̌j(k)

〉∣∣∣

=
∣∣∣
〈
ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY − ϕ̌j(k)

〉
+
〈
ZN

(
νi(k)ϕ̌

i(k),N
XY − ϕ̌i(k)

)
, ϕ̌j(k)

〉∣∣∣

=
∣∣∣
〈
ZNνi(k)ϕ̌

i(k),N
XY , νj(k)ϕ̌

j(k),N
XY − ϕ̌j(k)

〉
+
〈
ZN ϕ̌j(k), νi(k)ϕ̌

i(k),N
XY − ϕ̌i(k)

〉∣∣∣

≤
∥∥∥ZNνi(k)ϕ̌

i(k),N
XY

∥∥∥
L2

∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)
∥∥∥
L2

+
∥∥ZN ϕ̌j(k)

∥∥
L2

∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)
∥∥∥
L2

≤ ‖ZN‖HS
∥∥∥νi(k)ϕ̌i(k),NXY

∥∥∥
L2

∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)
∥∥∥
L2

+ ‖ZN‖HS
∥∥ϕ̌j(k)

∥∥
L2

∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)
∥∥∥
L2

= ‖ZN‖HS
(∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)

∥∥∥
L2

+
∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)

∥∥∥
L2

)

Here we have used the Cauchy-Schwartz inequality and the fact that ZN is a bounded
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operator. By the triangle inequality we now obtain

‖ZN‖HS
(∥∥∥νj(k)ϕ̌j(k),NXY − ϕ̌j(k)

∥∥∥
L2

+
∥∥∥νi(k)ϕ̌i(k),NXY − ϕ̌i(k)

∥∥∥
L2

)

≤ ‖ZN‖HS
(∥∥∥νj(k)ϕ̌j(k),NXY − νj(k)λ−1/2j(k) ϕ̂

j(k),N
XY

∥∥∥
L2

+
∥∥∥νj(k)λ−1/2j(k) ϕ̂

j(k),N
XY − ϕ̌j(k)

∥∥∥
L2

+
∥∥∥νi(k)ϕ̌i(k),NXY − νi(k)λ−1/2i(k) ϕ̂

i(k),N
XY

∥∥∥
L2

+
∥∥∥νi(k)λ−1/2i(k) ϕ̂

i(k),N
XY − ϕ̌i(k)

∥∥∥
L2

)

= ‖ZN‖HS
(

(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + λ

−1/2
j(k)

∥∥∥νj(k)ϕ̂j(k),NXY −ϕj(k)
∥∥∥
L2

+(λ̂
−1/2
i(k) − λ

−1/2
i(k) ) + λ

−1/2
i(k)

∥∥∥νi(k)ϕ̂i(k),NXY −ϕi(k)
∥∥∥
L2

)

where we have used the simplified notation

λ̂i(k) =

√
n1

N
λ̂
i(k),n1

X,XY +
n2

N
λ̂
i(k),n2

Y,XY .

We now apply the inequality given in Bosq (1, Lem. 4.3) and obtain

‖ZN‖HS
(

(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + (λ̂

−1/2
i(k) − λ

−1/2
i(k) ) + λ

−1/2
j(k)

∥∥∥νj(k)ϕ̂j(k),NXY −ϕj(k)
∥∥∥
L2

+ λ
−1/2
i(k)

∥∥∥νi(k)ϕ̂i(k),NXY −ϕi(k)
∥∥∥
L2

)

≤ ‖ZN‖HS
(

(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + (λ̂

−1/2
i(k) − λ

−1/2
i(k) )

λ
−1/2
j(k) 2

√
2 max

{
(λj(k)−1 − λj(k))−1, (λj(k) − λj(k)+1)

−1} ‖R̂N
XY −RX‖HS

+ λ
−1/2
i(k) 2

√
2 max

{
(λi(k)−1 − λi(k))−1, (λi(k) − λi(k)+1)

−1} ‖R̂N
XY −RX‖HS

)

Recapitulating, we have obtained

∣∣∣∣Z̃Nk −
√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣

≤ ‖ZN‖HS
(

(λ̂
−1/2
j(k) − λ

−1/2
j(k) ) + (λ̂

−1/2
i(k) − λ

−1/2
i(k) )

λ
−1/2
j(k) 2

√
2 max

{
(λj(k)−1 − λj(k))−1, (λj(k) − λj(k)+1)

−1} ‖R̂N
XY −RX‖HS

12



+ λ
−1/2
i(k) 2

√
2 max

{
(λi(k)−1 − λi(k))−1, (λi(k) − λi(k)+1)

−1} ‖R̂N
XY −RX‖HS

)

Now we take expectations on both sides, expand the right hand side, and repeatedly apply

the Cauchy-Schwartz inequality (with respect to the mean-square norm) to obtain

E
∣∣∣∣Z̃Nk −

√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣

≤
√
E ‖ZN‖2HS

√
E(λ̂

−1/2
j(k) − λ

−1/2
j(k) )2 +

√
E ‖ZN‖2HS

√
E(λ̂

−1/2
i(k) − λ

−1/2
i(k) )2

+λ
−1/2
j(k) 2

√
2 max

{
(λj(k)−1 − λj(k))−1, (λj(k) − λj(k)+1)

−1}
√
E ‖ZN‖2HS

√
E‖R̂N

XY −RX‖2HS
+λ
−1/2
i(k) 2

√
2 max

{
(λi(k)−1 − λi(k))−1, (λi(k) − λi(k)+1)

−1}
√
E ‖ZN‖2HS

√
E‖R̂N

XY −RX‖2HS

We note first that, by Minkowski’s inequality,
√
E ‖ZN‖2HS is bounded above for all N ,

by definition of the random operator ZN . Next,
√
E(λ̂−1i(k) − λ−1i(k))2 and

√
E(λ̂−1i(k) − λ−1i(k))2

are, asymptotically in N , of the order of O(λ
−1/2
i(k) N

−1/2) and so are also of the order of

O(λ
−1/2
i(d) N

−1/2), when k ≤ d. This can be seen by applying the Delta method to the CLT

given in Dauxois et. al (3, Prop. 8). Finally,

√
E‖R̂N

XY −RX‖2HS is asymptotically of the

order of O(N−1/2) by the CLT in Hilbert Space (Bosq (1, Thm 2.7)).

Now by definition of i(k) and j(k), we have that i(d)[i(d) + 1]/2 = j(d)[j(d) + 1]/2 = d,

so that it holds that

λi(k) = λ√8d+1−1
2

≥ λ 3
√
d

2

.

Combining all the above, we arrive at

E
∣∣∣∣Z̃Nk −

√
n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(k), ϕ̌j(k)

〉∣∣∣∣ = O
(
λ
−3/2
3
√
d/2
N−1/2

)
.

so that

E

∥∥∥∥∥Z̃Nd −
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d

m=1

∥∥∥∥∥
1

= O
(
λ
−3/2
3
√
d/2
N−1/2d

)
.
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Letting dW denote the L1-Wasserstein distance between two probability measures, we have

(e.g. Gibbs & Su (4)),

d∞(GN,d, HN,d) ≤ (1 + ‖hN,d‖∞)
√
dW (GN,d, HN,d)

≤ (1 + ‖hN,d‖∞)

√√√√E

∥∥∥∥∥Z̃Nd −
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d

m=1

∥∥∥∥∥
1

= (1 + ‖hN,d‖∞)O
(
λ
−3/4
3
√
d/2
N−1/4d1/2

)
.

where HN,d is the distribution function of
{√

n1n2

2N

〈
(R̂n1

X − R̂n2
Y )ϕ̌i(m), ϕ̌j(m)

〉}d
m=1

, GN,d is

the distribution function of Z̃Nd, and hN,d is the density function of HN,d. But hN,d is the

density of a difference of two independent random vectors, each of which is in turn the sum

of n1 and n2 iid random vectors, respectively. Thus, letting h
[1]
d and h

[2]
d be the respective

densities, and by symmetry, we have,

‖hN,d‖∞ = ‖h[1]d,n1
∗ . . . ∗ h[1]d,n1︸ ︷︷ ︸
n1 times

∗ h[2]d,n2
∗ . . . ∗ h[2]d,n2︸ ︷︷ ︸
n2 times

‖∞ ≤ ‖h[1]d,n1
∗ . . . ∗ h[1]d,n1︸ ︷︷ ︸
n1 times

‖1‖h[2]d,n2
∗ . . . ∗ h[2]d,n2︸ ︷︷ ︸
n2 times

‖∞

= ‖h[2]d,n2
∗ . . . ∗ h[2]d,n2︸ ︷︷ ︸
n2 times

‖∞

Now it is immediate that

‖h[2]d,n2
∗ . . . ∗ h[2]d,n2

‖∞ ≤ ‖h[2]n2
∗ . . . ∗ h[2]n2

‖∞,

where h
[2]
n2 is the marginal density of

√
n1n2

2N

〈
( 1
n2

X1)ϕ̌i(1), ϕ̌j(1)

〉
. But it must the case that

‖h[2]n2 ∗ . . . ∗ h[2]n2‖∞ be bounded above, since
∑n2

i=1

√
n1n2

2N

〈
( 1
n2

Xi)ϕ̌i(1), ϕ̌j(1)

〉
is a sequence of

variables with diffuse laws converging weakly to a non-degenerate Gaussian.

We are thus in a position to conclude that

d∞
(
Z̃Nd, ζ

)
= O

(
λ
−3/4
3
√
d/2
N−1/4d1/2

)
. (1)
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Now recall that, with probability one,

E
(
ZNk1{|ZNk|≤1}|FN,k−1

)
=

∫ +∞

−∞

1√
κN

(
x2 − 1

)
1{|x2−1|≤√2κN}F eZNk| eZN,k−1

(dx|Z̃N,k−1)

where he have used standard notation for conditional distribution functions. It follows that,

given ζ a standard Gaussian random variable,

E
(
ZNk1{|ZNk|≤1}|FN,k−1

)
− E

(
1√
κN

(ζ2 − 1)1{|ζ2−1|≤√κN}
)

=

∫ +∞

−∞

1√
κN

(
x2 − 1

)
1{|x2−1|≤√2κN}F eZNk| eZN,k−1

(dx|Z̃N,k−1)

−
∫ +∞

−∞

1√
κN

(
x2 − 1

)
1{|x2−1|≤√2κN}Fζ(dx)

=

∫ +∞

−∞

1√
κN

(
x2 − 1

)
1{|x2−1|≤√2κN}

[
F

eZN,k−1eZNk| eZN,k−1
− Fζ

]
(dx)

with the alternative notation F
eZN,k−1eZNk| eZN,k−1

(x) ≡ F eZNk| eZN,k−1
(x|Z̃N,k−1). From (1) we have that

for ζ ∼ Nk(0, I), d∞(Z̃Nk, ζ) = O
(
λ
−1/3
3
√
d/2
N−1/4k1/2

)
, so by Lemma 1 (see below), given any

z ∈ Rk−1,

sup
x∈R

∣∣∣F zeZNk| eZN,k−1
(x)− Fζ(x)

∣∣∣ = O
(
λ
−3/4
3
√
d/2
N−1/4k1/2

)

and so given z ∈ Rk−1

∫ +∞

−∞

1√
κN

(
x2 − 1

)
1{|x2−1|≤√2κN}

[
F zeZNk| eZN,k−1

− Fζ
]

(dx) = O
(
λ
−3/4
3
√
κN/2

N−1/4k1/2κ1/4N

)
.

Consequently, for {ζk} an iid sequence of standard Gaussian variables, and for all ω ∈ Ω,

κN∑

k=1

[
E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
− E

[
1√
κN

(ζ2k − 1)1{|ζk|≤
√
κN}

]]
= O


 κ

7/4
N

N1/4λ
3/4
3
√
κN/2


 = O


 K

7/2
N

N1/4λ
3/4
3
√
κN/2



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And, since

K7
Nλ
−3/2
3
√

2KN (KN+1)

2

≤ K7
Nλ
−3/2
3KN

2

= o
(√

N
)
,

it follows from our assumptions that the quantity above converges to zero almost certainly.

But, on the other hand,

∣∣∣∣∣
κN∑

k=1

E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
∣∣∣∣∣

≤
∣∣∣∣∣
κN∑

k=1

[
E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
− E

[
1√
κN

(ζ2k − 1)1{|ζk|≤
√
κN}

]]∣∣∣∣∣

+

∣∣∣∣∣
κN∑

k=1

E
[

1√
κN

(ζ2k − 1)1{|ζk|≤
√
κN}

]∣∣∣∣∣

with the last term obviously converging to zero as N →∞ so that condition (A) is fulfilled.

We now turn our attention to condition (B). By definition:

κN∑

k=1

Var
[
ZNk1{|ZNk|≤1}|FN,k−1

]
=

κN∑

k=1

E
[
Z2
Nk1{|ZNk|≤1}|FN,k−1

]
−

κN∑

k=1

E2
[
ZNk1{|ZNk|≤1}|FN,k−1

]

That the second term converges to zero almost surely follows from our proof of condition

(A). Hence, it suffices to concentrate on the first term. Following the same steps as with

(A), we may write

∫ +∞

−∞

(x2 − 1)
2

2κN
1{|x2−1|≤√2κN}

[
F zeZNk| eZN,k−1

− Fζ
]

(dx) = O


 K

3/2
N

N1/4λ
3/4
3
√
κN/2




This in turn imples that, with probability one,

κN∑

k=1

[
E
[
ZNk1{|ZNk|≤1}|FN,k−1

]
− E

[
1√
κN

(ζ2k − 1)1{|ζk|≤
√
κN}

]]
N→∞−→ 0.
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Finally, we see that

κN∑

k=1

E
[
Z2
Nk1{|ZNk|≤1}|FN,k−1

]

=

κN∑

k=1

[
E
[
Z2
Nk1{|ZNk|≤1}|FN,k−1

]
− E

[
1

2κN
(ζ2k − 1)21{|ζk|≤

√
κN}

]]

+

κN∑

k=1

E
[

1

2κN
(ζ2k − 1)21{|ζk|≤

√
κN}

]

with the last term clearly converging to 1 almost certainly. This establishes condition (B).

Finally, we concentrate on condition (C). By definition,

P[|ZNk| > ε|FN,k−1] = 1− E [1 {|ZNk| < ε} |FN,k−1]

= 1 +
(
E
[
1
{
|ζ2 − 1| < ε

√
κN
}]
− E [1 {|ZNk| < ε} |FN,k−1]

)

−E
[
1
{
|ζ2 − 1| < ε

√
κN
}]

=
(
E
[
1
{
|ζ2 − 1| < ε

√
κN
}]
− E [1 {|ZNk| < ε} |FN,k−1]

)
+ P[|ζ2 − 1| > ε

√
κN ]

It is clear from our analysis of (A) and (B) that

κN∑

k=1

(
E
[
1
{
|ζ2 − 1| < ε

√
κN
}]
− E [1 {|ZNk| < ε} |FN,k−1]

) a.s.−→ 0.

Finally, we have

κN∑

k=1

P[|ζ2 − 1| > ε
√
κN ] = κNP[|ζ2 − 1| > ε

√
κN ] = O


κNe

−(1+ε
√
κN)

1/2

(
1 + ε

√
κN
)1/4


 N→∞−→ 0

by the tail decay properties of the Gaussian distribution. This completes the proof.

Lemma 1. Assume that Fn is a sequence of distribution functions on Rd converging weakly
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to a standard Gaussian distribution function Φd, at a rate εn in the Kolmogorov distance,

sup
x∈Rd
|Fn(x)− Φd(x)| = O(εn).

Letting d = p+ q, and given y ∈ Rq, we have

sup
x∈Rp
|Fn(x|y)− Φq(x)| = O(εn).

Proof. By definition, and by our uniform bound, given any y ∈ Rq we have that

sup
x∈Rp
|Fn(x|y)Fn(y)− Φp(x)Φq(y)| = sup

x∈Rp
|Fn(x,y)− Φd(x,y)| = O(εn).

Now divide across by Φq(y), and obtain

sup
x∈Rp

∣∣∣∣Fn(x|y)
Fn(y)

Φq(y)
− Φp(x)

∣∣∣∣ = O(εn) (2)

By assumption of the theorem, it must also be that

|Fn(y)− Φq(y)| = O(εn).

In turn, this implies that ∣∣∣∣
Fn(y)

Φq(y)
− 1

∣∣∣∣ = O(εn), (3)

for if this were not the case, for every α > 0 and M ≥ 1, there would exist and m ≥M such

that ∣∣∣∣
Fm(y)

Φq(y)
− 1

∣∣∣∣ >
α

Φq(y)
|εm|,

or equivalently, for every α > 0 and M ≥ 1, there would exist and m ≥M such that

|Fm(y)− Φq(y)| > α|εm|,
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which would contradict the fact that supu |Fn(u)− Φq(u)| ∈ O(εn).

Now conditions (2) and (3) allow us to complete the proof by applying the triangle

inequality:

d∞ (Fn(·|y),Φp) ≤ d∞

(
Fn(·|y),

Fn(y)

Φq(y)
Fn(·|y)

)
+ d∞

(
Fn(y)

Φq(y)
Fn(·|y),Φp

)

since

d∞

(
Fn(·|y),

Fn(y)

Φq(y)
Fn(·|y)

)
= sup

x∈Rp

∣∣∣∣Fn(x|y)− Fn(y)

Φq(y)
Fn(x|y)

∣∣∣∣

=

∣∣∣∣1−
Fn(y)

Φq(y)

∣∣∣∣ sup
x∈Rp
|Fn(x|y)|

=

∣∣∣∣1−
Fn(y)

Φq(y)

∣∣∣∣ = O(εn)
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SUMMARY

Inferences related to the second-order properties of functional data, as expressed by covari-
ance structure, can become unreliable when the data are non-Gaussian or contain unusual obser-
vations. In the functional setting, it is often difficult to identify atypical observations, as their
distinguishing characteristics can be manifold but subtle. In this paper, we introduce the notion
of a dispersion operator, investigate its use in probing the second-order structure of functional
data, and develop a test for comparing the second-order characteristics of two functional sam-
ples that is resistant to atypical observations and departures from normality. The proposed test
is a regularized M-test based on a spectrally truncated version of the Hilbert–Schmidt norm of
a score operator defined via the dispersion operator. We derive the asymptotic distribution of the
test statistic, investigate the behaviour of the test in a simulation study and illustrate the method
on a structural biology dataset.

Some key words: Covariance operator; Karhunen–Loève expansion; M-estimation; Resistant test; Spectral truncation;
Two-sample testing.

1. INTRODUCTION

The second-order structure of a random function is key to understanding the nature of the
functional observations that it induces, as it is inextricably linked with the smoothness properties
of the stochastic fluctuations of the function. Given a suitable random function in a separable
Hilbert space, e.g., L2[0, 1], these second-order properties are encapsulated in the covariance
operator. The link with the smoothness properties of the random function is then given by the
Karhunen–Loève expansion (e.g., Adler, 1990), which provides an optimal Fourier represen-
tation of the random function, using a basis comprised by the eigenfunctions of this operator.
Consequently, a significant part of functional data analysis has concentrated on estimating the
covariance operator, and employing its spectral decomposition in order to probe the smoothness
properties of the functional data; see Bosq (2000), Dauxois et al. (1982), Hall & Hosseini-Nasab
(2006), Ramsay & Silverman (2005), Gervini (2006), Hall et al. (2006) and Yao & Lee (2006),
to name but a few. A natural inference problem is that of comparing the covariance structures of
two samples of functional data, in order to decide whether they share the same fluctuation proper-
ties. Aspects of this problem were considered in Benko et al. (2009), who employed a bootstrap
procedure to compare subsets of eigenfunctions or eigenvalues of the two samples in a finan-
cial context. The more global problem of testing whether two samples share the same covari-
ance operator was investigated in the Gaussian case by Panaretos et al. (2010), motivated by
the study of mechanical properties of DNA, and subsequently by Boente et al. (2011) through
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814 DAVID KRAUS AND VICTOR M. PANARETOS

a simulation-based approach. In a slightly different setting, Gabrys & Kokoszka (2007) and
Horváth et al. (2010) investigated second-order tests to detect the presence or change of serial
correlation in functional data. The goal of this paper is to study the problem of second-order
inference in a more general setting. We focus on situations where the data are not Gaussian, and
indeed may be characterized by the presence of influential observations. That we do not use the
word outlier is deliberate: in the functional case, observations can significantly impact the empir-
ical covariance operator, though they may not be outlying. The infinite-dimensional nature of the
data means that an observation can be atypical in many ways, the deviation from the mean being
only one; observations close to the mean may contain unusual frequency components. Detection
of such observations via exploratory techniques may be nontrivial (Sun & Genton, 2011).

Such influential observations might significantly influence the estimation of the covariance,
and, even more profoundly, the quality of the estimators of its spectrum. For these reasons, robus-
tified estimates of the spectrum have been proposed, based on the spectra of robust estimators
of the covariance operator. Locantore et al. (1999) proposed the use of the spectrum of the so-
called spherical covariance operator in a discretized setting (Boente & Fraiman, 1999). Gervini
(2008) introduced the functional median and further studied the properties of the spherical covari-
ance spectrum for functional data concentrated on an unknown finite-dimensional hyperplane.
Bali et al. (2012) adapted the projection-pursuit method of Li & Chen (1985) in the functional
case. The sensitivity of the empirical covariance operator and its spectrum to the presence of
influential observations can have an impact on testing procedures for the covariance operator.
This is already observed in the finite-dimensional case (Layard, 1974; Olson, 1974), where
deviations from a Gaussian assumption, or the presence of influential observations, can com-
pletely ruin a testing procedure even in one dimension (Box, 1953; Hampel et al., 1986). Finite-
dimensional robust or resistant tests for covariance matrices cannot be directly extended to the
functional case, as they often depend on the assumption of an invertible empirical covariance,
which will by default be violated in the functional case for all sample sizes (Tiku & Balakrishnan,
1985; O’Brien, 1992; Zhang et al., 1991; Anderson, 2006). Even if a pseudo-inverse operator is
employed, one immediately runs into the problem of ill-posedness.

To cope with these issues, this paper introduces a class of operators that we term dispersion
operators that are implicitly defined through a variational problem, motivated by M-estimators
of location for the tensor product of the centred functional observations. It is then proposed
that these operators be used as proxies for the covariance operator, when inferences on the
second-order structure are to be drawn for non-Gaussian and potentially contaminated functional
samples. The implicit definition of a dispersion operator gives rise to a score equation, as the
dispersion operator is a zero of the Fréchet derivative of the variational problem with respect to
the operator argument. This functional score equation is then used as a basis to construct a test
for the second-order comparison of two functional samples. The test is based on the distance of
the functional score equation under the null hypothesis from zero, measured by an appropriately
renormalized Hilbert–Schmidt distance.

2. SECOND-ORDER INFERENCE BASED ON THE DISPERSION OPERATOR

2·1. Covariance operators

To describe the second-order properties of a random element X in a separable Hilbert space
of functions H, often taken to be L2[0, 1], with norm ‖·‖ and inner product 〈·, ·〉, one typically
considers the covariance operator of X , C : H→H, defined as

C ( f )= E{〈 f, X − μ〉(X − μ)};
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Resistant functional data analysis 815

here μ= E(X) represents the mean of the function X . For example, in the case H≡ L2[0, 1],
with inner product 〈 f, g〉 = ∫ 1

0 f (t)g(t) dt , the covariance operator is represented as an inte-
gral operator

C ( f )=
∫ 1

0
r(·, s) f (s) ds,

where r(s, t)= E[{X (s)− μ(s)}{X (t)− μ(t)}] stands for the covariance kernel of the process
X . For the purposes of this paper, it will be more fruitful to think of the covariance operator as an
operator related to tensor products on H, rather than through the sample path perspective based
on the covariance kernel. In particular, we will think of the covariance operator as

C = E{(X − μ)⊗ (X − μ)},

where ⊗ stands for the tensor product on H: for f, g ∈H, f ⊗ g defines an operator on H
through ( f ⊗ g)(h)= 〈g, h〉 f , where h ∈H. In this setting, and provided that E(‖X‖2) <∞,
the covariance operator C can itself be thought of as an element of a Hilbert space, the space
HS(H,H) of Hilbert–Schmidt operators acting on H. This is the space of linear operators R on
H such that

‖R‖HS =
( ∞∑

k=1

‖Rek‖2

)1/2

<∞,

where {ek} is any orthonormal basis of H. Here, ‖·‖HS defines a norm on HS(H,H), correspond-
ing to the inner product 〈R1,R2〉HS =∑∞

k=1〈R1ek,R2ek〉. In what follows, we will usually omit
the subscript HS, as the nature of the norm or inner product employed, whether it is an operator
or an element norm, will be clearly implied from the space where its argument belongs.

In this Hilbert–Schmidt setting, the covariance operator can be seen as the operator C ∈
HS(H,H) that solves the variational problem

min
R∈HS(H,H)

E{‖(X − μ)⊗ (X − μ)− R‖2}.

The sample counterpart of the covariance operator, the empirical covariance operator,

Ĉn = 1

n

n∑

i=1

(Xi − X̄)⊗ (Xi − X̄),

can be represented as the solution to the problem

min
R∈HS(H,H)

1

n

n∑

i=1

‖(Xi − X̄)⊗ (Xi − X̄)− R‖2,

where X1, . . . , Xn is a collection of independent and identically distributed copies of X , and
X̄ = n−1∑n

i=1 Xi stands for their empirical mean. This being essentially a least squares prob-
lem, both the empirical covariance operator and methods based on it will be sensitive to the
presence of atypical observations in the dataset X1, . . . , Xn . In fact, it can also be seen that the
empirical covariance operator admits a Gaussian maximum likelihood estimator interpretation,
in a Cramér–Wold sense: if X is assumed Gaussian, then Ĉn is the unique element of HS(H,H)
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816 DAVID KRAUS AND VICTOR M. PANARETOS

such that, for every f ∈H, 〈 f, Ĉn f 〉 is the unique maximum likelihood estimator of the variance
of 〈 f, X〉. The law of X is completely determined by the laws of the collection {〈 f, X〉 : f ∈H},
and of course 〈 f, X〉 is Gaussian with mean 〈 f, μ〉 and variance 〈 f,C f 〉.

The basic strategy of this paper will be to obtain procedures pertaining to the second-order
structure of X that are more resistant to departures from normality and to the presence of influen-
tial observations by replacing the squared norm in the variational problem defining the covariance
by a less sensitive loss function. This gives rise to a new class of second-order characteristics,
which we call dispersion operators.

2·2. Dispersion operators

Let P be a distribution on the separable Hilbert space H and let X be a random element with
this distribution. The usual covariance is the integral of the operator

P(x;μ)= (x − μ)⊗ (x − μ), x ∈H,

with respect to P. This suggests that a dispersion operator could be defined as an M-estimator of
the location of P(X;μ). Let ρ be a nonnegative, differentiable, strictly increasing and convex
function on R+

0 with ρ(0)= 0. We define the ρ-dispersion operator of the distribution P as

R(P)= arg min
R∈HS(H,H)

M(P; R, μ), (1)

where

M(P; R, μ)= EP[ρ{‖P(X;μ)− R‖} − ρ{‖P(X;μ)‖}]

=
∫

[ρ{‖P(x;μ)− R‖} − ρ{‖P(x;μ)‖}] dP(x).
(2)

In the definition of the dispersion operator, μ is chosen to be some suitable element of H with
the interpretation of a location parameter. It is natural to use μ equal to the ρ-centre

μ(P)= arg min
μ∈H

L(P;μ),

where

L(P;μ)= EP{ρ(‖X − μ‖)− ρ(‖X‖)} =
∫

{ρ(‖x − μ‖)− ρ(‖x‖)} dP(x).

Equivalently, one may define μ(P) and R(P) as solutions to score equations. The objective
functionals L(P;μ) and M(P; R, μ) are real-valued functionals defined on the Hilbert spacesH
and HS(H,H), respectively. The corresponding scores are their Fréchet derivatives, that is, linear
functionals on the corresponding Hilbert space that can be uniquely identified with an element
of that Hilbert space. Specifically, the centre μ(P) is the solution to the functional equation

G(P;μ)= 0,

where the element

G(P;μ)= ∂

∂μ
L(P;μ)= EP

{
ρ′(‖X − μ‖)

‖X − μ‖ (μ− X)

}
=
∫
ρ′(‖x − μ‖)

‖x − μ‖ (μ− x) dP(x)
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Resistant functional data analysis 817

of H determines the Fréchet derivative of L with respect to μ. The dispersion operator is defined
as the solution to the operator equation

G (P; R, μ)= O, (3)

where O is the zero operator on H and the operator

G (P; R, μ)= ∂

∂R
M(P; R, μ)= EP

[
ρ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ {R − P(X;μ)}
]

=
∫
ρ′{‖P(x;μ)− R‖}

‖P(x;μ)− R‖ {R − P(x;μ)} dP(x)

determines the Fréchet derivative of M with respect to R.
The empirical dispersion operator based on the sample X1, . . . , Xn is the dispersion operator

of the empirical distribution P̂ of the sample, that is, R(P̂). The empirical dispersion operator can
be in general computed around any element μ ∈H; in practice, one naturally uses the empirical
centre μ(P̂), i.e., the centre of the empirical distribution.

PROPOSITION 1. Let P be a distribution on the separable Hilbert space H that is not concen-
trated on a line in H or on four points of H. Assume that ρ is nonnegative, strictly increasing
on [0,∞) and convex. Then, the objective function M(P; R, μ) as a functional of R is strictly
convex for any μ ∈H and thus the ρ-dispersion operator around μ exists and is unique.

Proposition 1 holds without any moment assumptions because the subtraction of
ρ{‖P(X;μ)‖} and ρ(‖X‖) in the definition of M(P; R, μ) and L(P;μ), respectively, guar-
antees the existence and finiteness of the objective functions. Under fairly weak further assump-
tions, we may also deduce that the empirical dispersion operator is well defined and consistent.

COROLLARY 1. Let X1, . . . , Xn be independent random elements with law P that has no dis-
crete component and is such that the probability that X1, . . . , Xn be collinear is zero (n � 3).
Then, for n � 5, the empirical ρ-dispersion operator corresponding to X1, . . . , Xn exists and is
almost surely unique. Moreover, if μ̂ is consistent for a location parameter μ, then the empirical
dispersion operator around μ̂ is itself consistent for the dispersion operator around μ.

We remark, for example, that the empirical functional median, i.e., the empirical centre cor-
responding to ρ(u)= u, was proven to be consistent for its theoretical counterpart in Gervini
(2008). In fact, in the setting of Corollary 1, this result can be extended to location parameters
corresponding to strictly increasing convex ρ-functions.

It is seen from (1) or (3) that the ρ-dispersion operator is self-adjoint. Moreover, from the
spectral decomposition found in Proposition 2, it will follow that the ρ-dispersion operator is
positive semidefinite. Although many results derived in this paper are valid for a wide class of
functions ρ, the choice ρ(u)= uq for some q > 0 is especially attractive as the resulting centre
is scale invariant and the dispersion is scale equivariant. For general ρ, it would be more appro-
priate to use a suitably studentized version of the objective functions; to this end, one can insert
a preliminary estimator of the trace into the objective function.

We now provide explicit formulae for two main choices of the ρ-function.
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818 DAVID KRAUS AND VICTOR M. PANARETOS

When choosing ρ(u)= u2, the score determining the ρ-dispersion operator equals
G (P; R, μ)= EP[2{R − P(X;μ)}]. Thus, R(P) can be found explicitly as R(P)=
EP{P(X;μ)}. As the score for the ρ-centre is G(P;μ)= EP{2(μ− X)}, the solution isμ(P)=
EP(X). Hence, the dispersion operator is the usual covariance operator.

The choice ρ(u)= u is expected to place less emphasis on influential observations and result
in more resistant procedures. The corresponding score operators for the dispersion and centre are

G (P; R, μ)= EP

{
R − P(X;μ)

‖R − P(X;μ)‖
}
, G(P;μ)= EP

(
μ− X

‖μ− X‖
)
.

The parameter μ(P) has been studied by a number of authors under different names in the mul-
tivariate as well as functional settings. In the multivariate context Chaudhuri (1996) calls μ(P)
the geometric median; other authors (Serfling, 2004; Sirkiä et al., 2009) use the name spatial
median and some authors (Huber & Ronchetti, 2009; Fritz et al., 2012) use the term L1-centre
or L1-median. In the functional setting, μ(P) was studied by Locantore et al. (1999) and by
Gervini (2008), who calls it the functional or spatial median. We use the term spatial median for
μ(P) and, similarly, we call R(P) the spatial dispersion operator. To clarify the terminology, we
recall that

S (P)= EP

{
(X − μ)⊗ (X − μ)

‖X − μ‖2

}

is called the spherical covariance operator (Locantore et al., 1999). Unlike the parameters under
the L2-type loss function, the spatial median and spatial dispersion are not available explicitly.
Their empirical counterparts μ̂=μ(P̂) and R̂ = R(P̂) can, however, be obtained numerically,
employing a Newton–Raphson algorithm, as explained in the Appendix.

The score function ρ′(u)= quq−1 corresponding to ρ(u)= uq is unbounded unless q = 1.
Therefore, the estimator of the spatial dispersion operator, q = 1, is resistant, whereas other
choices are nonresistant due to the effect of outliers, q > 1, or inliers, q < 1.

Although the dispersion operator is in general different from the covariance operator unless
ρ(u)= u2, it carries useful information on second-order properties of the distribution. There
is an interesting link between the spectra of the dispersion and covariance operator. Let X
admit the Karhunen–Loève expansion X =μ+∑∞

k=1 λ
1/2
k βkϕk, where β1, β2, . . . are zero-

mean unit-variance uncorrelated random variables, {λk : k � 1} are the nonincreasing nonneg-
ative eigenvalues and {ϕk : k � 1} are the complete orthonormal eigenfunctions of the covariance
operator C (P)= EP{(X − μ)⊗ (X − μ)} =∑∞

k=1 λkϕk ⊗ ϕk . We now investigate the eigen-
decomposition of the theoretical ρ-dispersion operator R(P) defined via M-estimation as the
solution to (3). The main result is as follows.

PROPOSITION 2. Assume that the Fourier coefficient sequence {βk}∞k=1 has a joint distribution
that is invariant under the change of the sign of any component. Then, the dispersion operator
R(P) has the same eigenfunctions as the covariance operator C (P), i.e., there exists a non-
negative sequence {δk}∞k=1 such that R(P)=∑∞

k=1 δkϕk ⊗ ϕk . Furthermore, the eigenvalues
δ1, δ2, . . . satisfy the conditions

δk = λk

E

(
ρ′[{∑i (δi −λiβ

2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2]

{∑i (δi −λiβ
2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2 β2

k

)

E

(
ρ′[{∑i (δi −λiβ

2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2]

{∑i (δi −λiβ
2
i )

2+∑i |= l λiλlβ
2
i β

2
l }1/2

) (k = 1, 2, . . .).

 at U
niversitÃ

©
 &

 E
PFL

 L
ausanne on February 17, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 



Resistant functional data analysis 819

A similar result relating the covariance operator and the spherical covariance operator S (P)
was obtained by Gervini (2008, Theorem 3) who showed that, under the assumption of exchange-
ability of the coefficient sequence, both operators have the same eigenfunctions in the same
order; see also Marden (1999) and Boente & Fraiman (1999). Our proposition shows that the
ρ-dispersion operator also has the same set of eigenfunctions. We conjecture that, potentially
under further assumptions, the order of the eigenfunctions is also the same; computational exper-
iments back this conjecture. Gervini (2008) assumed that the Karhunen–Loève expansion has
only finitely many terms, i.e., that the distribution is concentrated on a finite-dimensional sub-
space, whereas our results hold even for processes with infinite series expansions. On the other
hand, Gervini (2008) needed no moment assumptions, whereas we need to assume finite second
moments: without moment assumptions the convergence of an infinite Karhunen–Loève series
is not guaranteed, while a finite sum is always well defined regardless of the properties of the
random summands.

2·3. The two-sample test

Having defined the notion of a dispersion operator, we now construct a two-sample second-
order test based upon it. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be two independent random samples
from distributions P1,P2 on H, whose ρ-centres are μ(P1), μ(P2) and ρ-dispersion operators
are R(P1),R(P2). The goal is to test the null hypothesis H0: R(P1)= R(P2) against the general
alternative H1: R(P1) |= R(P2). Note that μ(P1), μ(P2) can be equal or different, as neither H0
nor H1 specifies their relation. We propose to employ the general idea of score tests, that is, to
base the test on the estimating score for the general model, without assuming H0, evaluated at
the null estimate of the parameter.

As the centresμ(P1),μ(P2) are not restricted under the null hypothesis, they can be estimated
separately by minimizing L(P̂1;μ1), L(P̂2;μ2), i.e., by solving G(P̂1;μ1)= 0, G(P̂2;μ2)=
0, respectively. Denote μ(P̂ j ) by μ̂ j ( j = 1, 2). On the other hand, the null estimator of the
dispersion is based on both samples. As we now have two samples, we need to extend our notation
to cover situations with two distributions, empirical or theoretical, mixed at proportions a and
1 − a for a ∈ (0, 1). We denote

M(P1,P2, a; R1,R2, μ1, μ2)= aM(P1; R1, μ1)+ (1 − a)M(P2; R2, μ2).

The common null value R of the dispersion operator is estimated by R̂, which mini-
mizes M(P̂1, P̂2, an; R,R, μ̂1, μ̂2) where an = n1/n with n = n1 + n2. Equivalently, R̂ solves
G (P̂1, P̂2, an; R, μ̂1, μ̂2)= O, the null estimating equation, where G (P1,P2, a; R, μ1, μ2)=
aG (P1; R, μ1)+ (1 − a)G (P2; R, μ2).

Using the reparameterization R = (R1 + R2)/2, T = (R1 − R2)/2, we have R1 = R + T ,
R2 = R − T and we need to test H0: T = O against H1: T |= O . For the test, we need the score
in the general model

∂

∂(R,T )T
M(P̂1, P̂2, an; R + T ,R − T , μ̂1, μ̂2)=

(
G (P̂1, P̂2, an; R, μ̂1, μ̂2)

B(P̂1, P̂2, an; R, μ̂1, μ̂2)

)

where B(P1,P2, a; R, μ1, μ2)= aG (P1; R, μ1)− (1 − a)G (P2; R, μ2). The score test is
based on this general score at the null estimator. When evaluated at (R,T )= (R̂,O), the
score is zero in the first component. Thus, the test can be based on the second component
B(P̂1, P̂2, an; R̂, μ̂1, μ̂2).
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820 DAVID KRAUS AND VICTOR M. PANARETOS

When the null hypothesis holds, the score operator B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) is expected to
be close to the zero operator, otherwise it should be far from the zero operator. To perform the
test, we need to measure the distance of B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) from the zero operator and
assess the significance of the resulting test statistic.

One way to measure the distance of the score operator from zero is to use its Hilbert–Schmidt
norm. A drawback of this approach is that the resulting statistic does not have a tractable asymp-
totic distribution. The score operator turns out to be asymptotically Gaussian, but its Hilbert–
Schmidt norm is not asymptotically distribution-free. In the context of comparison of covariance
operators, Boente et al. (2011) use a simulation procedure to approximate the distribution of the
statistic.

Another idea is to mimic the standard procedure from settings where the parameter of interest
is Euclidean. In such settings, the difference of the score vector from zero is measured with the
help of a quadratic form involving the score vector and the inverse of its covariance matrix. The
quadratic statistic is usually asymptotically chi-square distributed and the null hypothesis is then
rejected when the value of the statistic is significantly large. In the functional context, the score
B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) is infinite dimensional. Due to the noninvertibility of its covariance
operator, one cannot construct a quadratic statistic. We overcome this problem by regularizing
the score operator using spectral truncation.

The test object B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) is an element of the space of operators HS(H,H).
Recall that HS(H,H) is a Hilbert space with inner product defined as

〈A1,A2〉 =
∞∑

k=1

〈A1ek,A2ek〉 =
∞∑

j=1

∞∑

k=1

〈e j ,A1ek〉〈e j ,A2ek〉, A1,A2 ∈ HS(H,H),

where {ek : k = 1, 2, . . . } is an arbitrary complete orthonormal basis of H. For any complete
orthonormal basis {Ek : k = 1, 2, . . . } of HS(H,H), an operator A ∈ HS(H,H) and the square
of its Hilbert–Schmidt norm can be written as

A =
∞∑

k=1

〈A ,Ek〉Ek, ‖A ‖2 =
∞∑

k=1

〈A ,Ek〉2.

Instead of this infinite series, one can use a truncated version. If U ⊂ HS(H,H) is a suitably
chosen finite-dimensional linear subspace with an orthonormal basis {U1, . . . ,UL}, then instead
of ‖B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)‖2 one can use

‖πU B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)‖2 = ‖B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)πU ‖2

=
L∑

l=1

〈B(P̂1, P̂2, an; R̂, μ̂1, μ̂2),Ul〉2,

where πU is the projection onto the subspace U . That is, the test can be based on a score vector
with components

Sl = 〈B(P̂1, P̂2, an; R̂, μ̂1, μ̂2),Ul〉 (l = 1, . . . , L). (4)

One particular way of choosing the basis elements Ul is to derive them from a basis of the Hilbert
space H. If U is a K -dimensional linear subspace of H with an orthonormal basis {u1, . . . , uK },
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Resistant functional data analysis 821

then one may use the L = K (K + 1)/2 orthonormal operators of the form

U jk =
{

u j ⊗ u j ( j = k),

(u j ⊗ uk + uk ⊗ u j )/21/2 ( j < k).
(5)

There is yet another way of motivating the above truncation. Instead of measuring the
difference of B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) from zero on the entire Hilbert space H, we can
measure how it differs from the zero operator when attention is restricted to the linear
subspace U . More precisely, instead of B(P̂1, P̂2, an; R̂, μ̂1, μ̂2), we use the operator
πU B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)πU , where πU is the projection operator on U . Its squared Hilbert–
Schmidt norm

‖πU B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)πU ‖2 =
K∑

j=1

K∑

k=1

〈u j ,B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)uk〉2

is a truncated version of

‖B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)‖2 =
∞∑

j=1

∞∑

k=1

〈e j ,B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)ek〉2,

where {e j : j = 1, 2, . . . } is any complete orthonormal basis of H. The resulting scores

S jk = 〈u j ,B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)uk〉 (1 � j � k � K )

are equivalent to (4) with Ul of the form (5).
It is natural to use the basis operators of the form (5) with u1, . . . , uK being the first K eigen-

functions of the dispersion operator R because, in light of Mercer’s theorem, they carry the
main portion of information about the dispersion operator. In practice, the eigenfunctions of R

are not known, so one uses the eigenfunctions of the pooled sample estimator R̂. The number
of components K can be selected as the minimal number for the cumulative proportion of dis-
persion explained by the subspace to exceed a certain threshold, e.g., 80% of the trace of the
corresponding pooled sample dispersion operator. The proportion of dispersion, corresponding
to the eigenvalues of the dispersion operator, is in general not equivalent to the proportion of
variability, corresponding to the eigenvalues of the covariance operator.

To construct the test statistic, instead of simply summing squares of the terms Sl of the
form (4), one combines them in a quadratic form reflecting their covariance structure.

The formal test will be based on the asymptotic distribution of the test statistic. Let n1,
n2 be such that n1 → ∞, n2 → ∞ and an = n1/n → a ∈ (0, 1). Assume that ‖G(P j ;μ)‖2,
‖G (P j ; R, μ)‖2 ( j = 1, 2) are finite. Let the function ρ: R+

0 → R+
0 be twice differentiable,

strictly increasing, and convex with ρ(0)= 0. Assume that the laws P1, P2 satisfy the con-
ditions of Corollary 1 and the expectations EP j {ρ′(‖X − μ‖)2}, EP j [ρ

′{‖P(X;μ)− R‖}2],
EP j {ρ′′(‖X − μ‖)}, EP j [ρ

′′{‖P(X;μ)− R‖}] and

EP j

{
ρ′(‖X − μ‖)

‖X − μ‖
}
, EP j

[
ρ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖
]

( j = 1, 2)

are finite. Assume that the derivatives D(P j ;μ), D(P j ; R, μ), D(P j ; R, μ) given in (A1)–
(A3) in the Appendix exist for j = 1, 2.

Let S be a score vector of length L of the form (4) for some linearly independent opera-
tors Ul = U (n)

l . Let the operators Ul be either nonrandom, independent of n, or convergent in
probability to some nonrandom limits, up to a possible sign ambiguity in the sense that there
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822 DAVID KRAUS AND VICTOR M. PANARETOS

exist some operators U ∞
l such that |〈U (n)

l ,U ∞
l 〉| converges to 1. In this set-up, we have the

following theorem.

THEOREM 1. Under the null hypothesis H0 : R(P1)= R(P2), the score
n1/2B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) converges weakly to a mean zero Gaussian random opera-
tor with covariance operator, which can be consistently estimated by W(P̂1, P̂2, an; R̂, μ̂1, μ̂2)

given in (A5) in the Appendix. The asymptotic distribution of the score vector n1/2S is L-variate
zero-mean Gaussian with a covariance matrix that is consistently estimated by a matrix W
with entries W j,l = 〈U j ,W(P̂1, P̂2, an; R̂, μ̂1, μ̂2)Ul〉 ( j, l = 1, . . . , L). The test statistic
T = nSTW −1S asymptotically follows a χ2 distribution with L degrees of freedom.

We now deal with the two main cases, spatial and L2-type, explicitly. In the spatial case, ρ(u)=
u, we test the null hypothesis that the spatial dispersion operators are equal in both samples. The
score operator takes the form

B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)= 1

n

n1∑

i=1

R̂ − P(Xi ; μ̂1)

‖R̂ − P(Xi ; μ̂1)‖
− 1

n

n2∑

i=1

R̂ − P(Yi ; μ̂2)

‖R̂ − P(Yi ; μ̂2)‖
.

The Fréchet derivatives D(P;μ), D(P; R, μ) involved in the covariance operator of the score
are

D(P;μ)= EP

[
1

‖X − μ‖
{

I − (X − μ)⊗ (X − μ)

‖X − μ‖2

}]
,

D(P; R, μ)= EP

(
1

‖P(X;μ)− R‖
[
I − {P(X;μ)− R} ⊗ {P(X;μ)− R}

‖P(X;μ)− R‖2

])
,

and the derivative D(P; R, μ) evaluated at f ∈H is

D(P; R, μ) f = EP

[ −Q(X;μ) f

‖P(X;μ)− R‖ + 〈P(X;μ)− R,Q(X;μ) f 〉
‖P(X;μ)− R‖3

{P(X;μ)− R}
]
.

When the L2 approach, ρ(u)= u2, is employed, the hypothesis to be tested states that the
covariance operators in both samples are equal. The null estimator of R takes the form R̂ =
anR̂1 + (1 − an)R̂2, that is, the pooled covariance estimator. The test score operator equals

B(P̂1, P̂2, an; R̂, μ̂1, μ̂2)= an2(R̂ − R̂1)− (1 − an)2(R̂ − R̂2)= 4an(1 − an)(R̂2 − R̂1),

which is a multiple of the difference of the empirical covariance operators. So, the test is equiv-
alent to a Wald-type test proposed by Panaretos et al. (2010). This is different from the spatial
test for which the score does not simplify to the difference of the spatial dispersions, so the score
test differs from the Wald test. To compute the covariance operator of the test score, we first
notice that D(P; R, μ)= −2 EP{Q(X;μ)} equals zero at μ=μ(P)= EP(X); see (A4) in the
Appendix. Consequently, the fact that the centres of the two distributions must be estimated does
not affect the asymptotic distribution, as could be expected. Also, D(P; R, μ)= 2I. Hence, after
straightforward calculations, the estimator of the covariance operator of the test operator is

W(P̂1, P̂2, an; R̂, μ̂1, μ̂2)= 4an(1 − an){(1 − an)J(P̂1; R̂, μ̂1)+ anJ(P̂2; R̂, μ̂2)}
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Resistant functional data analysis 823

= 16an(1 − an)

×
[
(1 − an)

1

n1

n1∑

i=1

{P(Xi ; μ̂1)− R̂1} ⊗ {P(Xi ; μ̂1)− R̂1}

+ an
1

n2

n2∑

i=1

{P(Yi ; μ̂2)− R̂2} ⊗ {P(Yi ; μ̂2)− R̂2}
]
.

In Panaretos et al. (2010), the limiting covariance of the L2 score for the Wald-type test was
investigated in the special case of Gaussian data and a simpler formula was found.

3. A SIMULATION STUDY

In order to investigate the performance of the testing procedure introduced in § 2·3, we generate
random samples of size n1, n2 of curves of the form

X (t)=μ1(t)+
10∑

k=1

λ
1/2
1k a1k21/2 sin{2πk(t + γ1k)} +

10∑

k=1

ν
1/2
1k b1k21/2 cos{2πk(t + δ1k)},

Y (t)=μ2(t)+
10∑

k=1

λ
1/2
2k a2k21/2 sin{2πk(t + γ2k)} +

10∑

k=1

ν
1/2
2k b2k21/2 cos{2πk(t + δ2k)},

where the coefficients a jk, b jk are mutually independent random variables with zero-mean and
unit variance. Three symmetric coefficient distributions are considered: normal, uniform and t5,
all scaled to have unit variance. As the test procedures are invariant with respect to the location
shift of one or both samples, we set μ1(t)=μ2(t)= 0. Unless stated otherwise, we set γ jk =
δ jk = 0 in all situations. We perform the nonresistant L2 test and the proposed spatial dispersion
test at the nominal level α = 0·05. The sample sizes are n1 = n2 = 50. The basis of the subspace
for dimension reduction consists of several leading eigenfunctions of the pooled sample estimator
of the dispersion operator; that is, the pooled sample empirical covariance for the L2 test and the
pooled sample empirical spatial dispersion for the spatial test. The number of components K
included in the basis is selected as the minimal number needed to explain at least 80% of the
dispersion.

We first study the behaviour of the test procedures under the null hypothesis. We set λ1k =
λ2k = k−3 and ν1k = ν2k = (1/3)k .

We begin with uncontaminated samples to verify that the tests maintain the prescribed nominal
level. The first row of Table 1 shows that, in general, the asymptotic distribution approximates
the distribution of both test statistics reasonably well. The asymptotic approximation for the L2

method is slightly less accurate and tends to be liberal for distributions with light tails, i.e., normal
and uniform.

Next we simulate datasets contaminated by atypical observations. Mean contamination, i.e.,
observations whose mean is different from the mean of the central distribution, usually impacts
the level more seriously than pure covariance contamination, i.e., observations with the same
mean but different covariance structure. Thus, we focus on mean contamination, i.e., outliers, in
the study of the resistance of the level. In one or both samples, mj out of nj observations were
replaced by observations that have mean function μcont

j instead of μj and the same covariance
structure as the original distribution. We consider various distances of the contamination distribu-
tion from the central distribution and various contamination proportions, as indicated in Tables 1
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824 DAVID KRAUS AND VICTOR M. PANARETOS

Table 1. Empirical rejection probabilities (%) at the nominal level α = 5% under the null
hypothesis. Samples of size n1 = n2 = 50 are contaminated by m1, m2 observations with
mean functions μcont

1 , μcont
2 , respectively, and the same covariance structure as the central

distribution. Estimates are based on 2000 simulation runs
Normal t5 Uniform

m1 μcont
1 (t) m2 μcont

2 (t) L2 Spatial L2 Spatial L2 Spatial

0 0 7·1 5·0 5·4 5·3 7·8 4·6
5 1 5 1·5 − 3 sin(π t) 9·2 6·6 8·2 6·4 10·0 4·6
5 1·5 5 1·5 − 3 sin(π t) 14·4 6·4 14·6 6·8 14·6 4·6
5 2·5 5 1·5 − 3 sin(π t) 22·9 6·0 23·0 7·2 23·0 5·1
5 1 5 2 − 4 sin(π t) 11·2 7·2 10·3 7·7 11·7 5·2
5 1·5 5 2 − 4 sin(π t) 18·8 7·2 19·8 7·8 20·0 5·4
5 2·5 5 2 − 4 sin(π t) 30·4 7·2 32·4 8·2 30·8 6·4
5 1 5 2·5 − 5 sin(π t) 14·1 8·2 14·0 8·0 15·0 6·4
5 1·5 5 2·5 − 5 sin(π t) 25·9 8·2 25·4 8·4 27·8 6·5
5 2·5 5 2·5 − 5 sin(π t) 41·8 8·3 46·4 9·0 42·4 7·2
5 1 0 7·4 6·0 6·4 5·4 8·6 5·0
5 1·5 0 12·6 5·9 11·2 5·7 13·4 4·6
5 2·5 0 19·0 6·1 17·8 6·0 17·8 4·7
0 5 1·5 − 3 sin(π t) 9·0 6·0 7·2 6·6 9·8 5·6
0 5 2 − 4 sin(π t) 12·3 6·8 10·8 7·7 13·0 6·6
0 5 2·5 − 5 sin(π t) 16·4 7·6 14·4 8·7 16·8 7·6

Table 2. Empirical rejection probabilities (%) at the nominal level
α = 5% under the null hypothesis. Samples of size n1 = n2 = 50
are contaminated by m1, m2 observations with mean functions
μcont

1 (t)= 1·5, μcont
2 (t)= 2 − 4 sin(π t), respectively, and the same

covariance structure as the central distribution. Estimates are based
on 2000 simulation runs

m1 = m, m2 = 0 m1 = 0, m2 = m m1 = m2 = m
m L2 Spatial L2 Spatial L2 Spatial

0 7·1 5·0 7·1 5·0 7·1 5·0
1 7·0 5·4 6·7 5·1 7·2 5·6
2 6·8 5·0 7·5 5·4 7·8 5·6
3 6·9 5·3 8·7 5·6 8·4 6·2
4 8·4 6·2 10·7 6·2 11·2 6·4
5 12·6 5·9 12·3 6·8 18·8 7·2
6 24·8 6·5 14·8 7·5 39·2 8·1
7 57·8 7·4 17·2 8·6 71·6 10·2
8 89·2 7·9 20·8 9·2 93·0 17·6
9 99·0 11·9 24·7 11·4 99·0 28·2

10 99·8 18·4 28·2 13·6 100·0 42·7

and 2. We consider only atypical observations that are not very far from the central distribution.
These are the most insidious because they are often hidden in the main, apparently typical part
of the dataset, do not stand out and thus are not easily identified visually, yet they often have a
devastating impact on the behaviour of the nonresistant test. To illustrate this, we plot in Fig. 1 typ-
ical simulated samples with m1 = 5, μcont

1 (t)= 1·5 and m2 = 5, μcont
2 (t)= 2 − 4 sin(π t). When

looking at the plots, one would be unable to identify atypical observations, if they were not high-
lighted. Visually, many of them do not seem to be very different from most curves, whereas some
curves from the central distribution could be considered unusual.
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Fig. 1. Simulated contaminated samples. (a) Samples with m1 = 5 atypical observations with
μcont

1 (t)= 1·5; (b) Samples with m2 = 5 atypical observations with μcont
2 (t)= 2 − 4 sin(π t).

Atypical obsevations plotted in bold.

Table 1 shows that the proposed spatial test is much more resistant to contamination than the
L2-type test. For instance, notice that for m1 = m2 = 5, i.e., 10% contamination of both samples,
the level of the spatial test in all situations considered is only slightly inflated, while the actual
level of the L2-type test exceeds 40%. Similarly, if one of the samples contains five atypical
observations and the other is not contaminated, i.e., 10% contamination of one sample with 5%
contamination overall, the spatial test rejects with probability close to the nominal level, while the
level of the L2-type test is as high as 19%. As the magnitude of atypical observations increases,
the true level of the L2 test, unlike that of the spatial one, increases dramatically. Comparing
the behaviour of the tests across the various coefficient distributions, we observe no important
differences. The higher resistance of the spatial method is also documented in Table 2, where the
dependence of the level on the amount of contamination is studied for Gaussian data. The spatial
procedure can tolerate much more contamination than can the L2-type method.

Now we focus on the behaviour of the tests under alternatives. We consider five alternative
scenarios. Under all of them, the parameters of the distribution of the first sample are λ1k = k−3

and ν1k = (2/5)k . The parameters of the second sample are as follows. Under scenario I, we have
λ2k = 1·6λ1k and ν2k = 1·6ν1k (k = 1, . . . , 10), so the samples differ only in scale, their covari-
ance structure is otherwise the same. Under scenario II, we use λ21 = 1·5, ν21 = 0·8 and λ2k = λ1k

and ν2k = ν1k (k = 2, . . . , 10), so the covariance operators differ in the two leading eigenvalues,
which however correspond to the same eigenfunctions. Scenario III has λ2k = λ1k (k = 1, . . . , 10)
and ν21 = 0·2, ν22 = 0·35 and ν2k = ν1k (k = 3, . . . , 10); here the difference is on the second and
third eigenvalues whose corresponding eigenfunctions are the same but in the opposite order.
Under scenario IV, we set λ22 = λ13, λ23 = λ12, ν22 = ν13, ν23 = ν12 and λ2k = λ1k , ν2k = ν1k

(k /∈ {2, 3}), so the difference occurs further down in the spectrum; eigenfunctions with indices
3, 4, 5, 6 are permuted, the leading two eigen-elements do not differ. Under scenario V, we use
λ2k = λ1k , ν2k = ν1k and γ2k = δ2k = 0·15 (k = 1, . . . , 10); in this case, the whole eigenbases are
different but the eigenvalues remain the same in both samples.

First, we compare the power of the proposed spatial method with the L2-type method for sam-
ples without contamination. Table 3 shows that in most cases the power of the spatial test is lower
than the power of the L2-type test for distributions with light tails. The lower efficiency of the
spatial method is the price we pay for its increased resistance. Both methods have comparable
power in the heavy tailed case under most scenarios. Under scenario IV the spatial method outper-
forms the L2-type method. This is due to the automatic selection of K : for instance in the normal
case, for the L2-type test K equals 3 in 91 percent of cases while, for the spatial test, K equals 4
in 96 percent of cases; as the covariance operators differ on the third to sixth eigen-elements, K
equal to 4 captures more of the difference.

 at U
niversitÃ

©
 &

 E
PFL

 L
ausanne on February 17, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 



826 DAVID KRAUS AND VICTOR M. PANARETOS

Table 3. Empirical rejection probabilities (%) at the nom-
inal level α = 5% under various alternative scenarios for
samples of size n1 = n2 = 50 without contamination. Esti-

mates are based on 1000 simulation runs
Normal t5 Uniform

L2 Spatial L2 Spatial L2 Spatial

I 55 40 28 30 93 62
II 53 29 28 22 92 48
III 74 53 36 38 99 85
IV 38 61 24 53 49 73
V 76 58 53 51 96 72

Table 4. Empirical rejection probabilities (%) of the spatial test
at the nominal level α = 5% under various alternative scenarios
for samples of size n1 = n2 = 50 contaminated by m1,m2 atypical

observations. Estimates are based on 1000 simulation runs
Contamination m1 m2 I II III IV V
configuration

0 0 40 29 53 61 58

A 5 5 12 16 57 64 59
5 0 34 25 54 62 58
0 5 15 16 56 63 61

B 5 5 29 22 36 39 55
5 0 33 28 46 74 55
0 5 40 28 49 34 57

C 5 5 24 18 34 39 52
5 0 32 22 43 50 62
0 5 31 24 43 49 48

Next, we investigate the impact of contamination on the power of the spatial test; we do not
study the L2-type test as we have seen before that its level is unreliable for contaminated data. The
goal is to study if and how contamination can decrease the power. Similarly to the null scenario,
here we also observed that mean contamination usually increases the rejection probability. There-
fore, it is more interesting to contaminate data with curves with atypical covariance structure. We
experimented with many configurations of atypical observations such that it is difficult to identify
them visually and found that often even covariance contamination increases the rejection proba-
bility. Nevertheless, we were able to find some configurations for which we observed a decrease
of the power in some situations. The central distributions follow the same scenarios I–V as before
with normally distributed coefficients. Contamination configurations are as follows. Under con-
figuration A, the contamination distribution has λcont

1k = 1·4λ1k , νcont
1k = 1·4ν1k , λcont

2k = 0·25λ2k

and νcont
2k = 0·25ν2k (k = 1, . . . , 10), other parameters of the contamination distribution are the

same as for the central distribution. Under configuration B, we set λcont
1k = 0·3λ1k and λcont

2k =
0·3λ2k (k = 1, . . . , 10), νcont

1k = 0·3ν1k and νcont
2k = 0·3ν2k (k = 3, . . . , 10), and νcont

11 = νcont
21 = 1

and νcont
12 = νcont

22 = 0·9, while other parameters remain unchanged. Under configuration C, atyp-
ical observations in the first sample follow the central distribution of the second sample and
atypical observations in the second sample follow the central distribution of the first sample.

The simulation results are presented in Table 4. We report only configurations with some
detrimental effect on the power, while many configurations not reported here do not have such
an effect. Under configuration A, we can see a decrease of the rejection probability for scenar-
ios I and II. Configuration A was specifically designed to decrease the power under scenario I:
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Fig. 2. Projection of DNA minicircle curves on the first principal plane spanned by the second
and third principal axis of inertia. Atypical observations plotted in bold.

atypical observations deviate from the central distribution against the direction of the alterna-
tive; specifically, both the central and contamination distributions have proportional covariance
operators but in the opposite direction. A similar phenomenon is seen for scenario II, where the
directions of the alternative and of the contamination distribution are in a similar relationship.
On the other hand, we observe no important effect of contamination of type A under scenarios
III–V because in these cases atypical observations do not go against the alternative. Under con-
figuration B, the power decreases mainly for scenarios III and IV. Configuration B downweights
components other than the first and second cosine component, where it puts higher weight equal
for both samples. As these are components carrying an important part of the difference between
the covariances, one expects some decrease of the rejection probability, especially under sce-
narios III and IV. Under configuration C, the two samples are partly mixed, i.e., one sample
contaminates the other sample and vice versa. This blurs the difference and somewhat decreases
the power under some of the scenarios.

4. AN ILLUSTRATION: DNA MINICIRCLE DATA

We illustrate the proposed methods on a dataset consisting of reconstructed three-dimensional
electron microscope images of loops called minicircles obtained from short strands of DNA
(Amzallag et al., 2006). The dataset contains 99 DNA minicircles of two types, TATA, 65 obser-
vations, and CAP, 34 observations, with identical base-pair sequences, except for a short sub-
sequence where they differ. The main question is whether this difference affects the flexibility
properties of the DNA minicircles. One way to formalize the flexibility properties is through the
fluctuation pattern around the mean minicircle shape. This naturally leads one to consider two-
sample second-order functional comparisons. DNA minicircles are closed curves in R3. In the
original dataset, each curve was randomly rotated and shifted in R3 and had no starting point and
no orientation. In Panaretos et al. (2010), an alignment procedure based on the moment of inertia
tensor was used as a means of alignment of the curves in a common coordinate system. Figure 2
shows projections of aligned curves on the plane spanned by the two principal axes of inertia.

Using inverse weights induced by Gervini’s (2008) spatial median, Panaretos et al. (2010)
identified five unusual curves, possible outliers, and removed them from the analysis of the
covariance structure. These atypical curves, plotted in thick lines in Fig. 2, are visibly differ-
ent from the remaining curves. Panaretos et al. (2010) analysed the data without the atypical
observations using a test comparing empirical covariance operators under the assumption that
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828 DAVID KRAUS AND VICTOR M. PANARETOS

the curves are Gaussian. Under this assumption, they observed significant differences at the 5%
level. These differences were highly significant with a numerically zero p-value, when the com-
parison was restricted to the eigenvalues of the covariance operators; the corresponding empirical
eigenfunctions suggested that the eigenfunction structure of the two operators was very similar.

Taking advantage of the results in the present paper, we may run an L2-type test without
assuming normality. When doing so, with the atypical observations still removed, the p-value of
the L2-type score test of the equality of covariance operators equals 0·023 with the dimension
of the subspace on which the test operator is projected equal to K = 6, suggesting persistence
of the effect, independently of a Gaussian assumption. Instead of removing apparently atypical
observations manually, one might also wish to run an analysis on the complete dataset. However,
the performance of L2-type procedures was seen to be highly unstable in the presence of atypical
observations, such as the ones in the present dataset, see Tables 1 and 2. By contrast, the spa-
tial dispersion test was seen to maintain a level close to nominal in our simulations, especially
in outlier scenarios similar to the one in the minicircle data. There may be further influential
observations lurking in the sample. For this reason, we applied the score test based on the spa-
tial dispersion operator, using the full minicircle dataset. In contrast to the other procedures, this
yielded the p-value 0·353 indicative of a lack of significant differences in the spatial dispersions.
The value of K was selected as the minimal number of components needed to explain 80% of
the trace of the underlying null dispersion estimator. No further outliers were detected by the
resistant test. The discordance between the L2 and spatial tests is probably due to the reduced
efficiency of the resistant procedure when the two samples share common eigenfunctions, as
seems to be the case in the minicircle dataset; recall that the dispersion operator shares the same
eigenfunctions with the covariance operator, possibly up to order. It was seen in our simulations
that, in general, though the level of the spatial test was conserved, in the presence of influential
observations its power was appreciably reduced when differences were only in the eigenvalues,
i.e., under scenarios I and II in Table 4, as compared to scenarios where differences exist between
the eigenfunctions, too, i.e., scenarios III–V in Table 4. Moreover the present framework does
not immediately yield a special version of the test that would concentrate only on the eigenvalue
structure; the complete structure of the operator is taken into account.
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Supplementary material available at Biometrika online includes proofs of Proposition 1,
Corollary 1, Proposition 2, Theorem 1 and a technical lemma needed in the proof of Theorem 1.

APPENDIX

Computation

Assume that the observations Xi ∈H are represented as linear combinations of some known fixed basis
elementsψ j , that is, Xi =∑p

j=1 ξi jψ j . This representation is usually obtained by a least squares procedure,
possibly with smoothing, from some form of discrete original observations of Xi . The exact form of the
original data depends on the particular application. For instance, when H is a functional, L2, space indexed
by one-dimensional time, the original data usually consist of observations Xi (tk) (k = 1, . . . ,m) for a grid
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Resistant functional data analysis 829

of points t1 < · · ·< tm . Now suppose that the original data are observed discretely but exactly, i.e., without
noise; later we explain how to handle noisy discrete observations.

The methods proposed in this paper have the advantage that all required quantities and operations can
be expressed in terms of basis coefficients; thus, from the computational point of view the task is mul-
tivariate. To estimate the centre, it is enough to find the vector of coefficients mj in its basis expansion
μ=∑p

j=1 mjψ j . Similarly, for the dispersion operator, we need to find the matrix of coefficients R j j ′ in
the expansion

R =
p∑

j=1

p∑

j ′=1

R j j ′ψ j ⊗ ψ j ′ .

For simplicity, we first assume that the basis ψ1, . . . , ψp is orthonormal. Then, the norm in the objective
function for μ is simply the norm of the coefficient vector, i.e., ‖Xi − μ‖2 = ‖ξi − m‖2 =∑p

j=1(ξi j−
mj )

2, and the score operator G(P̂;μ) is equivalent to the p-vector

1

n

n∑

i=1

ρ ′(‖ξi − m‖)
‖ξi − m‖ (m − ξi ).

The Hilbert–Schmidt norm in the objective function for R is the Frobenius norm of the coefficient matrix,
i.e.,

‖P(Xi ;μ)− R‖2 = ‖(ξi − m)(ξi − m)T − R‖2 =
p∑

j=1

p∑

j ′=1

{(ξi j − mj )(ξi j ′ − m j ′)− R j j ′ }2,

and the score operator G (P̂;R, μ) is equivalent to the p × p matrix

1

n

n∑

i=1

ρ ′{‖(ξi − m)(ξi − m)T − R‖}
‖(ξi − m)(ξi − m)T − R‖ {R − (ξi − m)(ξi − m)T}.

For the two-sample test, the operator B(P̂1, P̂2, an; R̂, μ̂1, μ̂2) and the basis elements Ul for dimension
reduction are equivalent to matrices, and the score components Sl are computed as their inner products.
Similarly, all quantities involved in the covariance matrix of the score vector are computed in a multivariate
setting. When the basis ψ1, . . . , ψp is not orthonormal, one simply multiplies each coefficient vector ξi by
the matrix A1/2 where A has entries a j j ′ = 〈ψ j , ψ j ′ 〉, and performs all computations, i.e., estimation of the
centre and dispersion, eigen-decomposition and the two-sample test, with these transformed multivariate
inputs. This corresponds to switching from the original basis to the orthonormal basis A−1/2(ψ1, . . . , ψp)

T.
If needed, the centre and the eigenfunctions can then be obtained in the original basis by multiplying their
coefficient vectors by A−1/2 and in the dispersion by multiplying its coefficient matrix by A−1/2 from both
sides. We refer to Ramsay & Silverman (2005, § 8.4.2) for a detailed explanation of a similar problem of
computing functional principal components from coefficients with respect to a general non-orthonormal
basis.

To estimate the centre and dispersion one solves the corresponding multivariate optimization problem.
If ρ(u)= u2, the solutions are the sample mean and covariance matrix of the coefficient vectors; other-
wise an iterative procedure is used. We use the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton method
implemented in the R package (R Development Core Team, 2012) in the function optim, initialized by the
componentwise median of ξi for the centre and the componentwise median of (ξi − m)(ξi − m)T for the
dispersion. This numerical procedure was reliable and reasonably fast in our experiments. This is in agree-
ment with a detailed study of the numerical performance of various algorithms for the spatial median
presented by Fritz et al. (2012).

In functional settings one can directly use the functional values on a grid of points instead of comput-
ing with basis coefficients. The basis approach is slightly more general than the discretization approach
because it can be used for any separable Hilbert space, not only a functional space, and in the functional

 at U
niversitÃ

©
 &

 E
PFL

 L
ausanne on February 17, 2013

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 



830 DAVID KRAUS AND VICTOR M. PANARETOS

case it does not require a common grid for all functions. Standard software for functional data analysis,
such as the fda package in R, uses basis representations of data.

In many applications, the original functional values on a grid of points are observed with noise. In such
situations, some degree of smoothing is necessary for the reconstruction of the underlying functional data.
Ramsay & Silverman (2005, Chapter 5) describe how roughness penalties can be used to compute the basis
coefficients of the functions. After this preliminary step, our methods can be applied to the reconstructed
curve, i.e., their basis coefficients, as described above.

In the case of the spatial median, Gervini (2008, pp. 589–590) proposes an alternative method to deal
with noise in discretely observed functions. Rather than on denoising and reconstructing the curves, his
procedure is based on removing the bias, which is due to the errors, in the norm in the objective function
with the help of a consistent estimate of the variance of the errors. He uses this idea in connection with
numerical integration on a grid, but it can be adapted to the basis approach as well. However, this method
is less practical for second-order problems, as one would also need to estimate higher order moments of
the errors and use convoluted formulae to remove the bias from the norm in the objective functional.

Technical material

We now derive several key expressions pertaining to the assumptions, statement and discussion of
Theorem 1. We use the script font, e.g., D , J , I , for linear operators on H, i.e., linear mappings H→H,
the fraktur font, e.g., D, J, I, H, W, for linear operators on Hilbert–Schmidt operators on H, i.e., linear
mappings HS(H,H)→ HS(H,H), and the blackboard bold font, e.g., D, J, H, Q, for linear operators
from H to Hilbert–Schmidt operators on H, i.e., linear mappings H→ HS(H,H).

First, we introduce certain derivatives in the Fréchet sense as follows. Denote by I and I the identity
operators on H and HS(H,H), respectively. The derivative

D(P;μ)= ∂

∂μ
G(P;μ)= EP

[
ρ ′(‖X − μ‖)

‖X − μ‖ I +
{
ρ ′′(‖X − μ‖)

‖X − μ‖2
− ρ ′(‖X − μ‖)

‖X − μ‖3

}
P(X;μ)

]
(A1)

is a linear mapping from H to H. The derivative

D(P;R, μ)= ∂

∂R
G (P;R, μ)= EP

(
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ I

+
[
ρ ′′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖2
− ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖3

]
P(X;R, μ)

)
, (A2)

where we denote P(x;R, μ)= {P(x;μ)− R} ⊗ {P(x;μ)− R}, is a linear mapping from HS(H,H)
to HS(H,H). We define

D(P;R, μ)= ∂

∂μ
G (P;R, μ), (A3)

which is a linear mapping from H to HS(H,H). To compute it, we first compute

Q(x;μ)= ∂

∂μ
P(x;μ).

We consider its value at some f ∈H, i.e., we investigate the operator Q(x;μ) f ∈ HS(H,H). This is done
through its coordinate representation as follows. For any g1, g2 ∈H, we have

〈g1, {Q(x;μ) f }g2〉 =
〈

g1,

[{
∂

∂μ
P(x;μ)

}
f

]
g2

〉
=
{
∂

∂μ
〈g1,P(x;μ)g2〉

}
f

=
{
∂

∂μ
(〈x − μ, g1〉〈x − μ, g2〉)

}
f = −(〈x − μ, g2〉g1 + 〈x − μ, g1〉g2) f

= −〈x − μ, g2〉〈g1, f 〉 − 〈x − μ, g1〉〈g2, f 〉.

(A4)
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Resistant functional data analysis 831

Then, the derivative of G (P;R, μ) with respect to μ evaluated at f ∈H is

D(P;R, μ) f = − EP

[
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ Q(X;μ) f

]

− EP

([
ρ ′′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖2
− ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖3

]

× 〈P(X;μ)− R,Q(X;μ) f 〉{P(X;μ)− R}
)
.

We set

D0(P1,P2, a;R, μ1, μ2)= aD(P1;R, μ1)+ (1 − a)D(P2;R, μ2),

D1(P1,P2, a;R, μ1, μ2)= aD(P1;R, μ1)− (1 − a)D(P2;R, μ2).

Next, using the notation f ⊗2 = f ⊗ f for f ∈H and A ⊗2 = A ⊗ A for A ∈ HS(H,H), we define

J (P;μ)= EP

[{
ρ ′(‖X − μ‖)

‖X − μ‖ (μ− X)− G(P;μ)
}⊗2

]

J(P;R, μ)= EP

([
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ {R − P(X;μ)} − G (P;R, μ)

]⊗2
)

and

J(P;R, μ)= EP

([
ρ ′{‖P(X;μ)− R‖}

‖P(X;μ)− R‖ {R − P(X;μ)} − G (P;R, μ)

]

⊗
{
ρ ′(‖X − μ‖)

‖X − μ‖ (μ− X)− G(P;μ)
})

.

Next, we denote

H1(P1,P2, a;R, μ1, μ2)= I − D1(P1,P2, a;R, μ1, μ2)D0(P1,P2, a;R, μ1, μ2)
−1,

H1(P1,P2, a;R, μ1, μ2)= H1(P1,P2, a;R, μ1, μ2)D(P1;R, μ1)D(P1;μ1)
−1,

H2(P1,P2, a;R, μ1, μ2)= I + D1(P1,P2, a;R, μ1, μ2)D0(P1,P2, a;R, μ1, μ2)
−1,

H2(P1,P2, a;R, μ1, μ2)= H2(P1,P2, a;R, μ1, μ2)D(P2;R, μ2)D(P2;μ2)
−1,

where I stands for the identity operator on HS(H,H). Finally, we set

W(P1,P2, a;R, μ1, μ2)= aW1(P1,P2, a;R, μ1, μ2)+ (1 − a)W2(P1,P2, a;R, μ1, μ2), (A5)

where

W1(P1,P2, a;R, μ1, μ2)= H1(P1,P2, a;R, μ1, μ2)J(P1;R, μ1)H1(P1,P2, a;R, μ1, μ2)
∗

− H1(P1,P2, a;R, μ1, μ2)J(P1;R, μ1)H1(P1,P2, a;R, μ1, μ2)
∗

− H1(P1,P2, a;R, μ1, μ2)J(P1;R, μ1)
∗H1(P1,P2, a;R, μ1, μ2)

∗

+ H1(P1,P2, a;R, μ1, μ2)J (P1;R, μ1)H1(P1,P2, a;R, μ1, μ2)
∗

with ∗ denoting adjoint operators, and W2(P1,P2, a;R, μ1, μ2) is defined analogously with H2,H2 in
place of H1,H1, respectively, and P2 instead of P1 in J, J,J .
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BENKO, M., HÄRDLE, W. & KNEIP, A. (2009). Common functional principal components. Ann. Statist. 37, 1–34.
BOENTE, G. & FRAIMAN, R. (1999). Comment on a paper by Locantore et al. Test 8, 28–35.
BOENTE, G., RODRIGUEZ, D. & SUED, M. (2011). Testing the equality of covariance operators. In Recent Advances in

Functional Data Analysis and Related Topics, Ed. F. Ferraty, pp. 49–53. Heidelberg: Physica-Verlag.
BOSQ, D. (2000). Linear Processes in Function Spaces: Theory and Applications. New York: Springer.
BOX, G. E. P. (1953). Non-normality and tests on variances. Biometrika 40, 318–35.
CHAUDHURI, P. (1996). On a geometric notion of quantiles for multivariate data. J. Am. Statist. Assoc. 91, 862–72.
DAUXOIS, J., POUSSE, A. & ROMAIN, Y. (1982). Asymptotic theory for the principal component analysis of a vector

random function: some applications to statistical inference. J. Mult. Anal. 12, 136–54.
FRITZ, H., FILZMOSER, P. & CROUX, C. (2012). A comparison of algorithms for the multivariate L1-median. Comp.

Statist., to appear. doi: 10.1007/s00180-011-0262-4.
GABRYS, R. & KOKOSZKA, P. (2007). Portmanteau test of independence for functional observations. J. Am. Statist.

Assoc. 102, 1338–48.
GERVINI, D. (2006). Free-knot spline smoothing for functional data. J. R. Statist. Soc. B 68, 671–87.
GERVINI, D. (2008). Robust functional estimation using the median and spherical principal components. Biometrika

95, 587–600.
HALL, P. & HOSSEINI-NASAB, M. (2006). On properties of functional principal components analysis. J. R. Statist. Soc.

B 68, 109–26.
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SUMMARY

This supplementary file contains proofs of Proposition 1, Corollary 1, Proposition 2, Theo-
rem 1 and a technical lemma needed in the proof of Theorem 1. Equations in this supplement
are numbered (S1), (S2), . . . ; equation numbers such as (1), (2), . . . or (A1), (A2), . . . refer to the
main body of the paper.

PROOF OF PROPOSITION 1
It suffices to prove that the finitely-valued objective functional M(P;R, µ) given in equa-

tion (2) in the paper admits a unique minimizer on the space of Hilbert–Schmidt operators acting
onH. By the triangle inequality, monotonicity and convexity of ρ we have that

EP(ρ[‖P(X;µ)− {λR + (1− λ)R′}‖]− ρ{‖P(X;µ)‖})
≤ EP[ρ{λ‖P(X;µ)−R‖+ (1− λ)‖P(X;µ)−R′‖} − ρ{‖P(X;µ)‖}]
≤ λEP[ρ{‖P(X;µ)−R‖} − ρ{‖P(X;µ)‖}]
+ (1− λ)EP[ρ{‖P(X;µ)−R′‖} − ρ{‖P(X;µ)‖}]

for any λ ∈ [0, 1] and arbitrary Hilbert–Schmidt operators R,R′. Notice that since ρ is strictly
increasing, the first inequality is strict unless P(X;µ)−R and P(X;µ)−R′ are collinear
almost surely. Equivalently, the inequality is strict whenever the distribution of P(X;µ) is not
concentrated on the line {tR + (1− t)R′ : t ∈ R}.

We now investigate what this condition means geometrically in the spaceH. First, notice that
as the rank of P(X;µ) is 1, the rank of tR + (1− t)R′ has to be 1 also. Now we distinguish
two cases.

First, if R,R′ are collinear, then the line is of the form {αR : α ∈ R}, which by the condition
on the rank is {αu⊗ u : α ∈ R} for some u ∈ H. Since P(X;µ) is positive semidefinite, we
in fact have {αu⊗ u : α ≥ 0}. Thus, the operator P(X;µ) lying on this line is equivalent to X
lying on the line {µ+ βu : β ∈ R}.

Second, if R,R′ are not collinear, then operators of the form tR + (1− t)R′ have rank 1 for
at most two values of t. To see this, notice that the rank condition implies that for all i < j,

det

{
t

(
Rii Rij
Rji Rjj

)
+ (1− t)

(
R′ii R

′
ij

R′ji R
′
jj

)}
= 0,

whereRij = 〈ei,Rej〉,R′ij = 〈ei,R′ej〉. This system of quadratic equations has at most two so-
lutions. Thus, the set {tR + (1− t)R′ : t ∈ R} reduces at most to the set {α1u1 ⊗ u1, α2u2 ⊗
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u2} for some nonnegative α1, α2 and some u1, u2 ∈ H. Hence, the operator P(X;µ) belonging
to this set is equivalent to X belonging to the set of at most four points {µ± β1u1, µ± β2u2}.

Therefore, if the distribution P is not concentrated on a line or on four points, the objective
function to be minimized is strictly convex. It follows that the minimum of the functional exists
and is unique.

PROOF OF COROLLARY 1
The empirical version of the functional defining the dispersion operator is the expectation with

respect to the empirical distribution P̂. Under our assumptions on P, the empirical distribution P̂
is almost surely not concentrated on a line or on four points. Therefore, strict convexity, and thus
existence and uniqueness, follows with probability 1 by applying Proposition 1 to the empirical
distribution P̂. Consistency then follows from strict convexity and the consistency of µ̂, using
standard arguments.

PROOF OF PROPOSITION 2
Consider R of the form

∑∞
k=1 δkϕk ⊗ ϕk for some sequence δ1, δ2, . . . We will prove that

such an operator solves the estimating equation (5) showing that R and C have the same set of
eigenfunctions, and that the sequence δ1, δ2, . . . satisfies the condition (6).

We investigate the coordinates of the left-hand side of (5), with the aim of showing that the
values 〈

ϕj ,EP

[
ρ′{‖R −P(X;µ)‖}
‖R −P(X;µ)‖ {R −P(X;µ)}

]
ϕk

〉
(S1)

are zero for all j, k. By the orthonormality of ϕ1, ϕ2, . . . , we have that

‖R −P(X;µ)‖2 =
∥∥∥∥∥
∞∑

k=1

δkϕk ⊗ ϕk −
∞∑

j=1

∞∑

k=1

λ
1/2
j λ

1/2
k βjβkϕj ⊗ ϕk

∥∥∥∥∥

2

=
∑

k

(δk − λkβ2k)2 +
∑

k 6=j
λjλkβ

2
j β

2
k.

First, we compute the off-diagonal coordinates with j 6= k. The first summand in (S1) is zero
because 〈ϕj ,Rϕk〉 = 0. To show that the second summand in (S1) is zero, we use the fact that,
by assumption, the sequence {siβi}∞i=1 with si = (−1)1{i=j} has the same joint distribution as
{βi}∞i=1. Compute

Ajk =

〈
ϕj ,EP

[
ρ′{‖R −P(X;µ)‖}
‖R −P(X;µ)‖ P(X;µ)

]
ϕk

〉

= E

(
ρ′[{∑i(δi − λiβ2i )2 +

∑
i 6=l λiλlβ

2
i β

2
l }1/2]

{∑i(δi − λiβ2i )2 +
∑

i 6=l λiλlβ
2
i β

2
l }1/2

λ
1/2
j λ

1/2
k βjβk

)

= E

{
ρ′([
∑

i{δi − λi(siβi)2}2 +
∑

i 6=l λiλl(siβi)
2(slβl)

2]1/2)

[
∑

i{δi − λi(siβi)2}2 +
∑

i 6=l λiλl(siβi)
2(slβl)2]1/2

λ
1/2
j λ

1/2
k sjβjskβk

}

= −Ajk.
Thus, Ajk = 0. Therefore, the operator R is diagonalized by the same functions ϕ1, ϕ2, . . .
as C . By computing the diagonal coordinates with j = k in (5) we obtain (6).
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A TECHNICAL LEMMA

LEMMA 1. Under the assumptions of Theorem 1,

(a) the linear operator D(P;µ) defined in equation (A1) is a bijection of H onto itself, it is
bounded and has bounded inverse,

(b) the linear operator D(P;R, µ) defined in equation (A2) is a bijection of HS(H,H) onto
itself, it is bounded and has bounded inverse.

Proof. We prove part (a); the proof of part (b) is similar. The proof uses and extends the steps
of the proof of Lemma 1 (iii) of Gervini (2008) modified for the present context of general ρ and
generalized to the case of infinitely many components in the Karhunen–Loève expansion.

Recall that

D(P;µ) = EP

[
ρ′(‖X − µ‖)
‖X − µ‖ I +

{
ρ′′(‖X − µ‖)
‖X − µ‖2 − ρ′(‖X − µ‖)

‖X − µ‖3
}

P(X;µ)

]
;

see the appendix of the main body of the paper. To show that D(P;µ) is a bijection, we need
to find for any h ∈ H a unique element f ∈ H such that D(P;µ)f = h. The set of orthonor-
mal eigenfunctions {ϕk}∞k=1 of C can be extended to an orthonormal basis of H by possibly
adding some functions {ψk}qk=1 with q finite or infinite or zero. It is then enough to verify
the relation D(P;µ)f = h in terms of the Fourier coefficients of both sides with respect to
the basis {ϕk}∞k=1 ∪ {ψk}

q
k=1, i.e., to show that 〈D(P;µ)f, ϕk〉 = 〈h, ϕk〉 for all k = 1, 2, . . .

and 〈D(P;µ)f, ψk〉 = 〈h, ψk〉 for all k = 1, . . . , q. As 〈D(P;µ)f, ϕk〉 = 〈f,D(P;µ)ϕk〉 and
〈D(P;µ)f, ψk〉 = 〈f,D(P;µ)ψk〉, we first investigate D(P;µ)ϕk and D(P;µ)ψk.

We begin by exploring the structure of the operator D(P;µ). We can rewrite

EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 P(X;µ)

}
= EP(ε̃⊗ ε̃),

where

ε̃ =
ρ′(‖X − µ‖)1/2
‖X − µ‖3/2 (X − µ) =

∞∑

k=1

λ
1/2
k

ρ′(‖X − µ‖)1/2
‖X − µ‖3/2 βkϕk =

∞∑

k=1

λ̃
1/2
k β̃kϕk (S2)

with

λ̃k = λk EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 β2k

}
,

β̃k =
ρ′(‖X − µ‖)1/2
‖X − µ‖3/2 βk

/[
EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 β2k

}]1/2
.

Thus, we need to find the covariance operator of ε̃. The series expansion (S2) of ε̃ is a Karhunen–
Loève expansion because the coefficients β̃k have zero mean and unit variance and are uncorre-
lated (which follows from the fact that the distribution of {βk} is invariant under the change of
the sign of any component). Therefore, since EP(‖ε̃‖2) <∞, which follows immediately from
the assumption that

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
<∞,
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the operator of interest, as the covariance operator of ε̃, takes the form

EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 P(X;µ)

}
=

∞∑

k=1

λ̃kϕk ⊗ ϕk =
∞∑

k=1

EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 λkβ

2
k

}
ϕk ⊗ ϕk.

Using analogous arguments for

ε̇ =
ρ′′(‖X − µ‖)1/2
‖X − µ‖ (X − µ),

we can show that

EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2 P(X;µ)

}
=
∞∑

k=1

EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2 λkβ

2
k

}
ϕk ⊗ ϕk.

Hence, we finally obtain D(P;µ) in the form

D(P;µ) = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
I

+
∞∑

k=1

EP

[{
ρ′′(‖X − µ‖)
‖X − µ‖2 − ρ′(‖X − µ‖)

‖X − µ‖3
}
λkβ

2
k

]
ϕk ⊗ ϕk.

Therefore, for k = 1, 2, . . . we have

D(P;µ)ϕk = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
ϕk + EP

[{
ρ′′(‖X − µ‖)
‖X − µ‖2 − ρ′(‖X − µ‖)

‖X − µ‖3
}
λkβ

2
k

]
ϕk

and, for k = 1, . . . , q, we have

D(P;µ)ψk = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
ψk.

Thus, we obtain

〈D(P;µ)f, ϕk〉 = νk〈f, ϕk〉 (k = 1, 2, . . . ),

〈D(P;µ)f, ψk〉 = η〈f, ψk〉 (k = 1, . . . , q),

where

νk = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
+ λk EP

[{
ρ′′(‖X − µ‖)
‖X − µ‖2 − ρ′(‖X − µ‖)

‖X − µ‖3
}
β2k

]
(k = 1, 2, . . . )

and

η = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
.

So f , the candidate for D(P;µ)−1h, should have Fourier coefficients 〈f, ϕk〉, 〈f, ψk〉 satisfying
the system of equations

νk〈f, ϕk〉 = 〈h, ϕk〉 (k = 1, 2, . . . ), η〈f, ψk〉 = 〈h, ψk〉 (k = 1, . . . , q).

To be able to write 〈f, ϕk〉 = 〈h, ϕk〉/νk, we need to show that νk (k = 1, 2, . . . ) and η are
nonzero and finite. Then, f will be uniquely determined by the formula

f =

∞∑

k=1

〈h, ϕk〉
νk

ϕk +

q∑

k=1

〈h, ψk〉
η

ψk
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provided that f is a well-defined element ofH, that is,

‖f‖2 =
∞∑

k=1

〈h, ϕk〉2
ν2k

+

q∑

k=1

〈h, ψk〉2
η2

<∞. (S3)

We assumed that η <∞ and we immediately see that η > 0 because ρ is strictly increasing.
We now deal with νk (k = 1, 2, . . . ). We will show that there exist 0 < a ≤ b <∞ such that
νk ∈ [a, b] for all k = 1, 2, . . .

First we establish the lower bound a. Using the Karhunen–Loève expansion (S2) we can
rewrite

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
= EP(‖ε̃‖2) =

∞∑

k=1

λ̃k =
∞∑

k=1

λk EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 β2k

}
. (S4)

Each term in the series on the right hand side of (S4) is obviously positive and by finiteness of
the left hand side it is finite, and thus the differences

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
− λk EP

{
ρ′(‖X − µ‖)
‖X − µ‖3 β2k

}
, (S5)

which appear in the expression for νk, are positive and bounded away from zero by a constant a.
The remaining term

λk EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2 β2k

}
(S6)

appearing in νk is nonnegative as ρ′′ ≥ 0 because ρ is convex. It follows that νk ≥ a for all
k = 1, 2, . . .

Now we find the upper bound b. By applying the same idea as in (S4) to ε̇, we obtain

EP{ρ′′(‖X − µ‖)} =
∞∑

k=1

λk EP

{
ρ′′(‖X − µ‖)
‖X − µ‖2 β2k

}
. (S7)

In view of (S7), the terms (S6) are smaller than or equal to EP{ρ′′(‖X − µ‖)}. The differences
(S5) are smaller than

EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
.

Therefore, we have that νk ≤ b for all k = 1, 2, . . . with

b = EP

{
ρ′(‖X − µ‖)
‖X − µ‖

}
+ EP{ρ′′(‖X − µ‖)}.

Finally, it remains to show (S3), which is now straightforward because

‖f‖2 =
∞∑

k=1

〈h, ϕk〉2
ν2k

+

q∑

k=1

〈h, ψk〉2
η2

≤
∑∞

k=1〈h, ϕk〉2 +
∑q

k=1〈h, ψk〉2
min(a, η)

=
‖h‖2

min(a, η)

<∞.
This shows that f is a well defined element ofH and thus the linear operator D(P;µ) is a bijec-
tion ofH onto itself. It also shows that the inverse D(P;µ)−1 is a bounded operator. Hence also
the operator D(P;µ) is bounded by the bounded inverse theorem or by direct verification. �
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Remark: As νk are bounded away from zero and bounded from above, the operator D(P;µ) is
only a small perturbation of a multiple of the identity. This gives an intuitive explanation why it
inherits its bijectivity and boundedness.

PROOF OF THEOREM 1
It is enough to prove the weak convergence of n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2). The weak con-

vergence of the vector with components Sl will then follow directly from Slutsky’s theorem.
The continuous mapping theorem and Slutsky’s theorem will then establish the weak conver-
gence of the statistic T . Applying a Taylor expansion (Nelson, 1969, Theorem 6, p. 12) of
B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) around the true values of the parameters yields

n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) = n1/2B(P̂1, P̂2, an;R, µ1, µ2)

+ D1(P̂1, P̂2, an;R
�, µ�1, µ

�
2)n

1/2(R̂ −R)

+ a1/2n D(P̂1;R
�, µ�1)n

1/2
1 (µ̂1 − µ1)

− (1− an)1/2D(P̂2;R
�, µ�2)n

1/2
2 (µ̂2 − µ2),

(S8)

where

D1(P1,P2, a;R, µ1, µ2) =
∂

∂R
B(P1,P2, a;R, µ1, µ2)

= aD(P1;R, µ1)− (1− a)D(P2;R, µ2)

and

D(P;R, µ) =
∂

∂R
G (P;R, µ), D(P;R, µ) =

∂

∂µ
G (P;R, µ).

See the Appendix in the main body of the paper for explicit formulae.
We now turn to develop certain asymptotic representations for µ̂1, µ̂2 and R̂. Using the Taylor

expansion, law of large numbers and consistency of µ̂1 we get

0 = n
1/2
1 G(P̂1; µ̂1) = n

1/2
1 G(P̂1;µ1) + D(P̂1;µ

†
1)n

1/2
1 (µ̂1 − µ1)

= n
1/2
1 G(P̂1;µ1) + D(P1;µ1)n

1/2
1 (µ̂1 − µ1) + oP (1),

where the term oP (1) is due to the fact that we replace D(P̂1;µ1) by its limit D(P1;µ1). From
this and an analogous expansion for µ2 we obtain

n
1/2
1 (µ̂1 − µ1) = −D(P1;µ1)

−1n1/21 G(P̂1;µ1) + oP (1),

n
1/2
2 (µ̂2 − µ2) = −D(P2;µ2)

−1n1/22 G(P̂2;µ2) + oP (1).
(S9)

The existence of the bounded inverse operators in the above equations, as well as of other in-
verse operators appearing later in the proof, is shown in Lemma 1. The Taylor expansion of the
estimating score for R around the true values is

O = n1/2G (P̂1, P̂2, an; R̂, µ̂1, µ̂2) = n1/2G (P̂1, P̂2, an;R, µ1, µ2)

+ D0(P̂1, P̂2, an;R
‡, µ‡1, µ

‡
2)n

1/2(R̂ −R)

+ a1/2n D(P̂1;R
‡, µ‡1)n

1/2
1 (µ̂1 − µ1)

+ (1− an)1/2D(P̂2;R
‡, µ‡2)n

1/2
2 (µ̂2 − µ2),
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where D0(P1,P2, a;R, µ1, µ2) = aD(P1;R, µ1) + (1− a)D(P2;R, µ2). This yields

n1/2(R̂ −R) = −D0(P1,P2, a;R, µ1, µ2)
−1

{n1/2G (P̂1, P̂2, an;R, µ1, µ2) + a1/2n D(P1;R
‡, µ‡1)n

1/2
1 (µ̂1 − µ1)

+ (1− an)1/2D(P2;R
‡, µ‡2)n

1/2
2 (µ̂2 − µ2)}

+ oP (1);

(S10)

here again the term oP (1) is present because we replace the empirical distributions by their
theoretical counterparts in D0 and D.

The different Taylor expansions we have used contain various elements denoted by �, †, ‡

which lie on the line segments between the true and estimated corresponding parameters. We
will replace all of these elements by the true values of the parameters. Due to the consistency
of the estimators, the difference between a quantity at the true value of the parameters and at
a value on the line segment between the true value and the estimator converges in probability to
zero. Moreover, the quantities involving elements marked with �, † or ‡ are always multiplied by
a term that is bounded in probability (by its convergence in distribution which will be seen later).
Hence, the change we make by replacing the elements marked with �, † or ‡ by their true values
is asymptotically negligible. The reason for doing this is that we obtain simpler formulas.

Denote

H1(P1,P2, a;R, µ1, µ2) = I−D1(P1,P2, a;R, µ1, µ2)D0(P1,P2, a;R, µ1, µ2)
−1,

H1(P1,P2, a;R, µ1, µ2) = H1(P1,P2, a;R, µ1, µ2)D(P1;R, µ1)D(P1;µ1)
−1,

H2(P1,P2, a;R, µ1, µ2) = I + D1(P1,P2, a;R, µ1, µ2)D0(P1,P2, a;R, µ1, µ2)
−1,

H2(P1,P2, a;R, µ1, µ2) = H2(P1,P2, a;R, µ1, µ2)D(P2;R, µ2)D(P2;µ2)
−1,

where I stands for the identity operator on HS(H,H). Inserting (S9) and (S10) into (S8), we
obtain

n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) = a1/2n H1(P1,P2, a;R, µ1, µ2)n
1/2
1 G (P̂1;R, µ1)

− a1/2n H1(P1,P2, a;R, µ1, µ2)n
1/2
1 G(P̂1;µ1)

− (1− an)1/2H2(P1,P2, a;R, µ1, µ2)n
1/2
2 G (P̂2;R, µ2)

+ (1− an)1/2H2(P1,P2, a;R, µ1, µ2)n
1/2
2 G(P̂2;µ2)

+ oP (1).

The term oP (1) is due to the fact that we have replaced the quantities marked with �, †, ‡ by their
true counterparts.

By the central limit theorem for Hilbert spaces (Bosq, 2000, Theorem 2.7), the operators
n
1/2
1 G (P̂1;R, µ1), n

1/2
1 G(P̂1;µ1) jointly converge in distribution to a zero-mean Gaussian ran-

dom variable in HS(H,H)×H. The asymptotic covariance operator of n1/21 G (P̂1;R, µ1), i.e.,
an operator on operators onH, can be estimated by the empirical covariance J(P̂1; R̂, µ̂1), where

J(P;R, µ) = EP

([
ρ′{‖P(X;µ)−R‖}
‖P(X;µ)−R‖ {R −P(X;µ)} − G (P;R, µ)

]⊗2)
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with the notation A ⊗2 = A ⊗A for A ∈ HS(H,H), the asymptotic covariance operator of
n
1/2
1 G(P̂1;µ1), i.e., an operator onH, can be estimated by J (P̂1; µ̂1), where

J (P;µ) = EP

[{
ρ′(‖X − µ‖)
‖X − µ‖ (µ−X)−G(P;µ)

}⊗2]

with f⊗2 = f ⊗ f for f ∈ H, and the asymptotic cross-covariance operator of n1/21 G (P̂1;R, µ1)

and n1/21 G(P̂1;µ1), i.e., an operator fromH to operators onH, can be estimated by J(P̂1; R̂, µ̂1),
where

J(P;R, µ) = EP

([
ρ′{‖P(X;µ)−R‖}
‖P(X;µ)−R‖ {R −P(X;µ)} − G (P;R, µ)

]

⊗
{
ρ′(‖X − µ‖)
‖X − µ‖ (µ−X)−G(P;µ)

})
.

Similarly, n1/22 G (P̂2;R, µ2), n
1/2
2 G(P̂2;µ2) jointly converge in distribution to a zero-mean

Gaussian random element with covariance estimators analogous to those mentioned above for
the sample from P1. As the samples are independent, all four random variables jointly converge
in distribution.

Finally, it follows by Slutsky’s theorem that the test operator n1/2B(P̂1, P̂2, an; R̂, µ̂1, µ̂2) is
asymptotically distributed as a zero-mean Gaussian operator whose covariance operator can be
consistently estimated by

W(P̂1, P̂2, an; R̂, µ̂1, µ̂2) = anW1(P̂1, P̂2, an; R̂, µ̂1, µ̂2)

+ (1− an)W2(P̂1, P̂2, an; R̂, µ̂1, µ̂2),

where

W1(P1,P2, a;R, µ1, µ2)

= H1(P1,P2, a;R, µ1, µ2)J(P1;R, µ1)H1(P1,P2, a;R, µ1, µ2)
∗

− H1(P1,P2, a;R, µ1, µ2)J(P1;R, µ1)H1(P1,P2, a;R, µ1, µ2)
∗

−H1(P1,P2, a;R, µ1, µ2)J(P1;R, µ1)
∗H1(P1,P2, a;R, µ1, µ2)

∗

+H1(P1,P2, a;R, µ1, µ2)J (P1;R, µ1)H1(P1,P2, a;R, µ1, µ2)
∗

with ∗ denoting adjoint operators, and W2(P1,P2, a;R, µ1, µ2) is defined analogously with
H2,H2 in place of H1,H1, respectively, and P2 instead of P1 in J, J,J .
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Summary. Functional data are traditionally assumed to be observed on the same domain.
Motivated by a data set of heart rate temporal profiles, we develop methodology for the analysis
of incomplete functional samples where each curve may be observed on a subset of the domain
and unobserved elsewhere.We formalize this observation regime and develop the fundamental
procedures of functional data analysis for this framework: estimation of parameters (mean and
covariance operator) and principal component analysis. Principal scores of a partially observed
function cannot be computed directly and we solve this challenging issue by estimating their
best predictions as linear functionals of the observed part of the trajectory. Next, we propose a
functional completion procedure that recovers the missing part by using the observed part of
the curve. We construct prediction intervals for principal scores and bands for missing parts of
trajectories. The prediction problems are seen to be ill-posed inverse problems; regularization
techniques are used to obtain a stable solution. A simulation study shows the good perfor-
mance of our methods. We illustrate the methods on the heart rate data and provide practical
computational algorithms and theoretical arguments and proofs of all results.

Keywords: Functional data analysis; Incomplete observation; Inverse problem; Prediction;
Principal component analysis; Regularization

1. Introduction

Contemporary data sets often consist of data units that are complex objects, such as functions,
curves or images; see, for example, Ramsay and Silverman (2005), Ferraty and Vieu (2006),
Ferraty and Romain (2011) and Horváth and Kokoszka (2012). It is standard in the field of
functional data analysis to assume that all functions are observed on the same domain. In this
paper, we develop methods of analysis for functional data that are observed incompletely in
the sense that each function might be observed only on a subset of the domain, whereas no
information about the curve is available on the complement of this subset.

Our work is motivated by an ambulatory blood pressure monitoring data set that is part of
the ‘Swiss kidney project on genes in hypertension’ (Pruijm et al., 2013) which is a multicen-
tre cross-sectional study focusing on the role of kidney function and genes in blood pressure
regulation and hypertension. In ambulatory blood pressure monitoring, participants wear a
calibrated automatic device that is programmed to record systolic and diastolic blood pressure
and heart rate at frequent intervals during 24 h (every 15 min during the day and every 30 min
during the night). Ideally, this design should provide enough information for each continuous
temporal profile to be reconstructed by standard smoothing techniques; the resulting sample
of curves would then be analysed by traditional methods of functional data analysis. In reality,
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Fig. 1. (a) Subset of the sample of heart rate profiles and (b) several curves in detail

however, some values have not been measured and the time points corresponding to unobserved
values form series (intervals) of non-negligible length. There are two main reasons why no mea-
surements are available for certain periods: first is the participant’s discomfort (the participants
can remove the device when they feel uncomfortable) and second is the failure of the device to
take measurements. However, there are series of frequent, properly recorded measurements. It
is therefore possible to reconstruct the underlying profiles in continuous time on these periods.
Fig. 1(a) displays a subset of 685 heart rate profiles (values in beats per minute); we focus on the
time interval [20, 26] (i.e. from 8 p.m. of one day to 2 a.m. next day) that is of particular medical
interest because it is the transition period between the day and night regime. In Fig. 1(b), we
plot separately four profiles to illustrate the type of available data: whereas some curves (dotted
and chain curves) are observed completely (on the entire domain [20, 26]), other curves (the
two broken curves) have unobserved periods. The percentage of incomplete functions is 31%
for blood pressure profiles and 44% for heart rate profiles. This is a considerable fraction of the
data, and we therefore wish to avoid removing the incomplete curves from the analysis.

The partial observation regime that we encounter in this data set is of general interest in
applications as often, despite the failure to observe the curves in some regions, there is enough
observed information in the rest of the domain. The mechanism that causes the absence of
data can be random, like in our data, but the curves may also be partially observed by design.
Moreover, data need not necessarily be curves indexed by time; methods that we develop can be
extended to more general object data subject to incomplete observation, such as partially ob-
served images, spatial curves or surfaces. Hence this kind of functional data is worth systematic
investigation. Interestingly and surprisingly, this observation pattern, however natural and likely
to occur in many applications it is, has received relatively little attention in the literature. James
et al. (2000) and James and Hastie (2001) used parametric mixed effects models for principal
components analysis and classification of partially observed curves. Bugni (2012) developed a
goodness-of-fit test under circumstances that were similar to those of our paper. Delaigle and
Hall (2013) dealt with classification of functional data when only fragments of curves are avail-
able. Liebl (2013) studied low rank extensions of curves observed on subdomains. Goldberg et al.
(2014) propose a prediction procedure for the continuation of a low rank functional observation.

In this paper we introduce a formal framework for analysing incompletely observed func-
tional data and develop basic non-parametric, fully functional (infinite dimensional) inferential
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procedures. When exploring functional data, one often finds interesting information in their co-
variance structure; see Ramsay and Silverman (2005) for some examples and, for example, Benko
et al. (2009), Sangalli et al. (2009) or Panaretos et al. (2010) for other illustrations. Therefore, we
first focus on the main building blocks of the analysis of the second-order properties: estimation
of the covariance operator and principal component analysis. We propose an estimator of the
covariance operator and its eigenvalues and eigenfunctions for partially observed functions and
derive their properties. We deal with the estimation of projections (principal scores) of individual
incomplete functions which is especially challenging. We develop a procedure that enables us
to predict the value of a principal score of a function when only a fragment of the function is
available and direct computation is thus impossible. Next, we propose a method that can recover
the unobserved part of the function from the observed part, using the information about the
distribution of the data that it learns from the sample. We develop automatic procedures for the
selection of the tuning parameter of the method that is based on generalized cross-validation for
incompletely observed functions. We quantify the uncertainty of the predictions of unobserved
quantities and provide approximate prediction regions (intervals and bands) covering the un-
observed random quantity with high probability. Simulations confirm the usefulness and good
performance of the methodology proposed.

Both the prediction of principal scores and the reconstruction of an incomplete function
or its derivatives are important problems. Principal scores are key elements in the exploration
of complex data and can be used as input quantities in many inferential procedures. Their
usefulness in the multivariate setting is well described, for example, in Krzanowski (2000) and
Jolliffe (2002). In the functional context Ramsay and Silverman (2005) provided some real data
examples illustrating how principal scores help to understand the properties of the data. Further
applications can be found in Ramsay and Silverman (2002) and Ramsay et al. (2009). Horváth
and Kokoszka (2012) have given a comprehensive account of the utility of principal scores in
procedures like two-sample tests, linear and non-linear regression, clustering and classification,
time series analysis or change point analysis. In this paper, we shall see in Section 6 that the
first three principal components of the heart rate profiles and their derivatives explain a large
proportion of the total variability and are sufficiently flexible to describe interesting features of
the curves. Hence the corresponding scores provide an effectively reduced representation of the
complex individual heart rate profiles. To perform graphical or formal analyses of the scores, we
need to be able to compute them, which is not straightforward in the partial observation regime.
Also, when an individual curve, surface or image is observed incompletely, one is interested in
visualizing and studying the shape of the missing part, for instance to forecast the continuation
of the natural or social process that is described by the functional variable. Our paper provides
solutions to these problems by developing methods that predict unobserved quantities via their
conditional expectation given the observed data. In addition to their direct application to data,
these methods will be an important tool in future research: for instance, advanced techniques of
missing data analysis in the multivariate setting involve conditional expectations in some form,
and our results will be helpful in extending them to the functional case.

To our knowledge, no results of the kind that we provide here exist for functional data that are
fully (densely in practice) observed on subsets of the domain. A related but different (in terms
of applicability, used methods and achievable results) type of imperfectly observed functional
data was studied by Yao et al. (2005a) who considered sparsely observed functions, i.e. situa-
tions where only a few observed values are available for each function, making it impossible to
reconstruct each curve from these values. Our approach is novel in that it enables us, under the
assumed observation regime, to investigate some genuinely functional aspects of the data. From
the theoretical point of view, exploiting the continuous time nature of the observed data, we can
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obtain stronger results than in the sparse regime. For example, the rates of convergence of estim-
ators of parameters (the covariance operator and eigenelements) are parametric, unlike with
sparsely observed data (see also Hall et al. (2006)). Also, the consistency result for our functional
completion procedure is fully functional, whereas the restrictions of the sparse regime enabled
Yao et al. (2005a) to achieve pointwise or finite dimensional convergence of the reconstructed
trajectory. From the practical perspective, an important advantage of our method is that deriva-
tives can be readily analysed in our setting whereas with methods for sparsely observed functions
it is complicated. The method of Liu and Müller (2009) is a variant of that of Yao et al. (2005a)
that can deal with derivatives in the sparse regime to some extent. Although the method of Liu
and Müller (2009) can reconstruct derivatives, it does not provide insight into their covariance
structure because it neither estimates the covariance operator of the derivatives nor performs
principal component analysis of the derivatives (it is based on derivatives of eigenfunctions rather
than on eigenfunctions of derivatives). Since derivatives describe the dynamics of the underlying
real world process, the analysis of derivatives, and especially of the principal sources of their
variability, is often revealing in many applications, including the one we consider in this paper.

Mathematically, the problem that we need to solve for the computation of unobserved quan-
tities (prediction of principal scores or reconstruction of missing parts of trajectories) is seen
to be an ill-posed inverse problem (e.g. Groetsch (1993)), and regularization techniques need
to be applied. Such problems previously appeared in the literature on complete functional data
mainly in the area of functional regression modelling; see, for example, Cardot et al. (1999,
2007), Müller and Stadtmüller (2005), Cai and Hall (2006), Hall and Horowitz (2007) or He
et al. (2010). Inverse problems similar to those which we encounter here also arise in connec-
tion with functional canonical correlations (e.g. He et al. (2003)) or with tests of hypotheses on
parameters of functional data (e.g. Mas (2007), Horváth et al. (2010, 2013), Aston and Kirch
(2012), Kraus and Panaretos (2012) and Jarušková (2013)). Our problem is related to the task
of prediction that was previously studied in the literature on functional time series; see, for
example, Bosq (2000), Antoniadis and Sapatinas (2003) or Kargin and Onatski (2008). None
of these references, however, assumes the partial observation pattern that we consider in this
paper.

The paper is organized as follows. In Section 2 we formalize the mechanism of partial ob-
servation of functional data and deal with the estimation of the mean function and covariance
operator. Section 3 develops principal component analysis for incompletely observed functions.
In Section 4, a method is proposed to reconstruct the missing part of a partially observed curve.
Sections 5 and 6 present a simulation study and a data example. Appendix A contains proofs
of the main theoretical results (theorems 1 and 2). A supplementary document available on line
contains proofs of propositions 1–4 and a detailed description of computational procedures.

The programs that were used to analyse the data and some example data can be obtained
from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Partially observed functional data

Functional data X1, : : : , Xn are seen as independent identically distributed random variables
in the separable Hilbert space of square integrable functions on a bounded domain. Without
loss of generality, we consider the space L2.[0, 1]/ with inner product 〈f , g〉 = ∫ 1

0 f.t/g.t/dt,
f , g∈L2.[0, 1]/ and norm ‖f‖=〈f , f 〉1=2. It is possible to extend our results to vector-valued
functions or more general domains for applications with spatial curves, surfaces, images etc.
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In traditional functional data analysis, it is assumed that the functions X1, : : : , Xn are observed
on the whole interval [0, 1]. We consider situations where each curve Xi is observed only on a
subset of [0, 1]. Specifically, let the observation periods be Oi ⊂ [0, 1], i = 1, : : : , n. Then the
observed data for the ith curve are Xi.t/, t ∈Oi. (In practice, the raw data are most often in the
form of possibly noisy observations on a dense grid of points in Oi, which enables us to assume
that the curves are observed fully in Oi, as is explained by Hall et al. (2006).) We collectively
denote the observed part of the curve as XiOi , which can be seen as a random element of the
space L2.Oi/. The values of Xi on the complement of Oi, Mi = [0, 1] \ Oi, are not observed;
the missing part of the trajectory is denoted as XiMi . The observation periods Oi, i= 1, : : : , n,
are modelled as random subsets of [0, 1]. We assume that each realization of Oi is the union
of a finite number of intervals. This assumption is not restrictive for practical applications,
although some generalizations are probably possible. We assume that the observation periods
are independent of the functions X1, : : : , Xn, i.e. the data are missing completely at random.
(Under this assumption, the observation periods can also be seen as fixed when inference is
made about the curves.)

The main characteristics of the distribution that generates the data are the mean function
and the covariance operator. Let the mean function be μ= E.X1/. The covariance operator
R : L2.[0, 1]/→L2.[0, 1]/ is defined as

Rf =E{〈f , X1 −μ〉.X1 −μ/}=
∫ 1

0
ρ.·, t/f.t/dt,

where ρ.s, t/= cov{X1.s/, X1.t/} is the covariance kernel of the stochastic process X1.
Like in the multivariate case, the mean function μ at point t ∈ [0, 1] can be estimated by the

sample mean of observed values at this point. Formally, the estimator can be written as

μ̂.t/= J.t/
n∑

i=1
Oi.t/

n∑
i=1

Oi.t/Xi.t/,

where the notation Oi.t/ is used for the indicator 1Oi.t/ and J.t/= 1[Σn
i=1Oi.t/>0]. The values of

Xi.t/ are available only if Oi.t/ = 1; otherwise, the contribution Oi.t/Xi.t/ in the sum above is
zero. The term J.t/ is included to avoid division by 0: if J.t/= 0, the estimate of the mean is 0
(or arbitrary, as such situations vanish asymptotically).

The estimator R̂ of the covariance operator R is defined through an estimator of its covari-
ance kernel ρ. We estimate ρ.s, t/ by the sample covariance computed from all complete pairs
of functional values at s and t. The estimator equals

ρ̂.s, t/= I.s, t/
n∑

i=1
Ui.s, t/

n∑
i=1

Ui.s, t/{Xi.s/− μ̂st.s/}{Xi.t/− μ̂st.t/}, .1/

where Ui.s, t/=Oi.s/Oi.t/ and I.s, t/=1[Σn
i=1Ui.s,t/>0]. The estimator of the mean function used

here is

μ̂st.s/= I.s, t/
n∑

i=1
Ui.s, t/

n∑
i=1

Ui.s, t/Xi.s/,

i.e., for the computation of the covariance at s, t, functional values are centred at the sample
mean computed from complete pairs. (It is also possible to centre by the estimator μ̂ that was
introduced before; all results remain valid when μ̂ is used in place of μ̂st .)
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The sample covariance operator computed from incomplete functions may be indefinite. This
is similar to the multivariate setting. However, unlike with multivariate data, our experience in
the functional context is that this problem is unimportant in practice because negative eigenval-
ues occur far in the tail of the spectrum and are small in comparison with the leading eigenvalues.
The corresponding high frequency features of the data are practically never of interest. If needed,
the estimate R̂ can be modified by setting negative eigenvalues equal to 0.

It is seen that μ̂.t/ is an unbiased estimator of μ.t/. Similarly, if we subtract 1 in the de-
nominator of ρ̂.s, t/, the estimator becomes unbiased for ρ.s, t/. For the estimators μ̂ and R̂ to
be consistent, we need to assume that the observation pattern asymptotically provides enough
information. For the mean function, the right assumption is that

there exists δ1 > 0 such that sup
t∈[0,1]

P

{
n−1

n∑
i=1

Oi.t/� δ1

}
=O.n−2/ as n→∞: .2/

Similarly, for the covariance operator, we need the stronger assumption that

there exists δ2 > 0 such that sup
.s,t/∈[0,1]2

P

{
n−1

n∑
i=1

Ui.s, t/� δ2

}
=O.n−2/ as n→∞: .3/

Assumption (2) is satisfied, for example, when the observation sets O1, : : : , On are independent
and identically distributed and π0 = inf t∈[0,1]P{O1.t/=1}>0. To see this, set δ1 =π0=2 and use
Hoeffding’s inequality to show that

sup
t∈[0,1]

P

{
n−1

n∑
i=1

Oi.t/� δ1

}
� exp.−π2

0n=2/:

Analogously, assumption (3) is satisfied when we further assume that inf .s,t/∈[0,1]2 P{U1.s, t/=
1}> 0. Under these weak assumptions, we obtain a consistency result as follows.

Proposition 1.

(a) Let E.‖X1‖2/<∞and assumption (2) be satisfied. Then E.‖μ̂−μ‖2/=O.n−1/ for n→∞.
(b) Let E.‖X1‖4/ < ∞ and assumption (3) be satisfied. Then E.‖R̂ − R‖2

2/ = O.n−1/ for
n→∞ (here ‖·‖2 denotes the Hilbert–Schmidt norm).

Note that the properties of the estimators are unaffected by the fact that the functions are
observed only partially. The full (dense) observation regime, albeit only on subsets of the domain,
preserves the convergence rates that are known for complete functional data (see Bosq (2000)
or Horváth and Kokoszka (2012) for results in the traditional setting).

3. Principal component analysis

3.1. Estimation of eigenfunctions and eigenvalues
Probably the most fundamental method for functional data is functional principal component
analysis. It provides insight into the complex covariance structure of functional data and is
used to identify main sources of variability and to quantify their importance and to reduce the
dimension of the data.

The theoretical foundation of functional principal component analysis is the Karhunen–
Loève theorem (e.g. Bosq (2000), theorem 1.5) stating that there are random variables βij and
non-random functions ϕj such that the stochastic process Xi admits the decomposition
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Xi.t/=μ.t/+
∞∑

j=1
βij ϕj.t/, t ∈ [0, 1],

where the series converges in mean square, uniformly in t. Here ϕj, j = 1, 2, : : : , are the or-
thonormal eigenfunctions of the operator R and βij, j = 1, 2, : : : , are uncorrelated mean 0
variables with variances λj, where λ1 �λ2 �: : :> 0 are the eigenvalues of R. Functional princi-
pal component analysis is the empirical version of the Karhunen–Loève expansion that aims to
estimate the elements involved in the expansion. For background information on this classical
topic, we refer to Ramsay and Silverman (2005), chapter 8, for an introduction from an applied
perspective, and to Dauxois et al. (1982), Bosq (2000) or Hall and Hosseini-Nasab (2006) for
theoretical studies.

In the case of completely observed functional data, to estimate the eigenvalues λj and eigen-
functions ϕj, one performs eigendecomposition of the usual sample covariance operator.
When the functions are observed partially, we can proceed similarly and define the estimators
λ̂j and ϕ̂j as the eigenvalues and eigenfunctions of the operator R̂ given by the kernel ρ̂ in
equation (1).

It turns out that the asymptotic properties of the empirical eigenvalues and eigenfunctions
remain unchanged by the incompleteness of the observed functions. The following proposi-
tion shows that, first, the empirical eigenvalues are consistent estimators of the true eigenvalues
and this consistency is uniform over all indices and, second, the empirical eigenfunctions are
consistent estimators of the true eigenfunctions, up to the usual sign ambiguity.

Proposition 2. Let E.‖X1‖4/ < ∞ and assumption (3) be satisfied. Then E[supj∈N{|λ̂j −
λj|2}] = O.n−1/. If moreover all eigenvalues of R have multiplicity 1, then E.‖ϕ̂j − ŝjϕj‖2/

=O.n−1/ forall j ∈N, where ŝj = sgn〈ϕ̂j,ϕj〉.
The rates of convergence are parametric because of the full observation regime on subsets;

the situation is different from that of sparsely observed functions, where the estimators of eigen-
elements (constructed differently) converge at non-parametric rates (Yao et al., 2005a; Hall
et al., 2006).

3.2. Estimation of principal component scores
In principal component analysis, one is usually interested not only in estimating the eigen-
functions and eigenvalues but also in the estimation of the principal component scores

βij =〈Xi −μ,ϕj〉, i=1, : : : , n, j =1, 2, : : : ,

representing the individual co-ordinates of each curve with respect to the eigenbasis (the ex-
pression of the feature ϕj for the ith observation). The leading principal scores provide the
optimal finite dimensional representation of each curve and can be further analysed by tradi-
tional techniques.

In the standard situation of complete functional data, the scores are easily estimated by
β̂ij =〈Xi − μ̂, ϕ̂j〉. When the functional observations are incomplete, the direct computation of
〈Xi − μ̂, ϕ̂j〉 is impossible because the last term in the expression

〈Xi − μ̂, ϕ̂j〉=〈XiOi − μ̂Oi
, ϕ̂jOi

〉+〈XiMi − μ̂Mi
, ϕ̂jMi

〉
is not available. In this equation the subscript Oi or Mi denotes the restriction of the corres-
ponding function to the ith observed or missing period respectively. We develop a procedure to
estimate the missing quantity 〈XiMi − μ̂Mi

, ϕ̂jMi
〉 from the observed data.
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First, we consider the population version of the problem. Let the function X with mean 0
and covariance operator R be observed on the set O and missing on M. For the following
considerations, the sets O and M, which are independent of X, can be regarded as non-random;
equivalently, derivations can be made conditionally on them. The goal is to predict βjM

= 〈XM ,ϕjM〉 from the observed part XO. It is a standard fact that, in terms of the mean-
squared prediction error, the best approximation of βjM by a functional of XO is the condi-
tional expectation E.βjM |XO/. The conditional expectation may be a non-linear functional of
the condition and thus difficult to estimate. Therefore, we propose to look for the best linear
prediction corresponding to a continuous linear functional of the observed curve. This is equiv-
alent to the best linear approximation of the conditional expectation. By the Riesz representa-
tion theorem, a continuous linear functional takes the form 〈aj, XO〉, where aj is an element of
L2.O/. The best continuous linear prediction of βjM equals β̃jM =〈ãj, XO〉, where ãj solves the
infinite dimensional optimization problem

min
aj ∈L2.O/

E{.βjM −〈aj, XO〉/2}: .4/

The objective functional can be rewritten as

E{.βjM −〈aj, XO〉/2}=E{〈ϕjM , XM〉2 −2〈ϕjM , XM〉〈aj, XO〉+〈aj, XO〉2}
=〈ϕjM , RMMϕjM〉−2〈ϕjM , RMOaj〉+〈aj, ROOaj〉,

where ROO is the covariance operator of XO and RMO is the cross-covariance operator of
XM and XO. It is obvious that the objective functional is convex. If a minimizer exists, it can
be found by setting the derivative equal to 0. The derivatives in this context are in the Fréchet
sense. In particular, we see that

@

@aj
E{.βjM −〈aj, XO〉/2}=−2rj +2ROOaj,

where rj = ROMϕjM with ROM = RÅ
MO (the asterisk denotes the adjoint operator). Thus we

need to solve the equation

ROOaj = rj: .5/

We recognize that this is a linear inverse problem where we need to recover the function aj ∈
L2.O/ from its image through the linear operator ROO.

Let λOOk, k = 1, 2, : : : , be the decreasing positive eigenvalues and ϕOOk the corresponding
orthonormal eigenfunctions of the operator ROO. By comparing the coefficients of the left-
and right-hand side of equation (5) with respect to the basis ϕOOk, we arrive at the system of
equations λOOk〈aj,ϕOOk〉= 〈rj,ϕOOk〉, k =1, 2, : : :. This suggests that a candidate for the solu-
tion is

ãj =
∞∑

k=1

〈rj,ϕOOk〉
λOOk

ϕOOk, .6/

i.e. ãj =R−1
OOrj. This is a valid solution, if it is an element of L2.O/, i.e. if

∞∑
k=1

〈rj,ϕOOk〉2

λ2
OOk

<∞: .7/
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This condition is known in the theory of inverse problems as Picard’s condition. A solution to
the inverse problem (5) exists if and only if condition (7) is satisfied.

Condition (7) is equivalent to the condition

∞∑
k=1

corr.βjM , 〈XO,ϕOOk〉/2

var.〈XO,ϕOOk〉/ <∞, .8/

which has a clear interpretation. It states that the missing variable βjM must not be strongly
correlated with complicated, high frequency components of the observed function. The vari-
ability of these components must be sufficiently large to provide enough information for the
prediction of βjM . The precise balance between the complexity of the correlation of the unob-
served score with the predictor components and the variability of the predictor components is
quantified by the requirement on the series above to converge.

In the Gaussian case, the conditional expectation of βjM given the principal scores
〈XO,ϕOOk〉, k=1, 2, : : : , is an infinite linear combination of these scores (an almost surely con-
vergent infinite series). One can show this by conditioning on finitely many components (this
multivariate conditional expectation is linear) and applying Lévy’s 0–1 law (Kallenberg (2002),
theorem 7.23) to obtain the limit. The infinite sum of variances of terms in this series con-
verges, which is equivalent to the convergence of Σ∞

k=1〈rj,ϕOOk〉2
/
λOOk or Σ∞

k=1 corr.βjM ,
〈XO,ϕOOk〉/2. If, moreover, condition (7) or (8) is satisfied, then the coefficients in the infinite
linear combination for the conditional expectation form an l2-sequence; hence the conditional
expectation is continuous in the condition.

From now on, to guarantee the existence of a continuous solution to condition (5), we
assume that condition (7) holds. If it is a priori known that the conditional expectation
E.βjM |XO/ is a continuous linear functional of XO, then condition (7) is automatically satisfied.

The operator ROO is a compact operator with infinite dimensional range; therefore, its in-
verse R−1

OO is not bounded (i.e. not continuous). Consequently, small perturbations of rj may
lead to large perturbations of ãj = R−1

OOrj. It is seen from equation (6) that an overall small
change of rj may result in an arbitrarily large change of ãj, if the change of rj occurs on a
coefficient with a sufficiently high index k; the division by a sufficiently small eigenvalue may
enormously magnify the perturbation. In other words, the solution ãj = R−1

OOrj is extremely
unstable and the inverse problem (5) is ill posed. It is important for a solution to be stable with
respect to perturbations of the right-hand side rj because rj is unknown and needs to be esti-
mated. With estimated right-hand side, the solution to the inverse problem may be arbitrarily
far from the true solution no matter how accurate the estimate is. This is true even when ROO

is known. Moreover, the operator ROO is not known either; its estimate has finite rank and
therefore is not invertible in L2.O/.

To obtain a stable solution, one needs to use regularization, i.e. to modify the ill-posed in-
verse problem in such a way that it becomes well posed with a stable solution. We use ridge
regularization. Instead of problem (5), we solve the problem R

.α/
OOaj = rj with R

.α/
OO =ROO +

αIO, where α > 0 and IO is the identity operator on L2.O/. The inverse R
.α/−1
OO of the

bounded operator R
.α/
OO is bounded and therefore the solution ã

.α/
j = R

.α/−1
OO rj is stable.

Denote the regularized best linear prediction of βjM by β̃
.α/

jM =〈ã.α/
j , XO〉. The stability of the

solution increases with α but the bias of the solution increases also because the problem be-
comes more different from the original problem; conversely, with α decreasing, the solution
becomes closer to the exact but unstable solution of the original problem.

We now turn to the practical, empirical version of the problem of computation of principal
scores from partially observed functional data. We have a sample of n functions X1O1 , : : : , XnOn

observed on the sets O1, : : : , On. The mean function μ and the covariance operator R are
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estimated by μ̂ and R̂ introduced in Section 2. The principal score of the ith curve with respect
to the jth eigenfunction is estimated by β̂

.α/

ij = β̂ijOi
+ β̂

.α/

ijMi
, where β̂ijOi

= 〈XiOi − μ̂Oi
, ϕ̂jOi

〉
and β̂

.α/

ijMi
= 〈â.α/

ij , XiOi − μ̂Oi
〉. Here the function â

.α/
ij = R̂

.α/−1
OiOi

r̂ij solves the empirical regular-
ized inverse problemR̂

.α/
OiOi

aij = r̂ij, whereR̂
.α/
OiOi

=R̂OiOi +αIOi withR̂OiOi being an integral
operator on L2.Oi/ with kernel equal to the restriction of the kernel ρ̂ of R̂ (see equation (1)) to
Oi ×Oi, and r̂ij =R̂OiMi ϕ̂jMi

with R̂OiMi defined analogously by restriction of ρ̂ to Oi ×Mi.
We are ready to state the main convergence result that justifies this method. The difference

between the regularized estimator β̂
.α/

ijMi
and the best linear prediction β̃ijMi

can be decomposed
into the sum of the estimation error for the regularized prediction and the approximation error
due to regularization, i.e. β̂

.α/

ijMi
− β̃ijMi

= β̂
.α/

ijMi
− β̃

.α/

ijMi
+ β̃

.α/

ijMi
− β̃ijMi

. We show that, when the
amount of regularization decreases at a suitable rate as the sample size increases, both terms
converge to 0 in L2.P/ and thus the regularized estimator of the prediction is consistent.

Theorem 1. Let E.‖X1‖4/ < ∞, assumption (3) be satisfied, all eigenvalues of R have multi-
plicity 1 and condition (7) be satisfied for Oi and Mi in place of O and M respectively. Then

E{.β̂
.α/

ijMi
− β̃ijMi

/2}�O.α−3/O.n−1/+O.α/

as α→ 0 and n → ∞. Hence, if α=αn such that αn → 0 and αnn1=3 → ∞ as n → ∞, then
β̂

.αn/

ijMi
is a consistent estimator of the best linear prediction β̃ijMi

ofβijMi .

Sometimes one is interested in estimating other linear functionals than the principal score
〈Xi −μ,ϕj〉. Our consistency results remain valid when ϕ̂jOi

is replaced by an arbitrary ran-
dom or fixed function f̂ Oi

∈ L2.Oi/ such that E.‖f̂ Oi
− fOi‖2/ = O.n−1/ for some deterministic

fOi ∈L2.Oi/.
Note that theorem 1 has no strong assumptions. Picard’s condition (7) is a basic assumption

that is required in all inverse problems to guarantee the existence of a solution. Except this stan-
dard requirement, no other condition on the rate of decrease of the eigenvalues λOiOik is needed.
This is because we estimate the prediction 〈ãij, XiOi〉 rather than the prediction functional ãij

itself. Intuitively, the integration in 〈ãij, XiOi〉 brings additional smoothness; the exact way that
this happens is seen in the proof of theorem 1. In a related context of prediction in functional
linear regression, it was observed by Cai and Hall (2006) and Cardot et al. (2007) that weaker as-
sumptions are needed and stronger results can be obtained when the focus is on prediction rather
than on the estimation of the regression functional. The inverse problem is similar to that solved
in the functional linear model (Cardot et al., 1999, 2007; Hall and Horowitz, 2007). However,
the way that we arrive at it differs from the functional linear model because, for instance, of the
incompleteness of observations there is no collection of response–covariate pairs in the present
situation.

As an alternative to ridge regularization, one may consider the spectral truncation approach.
Both methods have their advantages and disadvantages. For instance, it is known that the be-
haviour of spectral cut-off methods depends on the spacings between the eigenvalues of the op-
erator to be inverted which makes them less robust with respect to situations with similar or even
identical eigenvalues (see Hall and Horowitz (2007)). Indeed, in a preliminary analysis of our mo-
tivating data set we observed some very similar estimated eigenvalues. There is also an important
computational advantage of the ridge method. For this method, one needs to solve only a linear
equation with R̂

.α/
OiOi

which is very easy and fast. In contrast, the spectral truncation approach
requires computing the eigendecomposition of R̂OiOi and projecting on the corresponding sub-
space. This is computationally more demanding, especially since it must be done repeatedly for
each function because different suboperators R̂OiOi of R̂ corresponding to different functions
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have different spectral decompositions. Yet another approach may be based on smoothing, for
instance, by penalizing the roughness of the solution of the inverse problem.

3.3. Regularization parameter selection
Theorem 1 shows that, for an appropriate choice of αn, the estimator β̂

.αn/

ijMi
is consistent for the

best prediction β̃ijMi
. Theorem 1, however, does not give a practical recommendation on how

to select the regularization parameter. It is desirable to have an automatic, data-driven selection
procedure.

Since the parameter α is difficult to understand, we first translate it into more comprehensible
values. By analogy with ridge regression or various standard smoothing techniques, we define
the number of effective degrees of freedom as the trace of the covariance of the predictors
composed of its regularized inverse, i.e.

dfi.α/= tr.R̂.α/−1
OiOi

R̂OiOi/=
∞∑

k=1

λ̂OiOik

λ̂OiOik +α
, .9/

which is a decreasing function of α. Unlike in standard situations the covariance operator here
is computed from partially observed data. Another way to measure the amount of regulari-
zation is the proportion of retained variability like in classical principal component analysis
using, for example,

tr.R̂OiOiR̂
.α/−1
OiOi

R̂OiOiR̂
.α/−1
OiOi

R̂OiOi/

tr.R̂OiOi/
=

∞∑
k=1

λ̂
3
OiOik

=.λ̂OiOik +α/2

∞∑
k=1

λ̂OiOik

.10/

or a similar quantity. One can determine α such that the effective degrees of freedom equal
some value or the proportion of retained variability exceeds some threshold. These quantities,
however, do not measure the predictive performance of the regularized solution.

A universal recipe for situations of this type is to use generalized cross-validation. In tra-
ditional settings, the generalized cross-validation score is the residual sum of squares (a mea-
sure of goodness of fit) divided by a decreasing function of the effective degrees of freedom
(a penalty included to avoid underregularization). The residual sum of squares is the sum
of squared differences of the response variables and their predictions, which in our case are
β̂kjMi

=〈XkMi − μ̂Mi
, ϕ̂jMi

〉 and β̂
.α/

kjMi
=〈â.α/

ij , XkOi − μ̂Oi
〉, k =1, : : : , n, respectively. In the situa-

tion of partially observed functions, the pair of the response variable β̂kjMi
and the explanatory

variable XkOi is not available for all individuals k = 1, : : : , n. The idea is, therefore, to consider
the set of completely observed functions with indices C ={k : 1�k�n,

∫ 1
0 Ok.t/dt =1}. If this

set is reasonably large, we can compute the residual sum of squares over the complete functions

rssij.α/= ∑
k∈C

.β̂kjMi
− β̂

.α/

kjMi
/2:

The cross-validation score for the regularized estimation of the jth score of the ith function is

gcvij.α/= rssij.α/

{1− .1=|C|/dfi.α/}2 ,

where |C| is the number of complete functions. One selects the value of α that minimizes this
quantity. Separate values of the regularization parameter are used for each function and each
score.
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3.4. Prediction uncertainty
For a statistical procedure to be useful, it is important to quantify its uncertainty, i.e. to assess
how far β̂

.αn/

ijMi
can be from βijMi . The following proposition answers these questions.

Proposition 3. Let the assumptions of theorem 1 be satisfied and let αn →0 and αnn1=4 →∞
as n→∞. Then β̂

.αn/

ijMi
−βijMi is asymptotically distributed as β̃ijMi

−βijMi , which is a zero-mean
random variable with variance that can be consistently estimated by

v̂2
ij =〈ϕ̂jMi

, .R̂MiMi −R̂MiOiR̂
.αn/−1
OiOi

R̂OiOiR̂
.αn/−1
OiOi

R̂OiMi/ϕ̂jMi
〉:

If the distribution of the data is Gaussian, then the limiting variable is Gaussian.

The assumptions of this proposition are similar to those of the consistency result of theorem
1, except that a slower rate of convergence of the regularization parameter to 0 is needed to
estimate the limiting variance consistently.

The prediction uncertainty, as expressed by the variance v̂2
ij, does not converge to 0 as the

sample size converges to ∞. This is because the situation is a prediction problem rather than
an estimation problem in the sense that we try to recover a random variable rather than a
non-random parameter. Thus, although increasing the sample size eventually removes the un-
certainty due to unknown estimated quantities (the mean function and covariance operator)
and regularization, there is a fundamental uncertainty that cannot be removed asymptoti-
cally. In other words, the knowledge of the principal score will never be precise, if the func-
tional observation is incomplete, and the limits of accuracy of the prediction are given by the
asymptotic variance v2

ij. We refer to Didericksen et al. (2012) for an interesting discussion of
similar questions in somewhat related prediction problems in the context of functional time
series.

Proposition 3 immediately enables us to construct a prediction interval for the score. Assume
that a Gaussian distribution is a good approximation for the distribution of the data. Then

Iij;η = .β̂
.αn/

ij − z1−η=2v̂ij, β̂
.αn/

ij + z1−η=2v̂ij/, .11/

where z1−η=2 is the .1−η=2/-quantile of the standard normal distribution, is a prediction interval
for βij with asymptotic coverage probability 1−η, i.e. P.βij ∈ Iij;η/→1−η as n→∞.

Since principal component analysis is often used as a dimension reduction procedure and
the resulting principal scores are subsequently analysed by traditional techniques, it is useful to
have a measure of reliability of the computed scores. The true score βij is a random variable with
variance estimated by λ̂j. The predicted score β̂

.αn/

ij can be seen as the true score contaminated
by error with variance estimated by v̂2

ij. One can define the relative error

v̂ij=λ̂
1=2
j , .12/

which is the ratio of the error variability and the natural intrinsic variability of the score. This
value, lying between 0 and 1, can be used as an indicator of observations that are too uncertain,
and the scores whose relative error exceeds a certain threshold (e.g. 0.2) can be excluded from
the subsequent analysis. The uncertainty will be high when the association between the missing
part of the score and the observed fragment is weak.

The high uncertainty of predictions due to a small amount of observed information is one
example of situations where we must be cautious. Another such case could be when missing-
ness is very frequent in certain regions or the overlap of observation periods is not sufficiently
frequent because then the precision of the estimation of the covariance function will be locally
reduced, and consequently the prediction procedure may be less accurate. The performance
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of generalized cross-validation may also be negatively influenced. Yet another problem could
arise when the data are not missing at random (e.g. when missingness is more likely to occur
when functional values are high). In such cases, missing functional chunks may be indeed very
insidious because important features of the data distribution may be lost. Furthermore, the
presence of functional outliers can be a complication as they may be more difficult to detect
when only fragments are available.

4. Functional completion

4.1. Reconstruction of incomplete functions
It is natural to ask whether it is possible to recover not only the missing part of a principal
score (and thus to compute the score of an incomplete function) like in Section 3 but also the
whole missing part of the trajectory (and thus to reconstruct the whole functional variable).
The answer is positive.

In the population version of the problem, the best prediction of XM by a function of XO in the
sense of the mean integrated prediction squared error is the conditional expectation E.XM |XO/.
It is in general a non-linear operator from L2.O/ to L2.M/ and, similarly to the case of principal
scores, we consider its best continuous linear approximation. Assuming for simplicity that the
functional variable has mean 0, the minimization problem to be solved is

min
A:‖A‖∞<∞

E.‖XM −AXO‖2/,

where the solution is looked for in the class of continuous (bounded) linear operators from
L2.O/ to L2.M/ (by ‖·‖∞ we denote the operator norm). We see (by Fréchet differentiation or
direct computation) that solving this minimization is equivalent to solving the (normal) equation
AROO =RMO. This suggests the solution Ã=RMOR−1

OO and the best linear prediction of XM

in the form X̃M =ÃXO. From now on, we assume the existence of a bounded solution, i.e. we
assume that ‖RMOR−1

OO‖∞ <∞. Similarly to the case of principal scores, the inverse problem
to be solved is ill posed. Using ridge regularization we obtain the solution Ã

.α/ =RMOR
.α/−1
OO .

The regularized best linear prediction equals X̃
.α/

M =Ã
.α/

XO.
Practically, when the sample X1O1 , : : : , XnOn is observed on the subsets O1, : : : , On, we replace

the covariance operator by its estimate and set Â
.α/
i =R̂MiOiR̂

.α/−1
OiOi

. The mean function needs
to be estimated as well. For the ith curve, the best linear prediction of XiMi is estimated by

X̂
.α/
iMi

= μ̂Mi
+Â

.α/
i .XiOi − μ̂Oi

/:

To prove the consistency, we assume not only that the solution to the inverse problem (the
prediction operator) is bounded but that it is Hilbert–Schmidt. We have a result as follows.

Theorem 2. Let E.‖X1‖4/<∞, assumption (3) be satisfied and ‖RMiOiR
−1
OiOi

‖2 <∞. Then

E.‖X̂
.α/
iMi

− X̃iMi‖2/�O.α−3/O.n−1/+O.α/

as α→ 0 and n →∞. Hence, if α=αn such that αn → 0 and αnn1=3 →∞ as n →∞, then
X̂

.αn/
iMi

is a consistent estimator of the best linear prediction X̃iMi of XiMi .

Note that our consistency result is genuinely functional. It is different from theorem 3 of
Yao et al. (2005a) where it was possible to obtain only a pointwise consistent estimator of
the functional variable. The reason is that we assume that the functions are observed fully (or
densely in practice) on subsets of the domain whereas Yao et al. (2005a) worked in a sparse
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observation regime. In other words, we can achieve stronger results because our data contain
more information.

The assumption that the prediction operator Ãi =RMiOiR
−1
OiOi

is Hilbert–Schmidt (‖Ãi‖2 <

∞) which is needed for the proof is a strengthening of the basic assumption on the continuity
of Ãi (‖Ãi‖∞ < ∞). Assumptions of this type were used in related contexts of, for example,
prediction in functional time series (Bosq (2000), chapter 8, and Kargin and Onatski (2008))
and the functional linear model (Yao et al., 2005b; He et al., 2010). It seems possible to replace
this assumption by a combination of the condition ‖Ãi‖∞ <∞ and a condition on the eigen-
value sequence λOiOik such that the regularization error can be controlled.

The condition ‖Ãi‖2 < ∞ can be written explicitly in terms of the covariance structure of
the principal scores of the observed and unobserved part of the function. If the eigendecompo-
sitions of ROiOi and RMiMi are

ROiOi =
∞∑

k=1
λOiOikϕOiOik ⊗ϕOiOik,

RMiMi =
∞∑

k=1
λMiMikϕMiMik ⊗ϕMiMik

(where ‘⊗’ stands for the tensor product: .f ⊗g/u=〈g, u〉f ), then we can write

RMiOi =
∞∑

j=1

∞∑
k=1

γMiOijkϕMiMij ⊗ϕOiOik,

where γMiOijk =〈ϕMiMij, RMiOiϕOiOik〉= cov.〈XMi −μMi ,ϕMiMij〉, 〈XOi −μOi ,ϕOiOik〉/. Then
the operator Ãi is Hilbert–Schmidt whenever

∞∑
j=1

∞∑
k=1

γ2
MiOijk

λ2
OiOik

<∞,

which is equivalent to

∞∑
j=1

λMiMij

∞∑
k=1

corr.〈XMi −μMi ,ϕMiMij〉, 〈XOi −μOi ,ϕOiOik〉/2

λOiOik
<∞:

It is seen that this condition combines conditions for the prediction of 〈XMi −μMi ,ϕMiMij〉,
j =1, 2, : : : (compare the inner series above with condition (8)).

4.2. Selection of the regularization parameter
To understand the amount of regularization corresponding to α, we can use the effective
degrees of freedom or the proportion of retained variability as defined in equations (9) and
(10) respectively. For the selection of α automatically balancing the stability and accuracy of
the prediction of XiMi , we propose a similar cross-validation procedure to that in Section 3.3 for
principal scores. The residual sum of squares for the prediction of trajectories on Mi computed
for the completely observed curves in the sample is

rssi.α/= ∑
k∈C

‖XkMi − X̂
.α/
kMi

‖2:

The value of α that is used for the prediction of a function on Mi from its observation on Oi

minimizes
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gcvi.α/= rssi.α/

{1− .1=|C|/dfi.α/}2 :

4.3. Uncertainty and prediction bands
Theorem 2 shows that X̂

.αn/
iMi

consistently estimates the best linear prediction X̃iMi . We are
now interested in the variation of X̂

.αn/
iMi

around the target quantity: the unobserved function
XiMi .

Proposition 4. Let the assumptions of theorem 2 be satisfied and let αn →0 and αnn1=4 →∞
as n→∞. Then X̂

.αn/
iMi

−XiMi is asymptotically distributed (in the sense of weak convergence of
probability measures on L2.[0, 1]// as the mean 0 stochastic process X̃iMi −XiMi . The limiting
covariance operator is consistently estimated (with respect to the Hilbert–Schmidt norm) by

V̂i =R̂MiMi −R̂MiOiR̂
.αn/−1
OiOi

R̂OiOiR̂
.αn/−1
OiOi

R̂OiMi :

If the data are Gaussian, then the limiting stochastic process is Gaussian.

The trace of V̂i quantifies the total amount of uncertainty of the linear prediction of XiMi . It
approaches 0 as the Lebesgue measure of the missing region Mi approaches 0, i.e. as we approach
a completely observed function. When the measure of the observation period Oi converges to 0,
the total prediction uncertainty converges to the trace of R̂, which corresponds to the situation
of no information about the ith curve. The scale invariant ratio

tr.V̂i/
1=2=tr.R̂/1=2 .13/

measures the relative prediction error, i.e. the amount of uncertainty about the ith curve as a
proportion of the total spread of the distribution of the functional random variable. 1 minus this
value corresponds to the reduction of uncertainty that is achieved by the best linear prediction
and can be seen as a measure of performance of the completion procedure. Alternatively, we
can use R̂MiMi instead of R̂ in the denominator in the relative prediction error, leading to the
ratio of the uncertainty about the missing trajectory when the prediction method is used versus
the uncertainty that there would be about XiMi if we ignored the observed part.

We use the asymptotic distribution of X̂
.αn/
iMi

−XiMi for the construction of prediction bands
for the unobserved part of the trajectory, i.e. regions containing the curve XiMi with high prob-
ability. We consider bands of the form

{.t, x/ : X̂
.αn/
iMi

.t/− c1−η ĥ.t/�x� X̂
.αn/
iMi

.t/+ c1−η ĥ.t/, t ∈Mi}, .14/

where ĥ is a function that consistently estimates some limiting function h that is bounded
away from zero, and c1−η is the .1 − η/-quantile of the random variable supt∈Mi

|X̃iMi.t/ −
XiMi.t/|=h.t/. This band has asymptotic coverage 1 − η. One can choose ĥ = 1, leading to a
band with constant width, but typically one prefers a band whose width at time t reflects the
uncertainty of the prediction of the missing function at t. We use ĥ.t/=max{ĥ0, v̂i.t/}where v̂i.t/

is the estimated standard deviation of the limiting predictive distribution at time t, i.e. the square
root of the diagonal of the kernel of V̂i, and ĥ0 is a threshold guaranteeing that the limiting
function h is bounded away from 0. For example, the choice ĥ0 = 0:2 supt∈Mi

v̂i.t/ works well
in practice. If the distribution of the data can be considered as Gaussian, the quantile c1−η can
be computed by simulation as follows. Generate a large number of independent realizations of
the Gaussian process with mean 0 and covariance operator V̂i, divide them by ĥ.t/, compute
the maxima of their absolute values and determine the .1 − η/-quantile of this sample. The
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simulation of the trajectories and the computation of the maxima are performed on a fine grid
of points. Note that the width of the band does not converge to 0 because it is a prediction band,
i.e. it must contain, with high probability, a random function.

We conlude this section with a theoretical remark. Although the prediction bands proposed
work well in practice, as is documented in the simulation study in Section 5, for a strictly rig-
orous justification arguments based on proposition 4 (which is a consequence of theorem 2)
need to be extended. Proposition 4 guarantees the convergence in distribution in the sense of
the topology of the L2-norm of the Hilbert space L2.[0, 1]/. This justifies the construction of
prediction regions in the form of balls in L2.[0, 1]/ which, however, are not practical because
they cannot be plotted. For prediction bands, the convergence is needed in the sense of the
uniform topology. For this, we need to leave the geometric world of L2.[0, 1]/ and to switch to
the space of continuous functions C.[0, 1]/. Under modified assumptions (which would include
conditions on sample paths, such as Hölder continuity), it seems possible to prove the con-
vergence in the uniform topology. We do not pursue this theoretical study but give arguments
indirectly justifying the use of the bands. Suppose that the asymptotic approximation that is
suggested by theorem 2 and proposition 4 is considered applicable if the L2-distance from the
limiting variable is sufficiently small. The probability that this L2-distance exceeds some ">0 is,
in light of Chebyshev’s inequality, bounded as P.‖X̂

.αn/
iMi

− X̃iMi‖2
2 >"/�"−2E.‖X̂

.αn/
iMi

− X̃iMi‖2
2/.

However, convergence in the L2-norm does not imply uniform convergence because large devi-
ations may occur on a small set of arguments. Let us compute the Lebesgue measure γ of the
set where |X̂.αn/

iMi
− X̃iMi | deviates more than " from 0. We compute γ.{t : |X̂.αn/

iMi
.t/− X̃iMi.t/|>

"}/� "−2‖X̂
.αn/
iMi

− X̃iMi‖2
2 by using Chebyshev’s inequality. Taking expectations on both sides,

we obtain on the right-hand side the same bound as before. Hence, if the bound is consid-
ered to be sufficiently small for the asymptotic approximation in the L2-norm to be applicable,
then also the expected Lebesgue measure of the set of large pointwise deviations will be
negligible.

5. Simulations

A simulation study was designed to address the following goals: to investigate the performance
of generalized cross-validation as a selector of the regularization parameter, to verify the validity
and accuracy of the prediction intervals and bands and to explore the effect of the observation
pattern.

We generate random samples of curves of the form

X.t/=
100∑
k=1

21=2ν
1=2
k ξk cos.2πkt/+

100∑
k=1

21=2ω
1=2
k ηk sin.2πkt/, t ∈ [0, 1],

where ξk and ηk are independent standard normal variables and the eigenvalues are of the form
νk =3−.2k−1/ and ωk =3−2k. The three most important components represent 67%, 22% and 7%
of the total variability. For each curve we generate independently a random period on which this
curve is not observed. The functional values on this period are removed. For the ith function,
the missing period Mi is simulated in the form Mi = [Ci −Ei, Ci +Ei]∩ [0, 1] with Ci =dU

1=2
i,1 and

Ei =fUi,2, where d and f are parameters and Ui,1 and Ui,2 are independent variables uniformly
distributed on [0, 1]. The performance of our procedures is measured on one curve in the sample,
say X1. For this curve, we use a fixed (non-random) missing period to guarantee that values
computed from different simulation runs have the same meaning. In all simulations, we use
L=1000 repetitions.
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Table 1. Performance of the generalized cross-validation selection procedure†

Target quantity n MSPE for α= cαgcv Median
(and its variability) and the following values of c: degrees of

freedom

0.04 0.2 1 5 25 for α=αgcv

Score 1 (333) 100 1.91 1.55 1.32 1.61 3.78 7.68
500 0.60 0.44 0.36 0.42 1.07 12.73

Score 2 (111) 100 0.46 0.37 0.35 0.44 0.80 8.61
500 0.16 0.13 0.12 0.15 0.27 13.71

Score 3 (37) 100 1.45 1.13 0.95 1.08 2.00 8.62
500 0.48 0.34 0.28 0.29 0.53 13.71

Missing trajectory (500) 100 10.07 7.90 6.95 8.24 15.16 7.98
500 4.04 2.79 2.24 2.30 3.48 15.02

†MSPE and the variability of the target quantity are multiplied by 1000.

For the first two sets of simulations, we set d =1:4 and f =0:2. This leads to an observation
pattern with similar characteristics to those in our motivating data set. The cross-sectional prob-
ability of observation ranges from 99% at time 0 to 79% at time 1. The percentage of complete
curves is 39%. The median length of the missing period (given the curve has a missing period)
is 0:15. For the curve X1, on which the performance is measured, we set M1 = .0:4, 0:7/.

First, we investigate the performance of generalized cross-validation based on complete
curves. As a measure of quality of the prediction of a missing quantity, we use the mean-
squared prediction error MSPE which is the average over all simulation runs of the squared
distances of the predicted value and the true value, i.e. L−1ΣL

l=1 .β̂
.α/[l]
1jM1

− β̂
[l]
1jM1

/2 for the jth
score and L−1ΣL

l=1 ‖X̂
.α/[l]
1M1

− X
[l]
1M1

‖2 for the missing part of the trajectory, where the super-
script [l] indicates that the value pertains to the lth generated sample. Table 1 shows values of
the mean-squared prediction error for the first three principal scores and for the missing part
of the trajectory. Table 1 also includes the variability of the target quantities (i.e. the true eigen-
values for the scores and the trace of the true covariance operator R for the trajectory) to put
the values into context. The mean-squared prediction error is reported for α set to the value
selected by generalized cross-validation and to values slightly smaller or bigger in the form of
multiples of the selected value. We see that the method successfully approximates the best value
of α and can be recommended as the tuning parameter selector. The accuracy increases with
increasing sample size n; however, it should be noted that the mean-squared prediction error
cannot converge to 0 because there is always some uncertainty due to the randomness of the tar-
get quantity, as discussed in Sections 3.4 and 4.3. The last column of Table 1 reports the median
of the effective degrees of freedom corresponding to the selected value of α. It is seen that in all
cases the typical number of degrees of freedom is in a reasonable relation to the sample size.

The second set of simulations explores the properties of the approximate distribution of the
deviation of the prediction from the predicted quantity that is established in propositions 3 and
4. We simulate from the same distribution and observation pattern as before. The regularization
parameter is selected by generalized cross-validation. We consider prediction intervals and bands
of the form (11) and (14) respectively, with nominal coverage 95%. We compute bands with both
constant and variable width, as discussed in Section 4.3. Empirical coverage probabilities (i.e.
the percentage of cases when the unobserved quantity was covered by the constructed region)
are reported in Table 2. We see that the intervals and bands proposed have coverage that is close
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Table 2. Empirical coverage of prediction regions (intervals for scores; bands with constant and variable
width for curves) and the median relative error measure

n Results for Results for Results for Results for missing trajectory
score 1 score 2 score 3

Coverage Coverage Median
Coverage Median Coverage Median Coverage Median (constant (variable relative

(%) relative (%) relative (%) relative width) (%) width) (%) error
error error error

100 97.2 0.073 95.2 0.056 94.5 0.143 94.3 96.7 0.123
500 97.4 0.042 95.0 0.036 96.3 0.092 94.2 98.4 0.07

Table 3. Standardized mean-squared prediction error for different observation patterns

n Observation Results for Results for Results for Results for
pattern (X1) score 1 and score 2 and score 3 and missing trajectory and

the following the following the following the following
observation observation observation observation

patterns (sample): patterns (sample): patterns (sample): patterns (sample):

A B A B A B A B

100 I 0.022 0.045 0.052 0.093 0.035 0.067 0.040 0.075
II 0.039 0.073 0.078 0.128 0.107 0.155 0.076 0.136

500 I 0.006 0.013 0.018 0.031 0.010 0.023 0.013 0.024
II 0.019 0.027 0.037 0.051 0.060 0.076 0.035 0.051

to the nominal coverage and, therefore, provide useful information on the probable values of the
scores or the missing trajectory. Table 2 also reports the median of relative error measures (12)
and (13). For instance, we can see that the approximate distribution is relatively more spread
for less variable (higher index) scores. This is in line with conclusions from Table 1 where we
observed a similar relationship between MSPE and the variability of the target quantity. Hence
the relative error measures (12) and (13), which can be computed from the data, seem to be
valuable indicators of the accuracy of the reconstruction procedure.

In the last set of simulations, we study the effect of the observation pattern on the ac-
curacy of our methods. We vary the amount of observed information both for X1 (whose
characteristics are to be reconstructed) and for the whole sample (which is used to learn
the reconstruction procedure). Two settings are used for the missing period of X1: I, M1 =
.0:4, 0:7/; II, M1 = .0:4, 0:9/. For the simulation of the missing periods of other curves in
the sample, we simulate Mi of the form given earlier in this section, with parameter pairs
A, d = 1:4 and f = 0:2, and B, d = 1:4 and f = 0:5. Basic characteristics of the observation
pattern for A were discussed before; for B, the cross-sectional observation probability varies
from 95% at t = 0 to 50% at t = 1, 21% of curves are complete and the average length of
missing periods (among incomplete curves) is 0.29. Configuration IA was used in the first
two sets of simulations; other combinations contain less observed information. Results are
reported in Table 3 where mean-squared prediction errors are presented after standardization
by the true variance of the predicted quantity, i.e. by the variance of the missing part of the
score, var.β1jM1/, or by the trace of the covariance operator of the missing part of the trajec-
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tory, tr.RM1M1/; after this standardization it is possible to compare values under pattern I with
their counterparts computed under II. We see that the precision of estimation decreases as the
amount of observed information (either on the curve of interest or on the sample) decreases.

6. An illustration: ambulatory blood pressure monitoring data

Heart rate profiles displayed in Fig. 1 and their first derivative plotted in Fig. 2 were obtained
from raw observations by penalized spline smoothing described in the supplementary file that
is available on line. The curves were registered by shifting the individual timescales so that every
person’s bed time is 23 (i.e. 11 p.m.); individual bed times were available from a questionnaire. The
methodology that is developed in this paper requires that the observation periods be independent
of the curves. The expert opinion is that this is a realistic assumption; in addition, we performed
exploratory graphical checks that did not indicate any problem with regard to this assumption.

From the shape of the mean functions of the profiles and their first derivatives it is obvious that
on average heart rate profiles have a decreasing shape in this part of the day and they decrease
fastest around the bed time. We wish to understand the main sources of variability between indi-
vidual heart rate profiles. In Fig. 3 we plot the first three eigenfunctions of the profiles and of their
derivatives as perturbations of the mean shape (see Ramsay and Silverman (2005), section 8.3.1)
i.e. we plot the mean profile plus and minus a suitable multiple of each eigenfunction (the eigen-
functions are multiplied by 0:9λ̂

1=2
j ). For the profiles, we see that the most important component

is the global level of heart rate, followed by a component describing the difference between the
day and night values and a component that can be interpreted as a time shift. In terms of the first
derivative, the first component quantifies the global level of the speed of decrease, the second
component captures a shift in time and the third characterizes whether the individual’s heart rate
decreases rather suddenly or more gradually. The first three components explain a large propor-
tion of the total variability and provide enough flexibility to capture individual shape features,
e.g. the increasing trend of some curves in regions where the mean and most curves decrease.

Let us now focus on the individual level. To illustrate our prediction method for principal
scores, we first consider the curve that is plotted as short dashes in Figs 1(b) and 2(b). The func-
tional values are missing on a subset of the time interval and hence the principal scores cannot
be computed directly. They can, however, be predicted. We give the results for the profile only
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Fig. 2. (a) Subset of the sample of the first derivatives of heart rate profiles and (b) several curves in detail
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Fig. 3. (a)–(c) First three eigenfunctions of heart rate profiles and (d)–(f) of their first derivative plotted
as perturbations (- - - - -, ) of the mean ( ): (a) principal component 1, 87.2%; (b) principal compon-
ent 2, 9.3%; (c) principal component 3, 2.1%; (d) principal component 1, 59.5%; (e) principal component 2,
33.8%; (f) principal component 3, 4.5%

(one can proceed analogously for the first derivative). The predicted values for the first three
components are .−28:7, 2:9, −1:9/. Their prediction standard deviations quantifying the uncer-
tainty are .1:7, 2:3, 1:8/. Mainly for the first two components they are relatively small compared
with the standard deviations of the intrinsic variability .24:0, 7:8, 3:7/ (the square root of the
eigenvalues); the corresponding relative errors are .0:07, 0:29, 0:48/. It is not surprising that the
best precision is achieved for the first component: this component dominates the spectrum and
is quite simple (constant), so even a fraction of the curve provides relatively much information
about the score. Next, we illustrate the method on the completely observed function plotted
as the chain curves in Figs 1(b) and 2(b) from which we artificially remove observations in the
time interval [23.75,26]. Using the remaining part for the prediction, we estimate the scores by
.5:84, 4:43, 4:18/ (with prediction standard deviations .2:12, 2:68, 2:01/), which is quite close to
the true values .5:76, 4:55, 4:32/ computed from the complete curve (recall, however, that there
will always be some random non-vanishing discrepancy between the predicted and true values
because we predict random variables by their conditional expectations).

Finally, we illustrate the functional reconstruction procedure. In Fig. 4 we plot the two curves
(and their derivatives) that we considered before and the reconstructed missing parts along with
95% prediction bands. For the originally complete function (Figs 4(b) and 4(d)), we chose a dif-
ficult scenario: the missing period is relatively large (2.25 h) and it contains a non-trivial change
of shape of the curve mainly in terms of the first derivative which is decreasing in the observed
region and increasing in the missing period. However, it is seen that the completion procedure
can recover the missing part of information as the predicted curve (thick) approximates very well
the true function (thin). It is interesting that our method captures to some extent the presence
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Fig. 4. (a), (b) Observed (———) and reconstructed ( ) heart rate profiles and (c), (d) derivatives
along with 95% prediction bands for (a), (c) an incompletely observed curve and (b), (d) a complete curve
with an artificially introduced missing period

of a local minimum in the first derivative. This illustrates the usefulness of the reconstruction
procedure: without it important shape features like this would be concealed from the analyst. At
first glance, some of the bands may seem to be wide but one needs to keep in mind that they are
prediction (not confidence) bands and, therefore, must cover the random trajectory (rather than
a non-random function) with a high probability. The uncertainty of the completion is in fact not
big in proportion to the intrinsic variability of the stochastic process: the relative error is 0.10
and 0.11 for the curves in Figs 4(a) and 4(c), and 4(b) and 4(d) respectively. A referee pointed
out that the prediction bands for the derivatives are narrower than those for the curves. This
is not a general phenomenon: it is possible to construct simple examples with prediction
bands for derivatives that are wider than those for curves or examples with no such inequality.
Differentiation is an operation that changes the covariance structure of functional data in a
complex manner.

We compared our method with that of Yao et al. (2005a) applied to the raw heart rate values
(not preprocessed by smoothing). Although their method was primarily developed for sparsely
observed curves, it can be also used in our situation. Main results regarding the covariance
structure of the profiles were similar for both methods. The proportion of variance explained by
the first three principal components was 82.9%, 10.8% and 3.4%. The first three eigenfunctions
had a similar shape and interpretation with both methods. There was a high degree of agreement
between principal scores that were obtained by the two methods. The method of Liu and Müller
(2009) can reconstruct derivatives. However, our method seems to be the only currently available
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method that can perform principal component analysis of derivatives under incompleteness.
This is an important asset of our method over the other approach provided that the data are
sufficiently dense on subsets of the domain.
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Appendix A: Main proofs

Here we prove theorems 1 and 2. Propositions 1–4 are proven in the supplementary document that is
available on line. Recall that we denote by ‖·‖ the L2-norm of square integrable functions on a domain S
that is obvious from the context (S will be [0, 1] or Oi or Mi). For linear operators, the symbols ‖·‖∞ and
‖·‖2 are used for the operator norm and the Hilbert–Schmidt norm respectively, where the operator will
be a mapping between L2.S1/ and L2.S2/ with S1 and S2 that is obvious from the context. For definitions
of basic notions from operator theory, we refer to Bosq (2000).

A.1. Proof of theorem 1
We neglect the fact that the data are centred by the estimated mean function and assume that the mean is
known and equal to 0. The result remains valid when the curves are centred empirically, as the additional
terms are negligible. It is enough to prove the inequality in the statement of the theorem; the remaining
assertions follow easily. We write |β̂.α/

ijMi
− β̃ijMi

|� |β̂.α/

ijMi
− β̃

.α/

ijMi
|+ |β̃.α/

ijMi
− β̃ijMi

|, which is a decomposition
into the estimation error and approximation error. If we show that both errors converge in L2.P/ to 0, the
result will follow.

We denote the approximation error A1 =|β̃.α/

ijMi
− β̃ijMi

| and compute

E.A2
1/=E{〈XiOi

, ã.α/
ij − ã2

iji〉}
=‖R1=2

OiOi
.ã.α/

ij − ãij/‖2

=‖R1=2
OiOi

.R.α/−1
OiOi

−R−1
OiOi

/rij‖2

=
∞∑

k=1
λOiOik

(
1

λOiOik +α
− 1

λOiOik

)2

〈rij ,ϕOiOik〉2

=α
∞∑

k=1

αλOiOik

.λOiOik +α/2

〈rij ,ϕOiOik〉2

λ2
OiOik

=O.α/,

where λOiOik and ϕOiOik are the eigenvalues and eigenfunctions of ROiOi
and the result follows from the

fact that αλOiOik=.λOiOik +α/2 �1 and Picard’s condition (7).
Let us turn to the estimation error |β̂.α/

ijMi
− β̃

.α/

ijMi
|. The computation of expectations is complicated by

the fact that the quantities R̂OiOi
and r̂ij are obtained from the whole sample including the ith func-

tion and thus are dependent on the ith function. We overcome this complication by first considering a
modified problem with estimates of ROiOi

and rij independent of the ith function and then showing



Partially Observed Functional Data 799

that this modification is asymptotically negligible. Specifically, we introduce β̂
.α/

ijMi.−i/ =R̂
.α/−1
OiOi.−i/r̂ij.−i/ with

R̂
.α/

OiOi.−i/ =R̂OiOi.−i/ +αIOi
and r̂ij.−i/ =R̂OiMi.−i/ϕ̂jMi.−i/. Here R̂OiOi.−i/ and R̂OiMi.−i/ are subopera-

tors of the estimated covariance operator R̂.−i/ that is computed from all functions except the ith, and
ϕ̂jMi.−i/ is a subfunction of the jth eigenfunction ϕ̂j.−i/ of R̂.−i/. We decompose |β̂.α/

ijMi
− β̃

.α/

ijMi
| as follows:

|β̂.α/

ijMi
− β̃

.α/

ijMi
|� |β̂.α/

ijMi
− β̂

.α/

ijMi.−i/|+ |β̂.α/

ijMi.−i/ − β̃
.α/

ijMi
|, .15/

and we show that both terms converge in L2.P/ to 0.
For the second term on the right-hand side in inequality (15), A2 =|β̂.α/

ijMi.−i/ − β̃
.α/

ijMi
|, we have

E.A2
2/=E{E.|β̂.α/

ijMi.−i/ − β̃
.α/

ijMi
|2|{XkOk

:k �= i}/}
=E{E.|〈XiOi

, â
.α/
ij.−i/ − ã.α/

ij 〉2|{XkOk
:k �= i}/}

=E{‖R1=2
OiOi

.â
.α/
ij.−i/ − ã.α/

ij /‖2}:

Using the definitions of â
.α/
ij.−i/ and ã.α/

ij and the triangle inequality, we obtain

‖R1=2
OiOi

.â
.α/
ij.−i/ − ã.α/

ij /‖�‖R1=2
OiOi

R̂
.α/−1
OiOi.−i/.R̂OiMi.−i/ −ROiMi

/ϕ̂jMi.−i/‖
+‖R1=2

OiOi
R̂

.α/−1
OiOi.−i/ROiMi

.ϕ̂jMi.−i/ − ŝjϕjMi
/‖

+‖R1=2
OiOi

.R̂
.α/−1
OiOi.−i/ −R.α/−1

OiOi
/ROiMi.−i/ϕjMi

‖

with ŝj = sgn〈ϕ̂j.−i/,ϕj〉. Denote these three terms A21, A22 and A23 respectively. We see that

A21 �‖R1=2
OiOi

‖∞ ‖R̂.α/−1
OiOi.−i/‖∞ ‖R̂OiMi.−i/ −ROiMi

‖∞ ‖ϕ̂jMi.−i/‖:

Here, ‖R1=2
OiOi

‖∞ is a finite constant, ‖R̂.α/−1
OiOi.−i/‖∞ �α−1 and ‖ϕ̂jMi.−i/‖�‖ϕ̂j.−i/‖=1. Using proposition

1 we obtain E.A2
21/�α−2 O.n−1/. For the term A22 we have the bound

A22 �‖R1=2
OiOi

‖∞ ‖R̂.α/−1
OiOi.−i/‖∞ ‖ROiMi

‖∞ ‖ϕ̂jMi.−i/ − ŝjϕjMi
‖:

In light of proposition 2, we see that E.‖ϕ̂jMi.−i/ − ŝjϕjMi
‖2/�E.‖ϕ̂j.−i/ − ŝjϕj‖2/=O.n−1/. This implies

that E.A2
22/�α−2 O.n−1/. For the term A23, first note that

R̂
.α/−1
OiOi.−i/ −R.α/−1

OiOi
=R.α/−1

OiOi
.R.α/

OiOi
−R̂

.α/

OiOi.−i//R̂
.α/−1
OiOi.−i/

=R.α/−1
OiOi

.ROiOi
−R̂OiOi.−i//R̂

.α/−1
OiOi.−i/:

Therefore, we see that

A23 �‖R1=2
OiOi

R.α/−1
OiOi

‖∞ ‖R̂OiOi.−i/ −ROiOi
‖∞ ‖R̂.α/−1

OiOi.−i/‖∞ ‖ROiMi
‖∞ ‖ϕ̂jMi.−i/‖:

The first, third and fifth term are dominated by α−1=2, α−1 and 1 respectively. The fourth term is a finite
constant. Using these bounds and proposition 1 we obtain E.A2

23/�α−3 O.n−1/. Hence with the help of
the Cauchy–Schwarz inequality we finally obtain that E.A2

2/�α−3 O.n−1/.
It remains to analyse the first term on the right-hand side of inequality (15). It reflects the effect of

omitting the ith observation in the estimation. As this effect is of order O.n−2/ in terms of mean-squared
difference, this term is negligible compared with the second term. In particular, it can be shown that
E{.β̂

.α/

ijMi
− β̂

.α/

ijMi.−i//
2}�α−3 O.n−2/. We omit the technical details.

A.2. Proof of theorem 2
To simplify the proof of theorem 2 we assume that the mean is known to be 0 and no centring is performed.
The difference due to the estimation of the mean is of negligible order in comparison with other terms.
Similarly to the proof of theorem 1, we split the prediction error into the estimation error and regularization
error as follows:

‖X̂
.α/

iMi
− X̃iMi

‖�‖X̂
.α/

iMi
− X̃

.α/

iMi
‖+‖X̃

.α/

iMi
− X̃iMi

‖:

For the regularization error we compute
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E.‖X̃
.α/

iMi
− X̃iMi

‖2/=‖. ˜A
.α/

i −Ãi/R
1=2
OiOi

‖2
2

=‖αRMiOi
R−1

OiOi
R.α/−1

OiOi
R1=2

OiOi
‖2

2

�α‖RMiOi
R−1

OiOi
‖2

2 ‖α1=2R.α/−1
OiOi

R1=2
OiOi

‖2
∞

=α‖Ãi‖2
2

(
sup
k∈N

α1=2λ
1=2
OiOik

λOiOik +α

)2

�O.α/:

We turn to the estimation error. Similarly to the proof of theorem 1 we avoid the dependence between
ˆA
.α/

i and XiOi
in X̂

.α/

iMi
= ˆA

.α/

i XiOi
by considering X̂

.α/

iMi.−i/ = ˆA
.α/

i.−i/XiOi
, where the estimator of the covari-

ance operator in the prediction operator is replaced by its analogue based on all curves except the ith. The
difference is negligible in comparison with the remaining terms; for an analogous discussion see the proof
of theorem 1. The modified estimation error equals

E.‖X̂
.α/

iMi.−i/ − X̃
.α/

iMi
‖2/=E{‖.R̂MiOi.−i/R̂

.α/−1
OiOi.−i/ −RMiOi
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OiOi

/R1=2
OiOi

‖2
2}
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.R̂

.α/−1
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OiOi
/R1=2

OiOi
‖2}2:

The proof is complete on computing
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∞
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∞/
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−1/
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Summary. This supplementary document describes computational details of the proposed
methods and provides proofs of Propositions 1, 2, 3 and 4.

1. Computation

1.1. Preliminary steps
In most applications, functional data are observed at discrete time points and are possibly subject
to measurement error, so it is necessary to preprocess the raw data using smoothing techniques to
obtain functions or their derivatives. In the context of partially observed functional data, the mea-
surement time points are located only in observation periods Oi, while there are no measurements
in missing periods Mi. We assume that the measurement points are dense in the observation peri-
ods, so that it is possible to apply smoothing techniques to obtain the functional values of the ith
curve from the measured values of this curve. We use spline smoothing with a roughness penalty,
as described in Ramsay and Silverman (2005, Chapter 5), but other methods like kernel smoothing
can be used as well. In our experience, a simple approach works well: we apply the smoothing
procedure to all values measured for the ith curve but use the computed smooth curve only for
t ∈ Oi (ignoring it on Mi where measurements are not available to make it reliable).

In practice, the observation and missing periods are typically not given (because they are not
designed) and one needs to define them. For instance, one can define Mi to consist of the periods
before the first and after the last measurement time and of all gaps between two consecutive mea-
surement times that are larger than a certain threshold g. The value of g is the largest length of
intervals without measurements over which we are willing to smooth. The choice of g depends on
the particular setting; in general, if, for example, one considers K equidistant points in [0, 1] (e.g.,
K = 10) as the minimum reliable design for smoothing on the whole domain [0, 1], then g = 1/K
seems reasonable.

Sometimes, registration of functional data is needed. Shift registration (Ramsay and Silverman,
2005, Section 7.2) is easy to implement for incomplete functions: in the registration criterion the
sample mean of partially observed functions is computed by the method described in the next
subsection and the distance of each shifted curve from the sample mean is computed by numerical
integration over the observed period of the curve; the criterion is minimised by the Procrustes
method as usual. Methods based on warping can be modified similarly but further investigation of
their performance is needed.

1.2. Principal component analysis, functional reconstruction
For practical computation we must use finite dimensional representations of functions and opera-
tors. Two traditional approaches exist: we can use either basis expansions or evaluation on a grid
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of points. It is difficult to use the basis approach in our situation because incompletely observed
functions are available on different subsets of the time domain. The grid approach is more suited
for this type of data since it works directly with time arguments. Let tk = (k−0.5)/d, k = 1, . . . , d
be a fine grid of equidistant points on which all functions and kernels of integral operators will be
evaluated. Denote by xi the d-dimensional vector of values of Xi at points tk; this vector contains
missing values on components corresponding to tk ∈Mi while for tk ∈ Oi, its values are obtained
by evaluation of the spline representation of Xi. Denote by X the (n× d)-dimensional data matrix
with xi, i = 1, . . . , n in rows.

The vector m of values of the mean function µ on the grid is estimated by m̂ equal to the vector
of column means of X computed from available (not missing) data in each column. The covariance
kernel ρ of the operator R evaluated on the grid corresponds to the (d × d)-matrix R with entries
Rkl = ρ(tk, tl) and is estimated by the sample covariance matrix R̂ with entry R̂kl computed from
the data matrix X using all complete pairs of observations in columns k, l.

To estimate the eigenvalues and eigenfunctions, one performs eigen-decomposition of the ma-
trix R̂. Denote ∆ = 1/d, the distance between the points of the grid. If the eigenvalues and eigen-
vectors of R̂ are κ̂j and ûj , j = 1, . . . , d, then the eigenvalues of the operator R̂ are λ̂j = κ̂j∆ and
the corresponding eigenfunctions ϕ̂j evaluated on the grid are f̂j = ûj∆

−1/2. The observed part
β̂ijOi

= 〈XiOi
− µ̂Oi

, ϕ̂jOi
〉 of the jth principal score of the ith curve is computed by numerical

quadrature as β̂ijOi
= 〈xiOi

− m̂Oi
, f̂jOi

〉∆, where the latter inner product is the usual inner prod-
uct of vectors and the vectors with subscript Oi are subvectors of the original vectors consisting of
elements with indices k such that tk ∈ Oi.

Within the grid representation, the evaluation of an integral operator B in the sense of numerical
integration corresponds to matrix multiplication: for a function h, Bh is computed as Bh∆, where
the vector h and the matrix B are the values of h and of the kernel of B on the grid. From
a purely computational point of view, even linear operators that have no integral representation
may be represented by matrices. In particular, the identity operator I used in ridge regularisation
is represented by the matrix I equal to the identity matrix divided by ∆; indeed, its value at h is
Ih∆ = h, thus it maps the argument on itself. The regularised operator R̂

(α)
OiOi

is represented by

the matrix R̂
(α)
OiOi

= R̂OiOi
+αIOi

, where the subscriptOi denotes the submatrix corresponding to
grid points in Oi. Analogously, the operators R̂MiMi

, R̂MiOi
etc. are given by the corresponding

submatrices of R̂. Then the matrix representation of the prediction operator Â
(α)
i is computed as

Â
(α)
i = R̂OiMi

R̂
(α)−1
OiOi

∆−1. The regularised prediction of the missing part of the principal score
and of the missing part of the trajectory can be computed as

β̂
(α)
ij = 〈Â(α)

i (xiOi
− m̂Oi

)∆, f̂jMi
〉∆, x̂

(α)
iMi

= Â
(α)
i (xiOi

− m̂Oi
)∆ + m̂Mi

.

The covariance operator V̂i for the missing trajectory is obtained as

V̂i = R̂MiMi − Â
(α)
i R̂OiOiÂ

(α)T
i ∆2

and the variance for the score is v̂2ij = 〈f̂jMi , V̂if̂jMi〉∆2.
The effective degrees of freedom can be computed directly using the series in (9) truncated

at d terms, with the eigenvalues λ̂OiOik of R̂OiOi obtained from the eigenvalues of the matrix
R̂OiOi

like in the case of those of R̂ discussed above. Alternatively, one can use the matrix trace
formula trace(R̂

(α)−1
OiOi

R̂OiOi∆
−1)∆. The computation of the residual sum of squares for scores
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is straightforward; in the case of trajectories, the squared norms of functions are computed as the
squared norms of vectors, multiplied by ∆.

The generalised cross-validation score can be minimised numerically by a Newton-type itera-
tive procedure. In particular, we use the method “L-BFGS-B” available in the function optim in
the R package (R Core Team, 2013). For the reliability of the optimisation procedure, we found it
useful to scale the input parameters: the minimisation is run with (xi −m)/s in place of xi (and,
consequently, with R̂/s2 in place of R̂, λ̂OiOij/s

2 in place of λ̂OiOij etc.); once the optimal value
of α is found, it is multiplied by s2 to return to the original scale and perform other computations
with original data. The value s2 = λ̂OiOi1 works well. The evaluation of the generalised cross-
validation score can be unstable for very small values of α. Therefore, we run the minimisation
routine with a lower limit for α, namely with α0 = max(ε1/2, α∗), where ε is the value of machine
epsilon and α∗ is such that the effective degrees of freedom equal n/4 (which is a reasonable upper
bound for the number of free parameters). We initialise the iterative procedure with α equal to
max(λ̄OiOi

, α0) where λ̄OiOi
is the average of the eigenvalues λ̂OiOij .

2. Proofs

2.1. Proof of Proposition 1
We use the notation Zi = Xi − µ.

For part (a), denote µ̄(t) = J(t)µ(t) and write

E ‖µ̂−µ‖2 ≤ E(‖µ̂− µ̄‖+ ‖µ̄−µ‖)2 = E ‖µ̂− µ̄‖2 + 2E(‖µ̂− µ̄‖‖µ̄−µ‖) +E ‖µ̄−µ‖2. (1)

The first term on the right-hand side of (1) equals

E

∥∥∥∥
J∑n
i=1Oi

n∑

i=1

OiZi

∥∥∥∥
2

= n−2
∫ 1

0

n∑

j=1

n∑

k=1

E

(
n2J(t)

(
∑n
i=1Oi(t))

2
Oj(t)Zj(t)Ok(t)Zk(t)

)
dt

= n−2
∫ 1

0

n∑

j=1

E

(
n2J(t)Oj(t)

(
∑n
i=1Oi(t))

2

)
EZj(t)

2dt,

where the last equality follows from the independence of (O1, . . . , On) and (Z1, . . . , Zn), and from
the independence of Zj and Zk for j 6= k. Rewrite the first expectation in the integrand as

E

(
n2J(t)Oj(t)

(
∑n
i=1Oi(t))

2
1[n−1

∑n
i=1 Oi(t)>δ1]

)
+ E

(
n2J(t)Oj(t)

(
∑n
i=1Oi(t))

2
1[n−1

∑n
i=1 Oi(t)≤δ1]

)
.

For all t ∈ [0, 1], the first summand is bounded from above by δ−21 while the second summand is
dominated by n2 supt∈[0,1] P (n−1

∑n
i=1Oi(t) ≤ δ1). Hence we see that

E ‖µ̂− µ̄‖2 ≤ n−1
{
δ−21 + n2 sup

t∈[0,1]
P

(
n−1

n∑

i=1

Oi(t) ≤ δ1
)}

E ‖Z1‖2 = O(n−1).

For the last term in (1), we obtain

∫ 1

0

E(J(t)− 1)µ(t)2dt =

∫ 1

0

P

( n∑

i=1

Oi(t) = 0

)
µ(t)2dt
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≤ sup
t∈[0,1]

P

(
n−1

n∑

i=1

Oi(t) ≤ δ1
)
‖µ‖2

= O(n−2).

The second term on the right-hand side of (1) is dominated by 2(E ‖µ̂− µ̄‖2)1/2(E ‖µ̄−µ‖2)1/2 ≤
O(n−1). Putting these results together completes the proof of part (a).

The proof of part (b) is similar. Rewrite

R̂ −R = (R̂ − Ř) + (Ř − R̄) + (R̄ −R), (2)

where Ř and R̄ are integral operators with kernels

ρ̌(s, t) =
I(s, t)∑n
i=1 Ui(s, t)

n∑

i=1

Ui(s, t)Zi(s)Zi(t),

and ρ̄(s, t) = I(s, t)r(s, t). The first term on the right-hand side of (2) reflects the effect of estima-
tion of the mean. By direct computation, we see that

E ‖R̂ − Ř‖22 = E

∫

[0,1]2
I(s, t){µ̂st(s)− µ(s)}2{µ̂st(t)− µ(t)}2dsdt

= E

∫

[0,1]2

I(s, t)

(
∑n
i=1 Ui(s, t))

4

( n∑

i=1

Ui(s, t)Zi(s)

)2( n∑

i=1

Ui(s, t)Zi(t)

)2

dsdt.

Developing the sums in the integrand and using the independence of the functions and observation
indicators and the Cauchy–Schwarz inequality, we can show that the above quantity is dominated
by

n−2
∫

[0,1]2
E

(
n2I(s, t)

(
∑n
i=1 Ui(s, t))

2

)
{(EZ1(s)4 EZ1(t)4)1/2 + ρ(s, t)2}dsdt ≤ O(n−2),

where the last inequality is due to the fact that the first expectation in the integrand is bounded by
δ−22 +n2 sup(s,t)∈[0,1]2 P (n−1

∑n
i=1 Ui(s, t) ≤ δ2), which can be shown by manipulations similar

to those in part (a). Next, analogously to part (a) we obtain for the second and third term on the
right-hand side of (2) that

E ‖Ř − R̄‖22 ≤ n−1
{
δ−22 + n2 sup

(s,t)∈[0,1]2
P

(
n−1

n∑

i=1

Ui(s, t) ≤ δ2
)}

E ‖Z1 ⊗ Z1 −R‖22

= O(n−1)

(here ⊗ denotes the tensor product) and E ‖R̄ − R‖22 ≤ O(n−2). Combining these bounds we
obtain the assertion of part (b).

2.2. Proof of Proposition 2
Lemma 4.2 of Bosq (2000) and the inequality between the operator norm and Hilbert–Schmidt
norm yield that |λ̂j − λj | ≤ ‖R̂ − R‖∞ ≤ ‖R̂ − R‖2 for all j. The first result then follows
from part (b) of Proposition 1. For the second part, Lemma 4.3 of Bosq (2000) gives the inequality
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‖ϕ̂j − ŝjϕj‖ ≤ aj‖R̂ − R‖∞, where aj is a constant depending on the eigenvalue spacings.
Note that this lemma is formulated in Bosq (2000) for fully observed functions but an inspection
of the proof shows that the inequality holds for any two compact linear operators in place of R̂, R.
This inequality, the dominance of the Hilbert–Schmidt norm over the operator norm and part (b) of
Proposition 1 complete the proof.

2.3. Proof of Proposition 3
Rewrite

β̂
(αn)
ijMi

− βijMi
= (β̂

(αn)
ijMi

− β̃ijMi
) + (β̃ijMi

− βijMi
)

and use Theorem 1 to obtain the first part of the proposition. Compute

v2ij = var(β̃ijMi − βijMi) = 〈ϕjMi ,RMiMiϕjMi〉 − 〈ϕjMi ,RMiOiR
−1
OiOi

ROiMiϕjMi〉.

The convergence in probability of 〈ϕ̂jMi , R̂MiMi ϕ̂jMi〉 to 〈ϕjMi ,RMiMiϕjMi〉 is a direct conse-
quence of Propositions 1 and 2. The last term in the expression for v2ij and the corresponding term

in the estimator v̂2ij equal 〈ãij ,ROiOi ãij〉, 〈â(αn)
ij , R̂OiOi â

(αn)
ij 〉, respectively. In their difference

〈â(αn)
ij , (R̂OiOi

−ROiOi
)â

(αn)
ij 〉+ (〈â(αn)

ij ,ROiOi
â
(αn)
ij 〉 − 〈ãij ,ROiOi

ãij〉),

the convergence of the second term to zero was shown in the proof of Theorem 1. For the first term
we compute

|〈â(αn)
ij , (R̂OiOi

−ROiOi
)â

(αn)
ij 〉| ≤ ‖R̂OiOi

−ROiOi
‖∞‖â(αn)

ij ‖2

≤ OP (n−1/2)α−2n ‖R̂OiMi
‖2∞

→ 0.

This completes the proof of the consistency of v̂2ij . The remaining assertions are obvious.

2.4. Proof of Proposition 4
We can rewrite X̂(αn)

iMi
− XiMi

= (X̂
(αn)
iMi

− X̃iMi
) + (X̃iMi

− XiMi
). Due to Theorem 2, the

L2-norm of the first term on the right-hand side converges to 0 in probability. The second term is
the limiting stochastic process. The consistency of the covariance estimator can be proven like in
the proof of Proposition 3. The assertion for the Gaussian case follows immediately from the fact
that the limiting process is a linear function of Xi.
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Summary

We consider classification of functional data into two groups by linear classifiers based on
one-dimensional projections of functions. We reformulate the task of finding the best classifier as
an optimization problem and solve it by the conjugate gradient method with early stopping, the
principal component method, and the ridge method. We study the empirical version with finite
training samples consisting of incomplete functions observed on different subsets of the domain
and show that the optimal, possibly zero, misclassification probability can be achieved in the limit
along a possibly nonconvergent empirical regularization path. We propose a domain extension
and selection procedure that finds the best domain beyond the common observation domain of
all curves. In a simulation study we compare the different regularization methods and investigate
the performance of domain selection. Our method is illustrated on a medical dataset, where we
observe a substantial improvement of classification accuracy due to domain extension.

Some key words: Classification; Conjugate gradient; Domain selection; Functional data; Partial observation;
Regularization; Ridge method.

1. Introduction

We consider classification of a functional observation into one of two groups. Classification
of functional data is a rich, longstanding topic and is comprehensively surveyed in Baíllo et al.
(2011b). Delaigle & Hall (2012a) showed that depending on the relative geometric positions
of the difference of the group means, representing the signal, and the covariance operator,
summarizing the structure of the noise, certain classifiers can have zero misclassification prob-
ability. This remarkable phenomenon, called perfect classification, is a special property of the
infinite-dimensional setting and cannot occur in the multivariate context, except in degener-
ate cases. Delaigle & Hall (2012a) showed that a particularly simple class of linear classifiers,
based on a carefully chosen one-dimensional projection of the function to be classified, can
achieve this optimal error rate either exactly or in the limit along a sequence of approximations.
Berrendero et al. (2018) further elucidated the perfect classification phenomenon from the point
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of view of the Feldman–Hájek dichotomy between mutual singularity and absolute continuity of
two Gaussian measures on abstract spaces with respect to each other.

Motivated by these findings, we reformulate the problem of determining the best classifier as
a quadratic optimization problem on a function space or, equivalently, a linear inverse problem.
These problems are ill-posed; however, unlike with most inverse problems, this is not a com-
plication but rather an advantage in the sense that the more ill-posed the problem is, the better
the optimal misclassification probability. We use regularization techniques, such as the method
of conjugate gradients with early stopping and ridge regularization, to solve the optimization
problem, obtaining a class of regularized linear classifiers. The optimal misclassification rate is
the limit along the regularization path of solutions which themselves may not converge.

We study the empirical version of the problem, where the objective function in the constrained
minimization must be estimated from finite training data, and make two contributions. First,
we show that it is possible to construct an empirical regularization path towards the possibly
nonexistent unconstrained solution such that the classification error converges to its best value,
possibly zero. We do this for conjugate gradient, principal component and ridge classification in
a truly infinite-dimensional manner, in the sense that the convergence takes place along a path
with decreasing regularization and holds without restrictions on the mean difference between
classes. Second, all our methods and theory are developed in the setting of partially observed
functional data, where trajectories are observed only on subsets of the domain. This type of
incomplete data, also called functional fragments, is increasingly common in applications; see,
for example, Bugni (2012), Delaigle & Hall (2013), Liebl (2013), Goldberg et al. (2014), Kraus
(2015), Delaigle & Hall (2016) and Gromenko et al. (2017). The principal difficulty for inference
with fragments is that temporal averaging is precluded by the incompleteness of the observed
functions. Our formulation as an optimization problem enables us to overcome this issue under
certain assumptions, because only averaging across individuals in the training data is needed, and
not individual curves.

Since the observation domains may vary in the training sample and the new curve to be
classified may be observed on a different subset, it is natural to ask which domain should be used.
We propose a domain selection strategy that looks for the best classifier with domain ranging from
a minimum common domain to the entire domain of the function to be classified. For various
methods of selecting the best observation points, see Ferraty et al. (2010), Delaigle et al. (2012),
Pini & Vantini (2016), Berrendero et al. (2018) and Stefanucci et al. (2018).

Our simulation study confirms that domain selection can considerably reduce the misclassifi-
cation rate. Further simulations compare the performances of the three types of regularization.
Among other findings, this study shows that the principal component and conjugate gradient clas-
sifiers often achieve comparable error rates but that the latter usually needs a lower dimension of
the regularization subspace, in agreement with a theoretical result we provide.

Application to a dataset on the geometric features of the internal carotid artery in patients
with and without aneurysm demonstrates the utility of our proposed approach. These data consist
of trajectories observed on intervals of different lengths. Previous analyses of the data used
the common domain of all curves in classification. With our results we can include information
beyond this minimum domain, which leads to a substantial drop in the error rate of discrimination
between risk groups.

General references on functional data analysis include Ramsay & Silverman (2005) and
Horváth & Kokoszka (2012). Further relevant references are Cuesta-Albertos et al. (2007) for
other methods based on one-dimensional projections, Berrendero et al. (2016) for variable selec-
tion in classification, Bongiorno & Goia (2016) and Dai et al. (2017) for classification beyond
the Gaussian setting, and Cuevas (2014) for an overview.
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2. Regularized linear classification

2.1. Projection classifiers

We regard functional observations as random elements of the separable Hilbert space L2(I)
of square-integrable functions on a compact domain I equipped with inner product 〈 f , g〉 =∫
I f (t)g(t) dt and norm ‖f ‖ = 〈 f , f 〉1/2. In most applicationsI is an interval and the observations

are curves, but our results can be extended to other objects, such as surfaces or images. We
consider classification of a Gaussian random function, X , into one of two groups of Gaussian
random functions: group 0 has mean μ0; group 1 has mean μ1. Both groups have covariance
operator R defined as the integral operator

(Rf )(·) =
∫
I
ρ(· , t)f (t) dt

with kernel ρ(s, t) = cov{X (s), X (t)}. In this section we assume that μ0, μ1 and R are known,
which corresponds to the asymptotic situation with an infinite training sample. To simplify the
presentation we assume throughout the paper that the new observation to be classified may come
from either of the two classes with equal prior probability. The general case is treated in the
Supplementary Material.

Like Delaigle & Hall (2012a) we consider the class of centroid classifiers that are based on
one-dimensional projections of the form 〈 X ,ψ〉, where ψ is a function in L2(I). If X belongs
to group j (j = 0, 1), the distribution of 〈 X ,ψ〉 is normal with mean 〈μj,ψ〉 and variance
〈ψ , Rψ〉. Denote the corresponding Gaussian densities by fψ ,j. The optimal classifier based on
〈 X ,ψ〉 assigns X to the class Cψ(X ) given by

Cψ(X ) = 1{fψ ,1(〈 X ,ψ〉)/fψ ,0(〈 X ,ψ〉)>1} = 1{〈 X −μ0,ψ〉2−〈 X −μ1,ψ〉2>0} = 1{Tψ(X )>0},

where Tψ(X ) = 〈 X − μ̄,ψ〉〈μ,ψ〉 with μ̄ = (μ0 + μ1)/2 and μ = μ1 − μ0. The
misclassification probability of this classifier is

D(ψ) = P0{Cψ(X ) = 1}/2 + P1{Cψ(X ) = 0}/2 = P0(〈 X − μ̄,ψ〉〈μ,ψ〉 > 0)

= P0(〈 X − μ0,ψ〉 > |〈μ,ψ〉|/2) = 1 −�

( |〈μ,ψ〉|
2〈ψ , Rψ〉1/2

)
,

(1)

where Pj is the distribution of curves in group j and � is the standard normal cumulative
distribution function.

To find the best function ψ , one would ideally like to maximize |Z(ψ)|, where

Z(ψ) = 〈μ,ψ〉
〈ψ , Rψ〉1/2 .

Similarly to Delaigle & Hall (2012a) and Berrendero et al. (2018), we see that if ‖R−1/2μ‖ < ∞,
then by the Cauchy–Schwarz inequality,

|〈μ,ψ〉|
〈ψ , Rψ〉1/2 = |〈 R−1/2μ, R1/2ψ〉|

〈ψ , Rψ〉1/2 � ‖R−1/2μ‖‖R1/2ψ‖
〈ψ , Rψ〉1/2 = ‖R−1/2μ‖. (2)

If, moreover, ‖R−1μ‖ < ∞, then the equality is achieved forψ = R−1μ. For this choice ofψ , or
any multiple of it, the probability of misclassification is 1−�(‖R−1/2μ‖/2), which is positive due
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164 D. Kraus AND M. Stefanucci

to the finiteness of ‖R−1/2μ‖, which can be seen as the signal-to-noise ratio. If ‖R−1/2μ‖ < ∞,
then regardless of whether ‖R−1μ‖ < ∞ or not, two Gaussian measures with mean differenceμ
and covariances R are mutually absolutely continuous and 1−�(‖R−1/2μ‖/2) is the Bayes error
for distinguishing them, i.e., the lowest possible misclassification probability for this problem
among all possible classifiers (Berrendero et al., 2018). If ‖R−1/2μ‖ < ∞ but ‖R−1μ‖ = ∞,
then the Bayes risk cannot be achieved by a projection classifier based on a bounded linear func-
tional of the form 〈 X ,ψ〉 for some ψ ∈ L2(I). One can, however, use the theory of reproducing
kernel Hilbert spaces to define a linear classifier that achieves the Bayes risk. We do not pursue
this line of development here because, as will be seen in § 2.2, approximations in the form of
projections can asymptotically achieve the Bayes risk.

The maximization of |Z(ψ)| can be solved as the task of maximizing 〈μ,ψ〉 subject to
〈ψ , Rψ〉 = 1. Using Lagrange multipliers 〈μ,ψ〉 + λ(1 − 〈ψ , Rψ〉) and taking the Fréchet
derivative with respect toψ , one obtains the equation 2λRψ = μ. Solutions for all λ > 0, if they
exist, i.e., if ‖R−1μ‖ < ∞, yield the same optimal misclassification probability. Without loss
of generality we take λ = 1/2. Thus, minimizing the error rate translates into the unconstrained
quadratic optimization problem to maximize 〈μ,ψ〉 − 〈ψ , Rψ〉/2, or

minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉, (3)

i.e., into the linear problem Rψ = μ.

2.2. Regularization

Ifψ = R−1μdoes not exist in L2(I), i.e.,‖R−1μ‖ = ∞, there is no maximizer of |Z(ψ)|. One
can instead consider an approximating, regularized problem that can be solved. Regularization
is typically used to solve, in a stable way, ill-posed inverse problems for which a solution exists.
In such contexts, the path of regularized solutions converges to the solution to the problem of
interest. Here it may be that no solution exists, but paths of regularized solutions towards the
possibly nonexistent solution still turn out to be useful, since the misclassification probability
converges to the optimal value along these paths.

If a solution exists, one can approximate it by an iterative numerical method. This approach can
also be used when no solution exists. The idea is to construct a sequence of iterations of an appro-
priate numerical optimization method. The number of steps taken along this divergent sequence
towards the nonexistent solution can be seen as a regularization parameter. The conjugate gradient
method is particularly suitable for this situation.

The first m steps of the conjugate gradient method applied to the linear inverse problem
Rψ = μ, or equivalently to the minimization of the quadratic functional 〈ψ , Rψ〉/2 − 〈μ,ψ〉,
are described in Algorithm 1. This formulation is based on the multivariate version in Phatak
& de Hoog (2002, § 5), where one can find further references and details on how applying the
conjugate gradient method to the normal equations in linear regression leads to partial least
squares regression. The functions νj are conjugate directions in the sense that 〈 νj, Rνk〉 = 0 for
j |= k , and the functions ζj are called residuals in numerical analysis and are orthogonal, i.e.,
〈 ζj, ζk〉 = 0 for j |= k . In step j, the algorithm moves from the current approximate solution ψ̂CG

j
along the conjugate direction νj with step length hj that minimizes the quadratic objective. The
residual is then updated to ζj+1. The new conjugate direction νj+1 is obtained by projecting the
residual ζj+1 onto the orthogonal complement of the span of the previous conjugate directions,
where orthogonality is in the sense of the inner product 〈 · , R(·)〉.
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Algorithm 1. Conjugate gradient regularized classification direction.

Initialize ψCG
0 = 0, ν0 = ζ0 = μ

Repeat for j = 0, . . . , m − 1
hj = 〈 νj, ζj〉/〈 νj, Rνj〉
ψCG

j+1 = ψCG
j + hjνj

ζj+1 = μ− RψCG
j+1 (= ζj − hjRνj)

gj = −〈 ζj+1, Rνj〉/〈 νj, Rνj〉
νj+1 = ζj+1 + gjνj

Output ψCG
m

The conjugate gradient approach is an example of dimension reduction regularization. The
method solves the minimization problem (3) with ψ restricted to the Krylov subspace Km(R,μ)
spanned by μ, Rμ, . . . , Rm−1μ and also by the first m conjugate directions νj or the first m
residuals ζj; that is, it seeks to minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉 subject to ψ ∈ Km(R,μ). The
projection direction that solves this minimization is ψCG

m .
Another popular choice is to minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉 subject to ψ ∈ Em(R), where

Em(R) is the subspace spanned by the first m eigenfunctions, ϕ1, . . . ,ϕm, of R in the spectral
decomposition

R =
∞∑

j=1

λjϕj ⊗ ϕj,

with λ1 � λ2 � · · · > 0 being the eigenvalues. The solution ψPC
m = ∑m

j=1 λ
−1
j 〈μ,ϕj〉ϕj gives

the principal component classifier of Delaigle & Hall (2012a).
In general one can minimize 〈ψ , Rψ〉/2 − 〈μ,ψ〉 subject to ψ ∈ Sm, where Sm is the m-

dimensional subspace generated by some functions s1, . . . , sm such that the sj (j = 1, 2, . . . )
generate the range of R. Let Pm be the projection operator that projects onto Sm, and let Rm =
PmRPm and R−

m = PmR−1Pm. Then the solution of the regularized minimization problem
is ψm = R−

mμ. More explicitly, considering solutions of the form ψm = ∑m
j=1 cjsj leads to the

m-variate minimization of cTQc/2 − uTc where the matrix Q is such that Qjk = 〈 sj, Rsk〉 and
the vector u has components uj = 〈μ, sj〉, i.e., to the solution with coefficients c = Q−1u. In
the case of the Krylov subspace, the iterative conjugate gradient method given in Algorithm 1 is,
however, preferred because the matrix Q is ill-conditioned.

We can also take another approach to regularization, based on ridge regression. Optimiz-
ing the misclassification probability in a ball with radius θ1/2 leads to the task of minimizing
〈ψ , Rψ〉/2 −〈μ,ψ〉 subject to ‖ψ‖2 � θ or, equivalently, minimizing 〈ψ , Rψ〉/2 −〈μ,ψ〉+
α‖ψ‖2/2, where α � 0 is a regularization parameter. The solution is ψR

α = R−1
α μ, where

Rα = R + αI and I denotes the identity operator. Despite its practical performance and
amenability to theoretical analysis, the functional ridge classifier does not seem to have been
considered before.

There is an important difference between the conjugate gradient method and the other
approaches. While the principal component and ridge methods regularize the problem without the
main goal in mind, the conjugate gradient approach greedily follows the goal of optimal classi-
fication. Indeed, the conjugate gradient method as an iterative optimization procedure constructs
the regularization path focusing on the minimization of the misclassification probability, whereas
the other approaches regularize by modifying the operator to be inverted regardless of the goal.
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166 D. Kraus AND M. Stefanucci

From a computational point of view the conjugate gradient method is simplest because it does
not require inversion or eigendecomposition.

2.3. Properties of regularization paths

While ψm, the solution regularized by a subspace constraint, in general need not converge
as m → ∞ since a solution to the unconstrained minimization problem may not exist, the
misclassification probability associated with the linear classifier given by ψm converges along
the regularization path. The following and all other results are proved in the Appendix.

Proposition 1. The misclassification probability of the regularized linear classifier based on
ψm = R−

mμ converges to 1 −�(‖R−1/2μ‖/2) as m → ∞.

This result holds regardless of whether the unconstrained minimization problem (3) has a
solution, i.e., regardless of whether ‖R−1μ‖ < ∞. The limiting misclassification probability is
positive if ‖R−1/2μ‖ < ∞ or zero if ‖R−1/2μ‖ = ∞. As discussed earlier, the optimal error
is achieved exactly by the one-dimensional projection onto ψ = R−1μ, when ‖R−1μ‖ < ∞.
Even when ‖R−1μ‖ = ∞, both of the dimension reduction techniques, namely the conjugate
gradient and principal component methods, and also ridge regularization as we will soon see,
achieve the optimal limiting error rate along a possibly nonconvergent path of one-dimensional
projection directions.

It is natural to investigate and compare how quickly the misclassification rate approaches the
limit for the two main types of subspace regularization. It turns out that the conjugate gradient
classifier, being a greedy, goal-oriented procedure, performs as well as or better than the principal
component classifier with the same dimension.

Proposition 2. Regardless of whether the optimal misclassification probability can be
achieved exactly or along a regularization path, i.e., whether ‖R−1μ‖ < ∞ or ‖R−1μ‖ = ∞,
and regardless of whether the optimal misclassification probability is zero or positive, i.e., whether
‖R−1/2μ‖ = ∞ or ‖R−1/2μ‖ < ∞, the misclassification probability of the principal compo-
nent classifier using m components is higher than or equal to the misclassification probability of
the m-step conjugate gradient classifier.

Phatak & de Hoog (2002, § 6.2) showed in the multivariate setting that ‘PLS fits closer than
PCR’. In infinite dimensions, in the context of kernel partial least squares, Blanchard & Krämer
(2010, Theorem 1) showed that the partial least squares solution is closer to the true solution of the
inverse problem than is the principal component solution with the same number of components.
Unlike these results, our Proposition 2 does not assume the existence of a solution and instead
focuses on the values of the misclassification probability.

Although Proposition 2 suggests that the conjugate gradient method will typically use fewer
components than the principal component method to achieve the best result, the resulting mis-
classification probability with the best number of components need not be better. We address this
in the simulation study. A similar phenomenon was previously studied in the literature on partial
least squares in finite dimensions and in the functional setting by Febrero-Bande et al. (2017).

As in the case of subspace regularization, below we obtain the convergence of the error prob-
ability of the ridge classifier, whether or not the unconstrained minimization problem (3) has a
solution, i.e., regardless of whether ‖R−1μ‖ < ∞. The limiting misclassification probability is
positive if ‖R−1/2μ‖ < ∞ or zero if ‖R−1/2μ‖ = ∞.
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Proposition 3. The misclassification probability of the regularized linear classifier based on
ψR
α = R−1

α μ converges to 1 −�(‖R−1/2μ‖/2) as α → 0+.

3. Empirical classifiers for fragmentary functions

3.1. Construction of classifiers with incomplete training samples

So far we have assumed that the parameters of each group are known. We now present the
empirical version with a finite training dataset, and show that under regularity conditions such
classifiers can achieve asymptotically the same optimal error rate as if there were infinite training
data. We aim to do this not only in the case of fully observed functions but also in the case
of incomplete curves. Incompleteness can occur in the training data, with each curve possibly
observed on a different domain, as well as in the new curve that we wish to classify. One strategy
would be to consider all curves on the intersection of their observation domains, if it is nonempty.
However, such a restriction can be too severe and is unnecessary. We will construct classifiers
that use the observed new curve on a set I, which may be its entire observation set or a subset
thereof, without requiring that all training curves be completely observed on I.

For group j let there be a training sample consisting of nj curves, Xj1, . . . , Xjnj . The training
data are assumed to be mutually independent. Curves may be observed incompletely, with values
known only on a subset Oji of the domain and with no information about the values on the
complement. The observation domains are assumed to be independent of the curves and consist
of a finite union of intervals. We let Oji(t) denote the indicator of the curve Xji being observed at
time t. Similarly, let Uji(s, t) indicate observation at times s and t, i.e., Uji(s, t) = Oji(s)Oji(t).

The mean μj of group j can be estimated by the cross-sectional average

μ̂j(t) = 1{Nj(t)>0}
Nj(t)

nj∑
i=1

Oji(t)Xji(t) (j = 0, 1),

where Nj(t) = ∑nj
i=1 Oji(t) is the total number of observed curves in group j at time t. The

covariance kernel ρ(s, t) can be estimated by the empirical covariance using pairwise complete
observations of groupwise centred curves. Formally, the estimator is

ρ̂(s, t) = M1(s, t)ρ̂1(s, t)+ M2(s, t)ρ̂2(s, t)

M1(s, t)+ M2(s, t)
,

where Mj(s, t) = ∑nj
i=1 Uji(s, t) and

ρ̂j(s, t) = 1{Mj(s,t)>0}
Mj(s, t)

nj∑
i=1

Uji(s, t){Xji(s)− μ̂jst(s)}{Xji(t)− μ̂jst(t)}

with μ̂jst(s) = 1{Mj(s,t)>0}Mj(s, t)−1∑nj
i=1 Uji(s, t)Xji(s). If Nj(t) = 0 or Mj(s, t) = 0, the esti-

mators are defined as μ̂j(t) = 0 or ρ̂j(s, t) = 0, respectively. This happens with asymptotically
vanishing probability under Assumption 1 below.

Suppose that the new independent curve to be classified, Xnew, is observed on the domain
Onew. Let us fix the target domain I ⊆ Onew on which we aim to apply the classifier to Xnew. The
empirical classifier Ĉ

ψ̂
trained on partially observed curves is defined like the theoretical one,

with unknown quantities replaced by their estimators. It assigns Xnew restricted to I to the class
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168 D. Kraus AND M. Stefanucci

Ĉ
ψ̂
(Xnew) = 1{T̂

ψ̂
(Xnew)>0}, where T̂

ψ̂
(Xnew) = 〈 Xnew − μ̃, ψ̂〉〈 μ̂, ψ̂〉. Here μ̃ = (μ̂0 + μ̂1)/2

and μ̂ = μ̂1 − μ̂0, with μ̂j being the estimators defined above restricted to I. The projection
direction ψ̂ is one of ψ̂CG

m , ψ̂PC
m or ψ̂R

α , constructed respectively by conjugate gradient, principal
component or ridge regularization applied to μ̂ and R̂, where R̂ is the integral operator with
kernel ρ̂(s, t) introduced above, restricted to I × I.

All methods discussed in the previous section can be formulated in terms of the population
parameters, i.e., the mean difference and covariance operator, and not in terms of individual
observations in the training set. The population parameters can be consistently estimated by
averaging individual observations, whereas temporal averaging of individual curves, for example
in inner products, is impossible due the incompleteness of the observed functions. In particular,
the conjugate gradient method can be applied to fragmentary training data, whereas the usual
algorithms for multivariate or functional partial least squares, such as those in De Jong (1993),
Hastie et al. (2009, Algorithm 3.3) and Delaigle & Hall (2012b, § 4.2 and Appendix A.2), involve
the computation of certain scores, i.e., inner products, for individual curves.

3.2. Asymptotic behaviour along the empirical regularization path

We aim to study the behaviour of classifiers on incomplete training samples of increasing
size with decreasing amounts of regularization. Previous asymptotic results in related settings
include those of Delaigle & Hall (2013), who established the consistency of empirical principal
component classifiers based on partially observed training data. In the setting of complete curves,
Berrendero et al. (2018) used dimension reduction regularization by evaluation of curves at
a finite set of arguments; they proved consistency of the empirical version but did not study
the asymptotics for decreasing amounts of regularization, i.e., they did not consider letting the
dimension grow. Baíllo et al. (2011a) studied optimal classifiers for Gaussian measures based on
Radon–Nikodym derivatives and investigated the performance of their empirical version in the
special class of processes with triangular covariance functions. In contrast, all of our methods,
including the ridge approach not considered previously, have been developed for fragmentary
training samples and shown to achieve the Bayes error rate for general Gaussian processes along
the empirical regularization path, as we now explain.

The following assumptions will be needed for the derivation of asymptotic properties of
empirically trained regularized linear classifiers.

Assumption 1. The distributions in groups j = 0, 1 satisfy EPj (‖X ‖4) < ∞.

Assumption 2. For a domain I, there exists δ > 0 such that the observation patterns in training
samples j = 0, 1 satisfy, as nj → ∞,

sup
(s,t)∈I×I

pr
{
n−1

j Mj(s, t) > δ
} = O(n−2

j ).

Assumption 1 guarantees the consistency of the empirical mean and covariance operator for
samples of completely observed curves; see, for example, Bosq (2000) or Horváth & Kokoszka
(2012). Kraus (2015, Proposition 1) showed, under the additional Assumption 2 with I equal to
the entire domain of the curves, that the root-n consistency of the sample mean and covariance
restricted to I continues to hold in the fragmentary setting. In particular, it follows that ‖μ̂j −
μj‖ = Op(n

−1/2
j ) and hence ‖μ̂ − μ‖ = Op(n−1/2) for n = min(n0, n1) → ∞, and also that

‖R̂ − R‖∞ = Op{(n0 + n1)
−1/2}, where ‖ · ‖∞ is the operator norm. When I is a subset of
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the domain, analogous results hold for the restrictions of the functions and integral kernels to
I. Assumption 2 means that at all pairs of time-points there is an asymptotically nonnegligible
fraction of observed values. Assumption 2 is less restrictive than the requirement that there be
complete curves in the sample. It can be satisfied, for example, in situations where the observed
curves consist of several shorter fragments. If the assumption is not satisfied because the data
contain only one short fragment per curve, other estimation methods can be used; see, for example,
Delaigle & Hall (2016) and Descary & Panaretos (2019).

We now study the asymptotic behaviour of the empirical classifier when the number mn of
steps of the conjugate gradient algorithm grows as the training sample size grows. Under cer-
tain conditions on the regularization path, we establish the convergence of the misclassification
probability of the conjugate gradient classifier trained on collections of functional fragments to
the same optimal limit as for the theoretical conjugate gradient classifier with an infinite training
sample, regardless of whether the limiting error rate is zero or positive and regardless of whether
the limit can be theoretically achieved exactly or along the path.

Theorem 1. Suppose that Assumption 1 holds. Assume that n = min(n0, n1) → ∞ and
mn → ∞ in such a way that mn � Cn1/2 for some C > 0 and

n−1/2ω−1
mn

‖γ (mn)‖ + n−1ω−3
mn

→ 0, (4)

whereωmn is the smallest eigenvalue of the mn×mn matrix H with entries hjk = 〈 κj, Rκk〉 for κj =
R j−1μ and the mn-vector γ (mn) is defined as γ (mn) = H−1d with d being the mn-vector having
components dj = 〈μ, κj〉. Then the misclassification probability of the empirical regularized
linear classifier based on ψ̂CG

mn
converges in probability to the optimal misclassification probability

1 −�(‖R−1/2μ‖/2).

Condition (4) guarantees that the number of components does not grow too fast in relation to
the growing number of training observations and to the increased ill-conditioning of the theoret-
ical problem. Condition (4) is analogous to (5.10) in Delaigle & Hall (2012b) for partial least
squares. The vector γ (mn) contains the coefficients of the theoretical regularized solution ψCG

mn
with respect to the non-orthogonal basis κ1, . . . , κmn of the Krylov subspace Kmn(R,μ), i.e.,
ψmn = ∑mn

j=1 γ
(mn)
j κj. The eigenvalues of H are called the Ritz values in numerical analysis. For

details on connections with partial least squares see Lingjærde & Christophersen (2000).
In the proof given in the Appendix we use the results of Delaigle & Hall (2012b) on the

consistency of partial least squares regression for functional data. These results were obtained
for situations that differ from our setting in several ways. In particular, we work with functional
fragments instead of complete curves, the conjugate gradient path differs from partial least squares
regression, e.g., in the group centring in the estimation of the covariance, and we do not require that
the population inverse problem, Rψ = μ in our context, have a solution. However, inspection of
the underlying technical arguments in Delaigle & Hall (2012b) shows that appropriate analogous
results can be obtained and used in our setting, as we explain in the proof.

Next, we show that the empirically trained principal component classifier with an increasing
number of components asymptotically achieves the optimal misclassification probability.

Theorem 2. Suppose that Assumption 1 holds. Assume that n = min(n0, n1) → ∞ and mn →
∞ in such a way that λ4

mn
n → ∞ and λ2

mn
n(
∑mn

j=1 aj)
−2 → ∞, where a1 = 23/2(λ1 − λ2)

−1

and aj = 23/2max{(λj−1 − λj)
−1, (λj − λj+1)

−1} for j = 2, 3, . . . . Then the misclassification
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probability of the empirical regularized linear classifier based on ψ̂PC
mn

converges in probability
to the optimal misclassification probability 1 −�(‖R−1/2μ‖/2).

The conditions on the principal component regularization path are the same as in the case of
functional principal component regression (Cardot et al., 1999). Unlike in the functional linear
model, it is not assumed that the inverse problem has a solution, since the goal is not to estimate
the possibly nonexistent bounded linear regression functional.

Finally, the empirical ridge classifier with finite training data asymptotically attains the same
optimal error rate as its theoretical counterpart. Unlike for the conjugate gradient and principal
component classifiers, the conditions on the ridge path classifier do not involve parameters of the
distributions because no subspace is constructed.

Theorem 3. Suppose that Assumption 1 holds. Assume that n = min(n0, n1) → ∞ and
αn → 0+ in such a way that α4

nn → ∞. Then the misclassification probability of the empirical
regularized linear classifier based on ψ̂R

αn
converges in probability to the optimal misclassification

probability 1 −�(‖R−1/2μ‖/2).
3.3. Selection of the regularization parameter

The regularization parameter can be selected by minimizing an estimate of the misclassification
probability. We use leave-one-out crossvalidation. The Supplementary Material provides details
of crossvalidation in the presence of incomplete curves. The best value of the regularization
parameter is searched for over a grid of values, such as the values corresponding to integer
degrees of freedom up to some maximum value. The number of degrees of freedom for the
subspace methods is the dimension of the subspace, and for the ridge method it is defined as
the trace of (R̂ + αI )−1R̂, i.e.,

∑n0+n1
j=1 λ̂j/(λ̂j + α) where λ̂j are the eigenvalues of R̂. The

maximum number of degrees of freedom we use is one fifth of the number of curves.

4. Domain selection

To classify the new curve Xnew observed on Onew, we apply the classifier on the target domain
I ⊆ Onew, the choice of which we now consider. One possibility would be to restrict attention
to the intersection of the observation domains of all curves, say I0, if it is nonempty. An obvious
drawback of this approach is that one can lose discriminatory power because any differences
between the classes may be more pronounced outside I0. An advantage of our approach is its
capability of working with incomplete curves, since the empirical construction of the projection
direction requires only the estimation of μ and R on the target domain. Hence one can look at a
domain larger than I0. A natural choice is the largest subset of Onew that contains enough data
for estimation of the classifier, i.e., satisfies Assumption 2, and contains enough functions for
validation in the crossvalidation procedure, i.e., has a sufficiently large set V . In this way one
hopes to capture the widest range of shapes of the group difference. On the other hand, it could
be that not even this maximal domain, Imax, will lead to the best classification accuracy, because
one includes more uncertainty in the estimation due to the missing values and because the mean
difference may not be important in the added part of the domain. Therefore, it seems reasonable
to also consider intermediate choices between I0 and Imax.

Here we present a domain selection strategy for the most common case of interval observation
sets. The idea, worked out in detail in Stefanucci et al. (2018), is to construct the classifier on a
series of intervals that range from the common domain I0 to the maximal domain Imax, extending
the working interval by a fixed percentage at each step. More formally, we consider a sequence

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/1/161/5250873 by guest on 28 February 2019



Classification of functional fragments 171

of nested intervals I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ IK = Imax, starting from I0 and ending in
IK = Imax, and build the classifier on each interval. The regularization parameter for the kth
domain is selected by crossvalidation as described in the Supplementary Material. Among these
K + 1 candidates we select the one that minimizes the crossvalidation estimate of error.

The search strategy can be extended by considering larger systems of candidate domains; for
example, one could vary the two endpoints independently. The idea can be generalized to other
situations, such as non-interval observation sets, multivariate functional data or functions indexed
by multivariate arguments. In each situation one needs to define a meaningful system of domains
and optimize the crossvalidation score over the system.

5. Simulations

5.1. Behaviour of regularized classifiers on complete data

In this section we illustrate the behaviour of the three estimators of ψ in different settings.
We consider Gaussian processes on [0, 1] with covariance kernel ρ(s, t) = exp(−|s − t|2/0.01)
and mean function depending on the group label. Group 0 has mean μ0(t) = 0 in each setting.
Group 1 has meanμ1(t) = μ(t), for which we consider eight different forms: (i) ct, (ii) c(t−0.5)2,
(iii) c(t−0.5)3, (iv) c sin(20t), (v) cϕ1(t), (vi) cϕ10(t), (vii) cb(t; 5, 5), and (viii) cb(t; 2, 6), where
ϕj is the jth eigenfunction of the kernel ρ and b(t;α,β) = tα−1(1 − t)β−1 is the beta density. In
each case the parameter c is selected to yield a reasonable misclassification rate.

In each of 5000 repetitions we generated 50 curves from each group and evaluated them
on a grid of 100 equispaced points in [0, 1]. We also generated a new observation that could
arise from group 0 or group 1 with equal probability. Then we constructed the regularized clas-
sification direction by the principal component, conjugate gradient and ridge methods with m
degrees of freedom and predicted the label of the new observation. We considered m = 1, . . . , 20,
corresponding to a reasonable minimum of five observations per degree of freedom.

Figure 1 shows the misclassification proportion over the 5000 repetitions as a function of m for
the eight different choices ofμ(t).As expected, the conjugate gradient method performs well in all
settings and is not much affected by the shape ofμ(t). By contrast, the performance of the principal
component classifier depends strongly onμ(t). To see this, consider the two extreme situations in
settings (v) and (vi). The classification error of the principal component approach is close to that of
the conjugate gradient method in case (v), whereμ(t) is the first eigenfunction, but is much higher
at lower dimensions in case (vi), whereμ(t) is the tenth eigenfunction. In the latter case, the princi-
pal component method reaches the same level of error as the conjugate gradient method only when
m = 10 or more. These findings agree with Proposition 2 and with the conclusions of Delaigle &
Hall (2012a) and Febrero-Bande et al. (2017), who pointed out that principal components need
more degrees of freedom than partial least squares to achieve good performance. In this regard
ridge regularization seems to lie between the two subspace methods, but is more similar to the
conjugate gradient method in most cases. In particular, it does not completely fail at low degrees of
freedom in case (vi), because it does not construct a subspace that could miss the important infor-
mation; however, it also suffers in this situation, whereμ(t) is on the tail of the spectrum, because
ridge penalization shrinks higher-index spectral components more than lower-index components.
Nevertheless, with sufficiently many degrees of freedom, the three methods behave similarly.

Additional simulation results, reported in the Supplementary Material, show that similar con-
clusions can be drawn when functions have nonsmooth trajectories and that the capability to
discriminate between two groups with different means is robust with respect to the assump-
tion of equal covariances. Results for increased training sample size are also provided in the
Supplementary Material.
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Fig. 1. Misclassification rate (%) versus degrees of freedom for different forms of μ(t): (i) linear, (ii) quadratic,
(iii) cubic, (iv) sinusoidal, (v) first eigenfunction, (vi) tenth eigenfunction, (vii) symmetric beta, and (viii) asymmetric
beta. The different curves represent the principal component (solid), conjugate gradient (dotted) and ridge (dashed)

classifiers.

Table 1. Misclassification rates (%), with standard errors in parentheses, achieved by clas-
sifiers with degrees of freedom selected by crossvalidation in the different settings; for each

classifier the numbers in the second row are the minimum misclassification rates
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

PC 13.0 (0.34) 8.3 (0.28) 1.3 (0.11) 2.5 (0.16) 7.2 (0.26) 7.6 (0.27) 10.7 (0.31) 26.2 (0.44)
8.1 6.1 0.1 2.2 2.4 7.4 6.1 20.4

CG 8.6 (0.28) 6.5 (0.25) 0.7 (0.09) 2.1 (0.14) 2.6 (0.16) 7.8 (0.27) 6.1 (0.24) 20.9 (0.41)
8.1 5.7 0.1 2.1 2.2 7.2 5.7 19.9

R 8.4 (0.28) 7.7 (0.27) 0.7 (0.09) 2.2 (0.15) 2.4 (0.15) 7.9 (0.27) 6.1 (0.24) 20.8 (0.41)
7.9 6.5 0.2 2.0 2.3 7.3 5.7 20.0

PC, principal component classifier; CG, conjugate gradient classifier; R, ridge classifier.

5.2. Performance of crossvalidation for selection of degrees of freedom

We used simulation to investigate the performance of leave-one-out crossvalidation in choosing
the correct level of regularization. The settings were the same as in § 5.1, but classification was
done using the number of degrees of freedom selected by leave-one-out crossvalidation. We
summarize the classification errors in Table 1. Crossvalidation performs well as a selector of the
best level of regularization since the misclassification rate in Table 1 is in each case close to the
corresponding minimum error in Fig. 1. The principal component method appears to perform
worst, while the conjugate gradient and ridge methods have comparable performance. The latter
two methods nearly achieve the respective minimum errors. Table 2 reports the mean and median
selected degrees of freedom. The principal component method often uses considerably more
degrees of freedom than the other methods. This is particularly interesting in case (v), where the
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Table 2. Mean and median (in parentheses) degrees of freedom selected by crossvalidation
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

PC 8.2 (7) 14.3 (15) 9.9 (9) 10.9 (10) 4.6 (4) 11.9 (11) 5.3 (4) 8.6 (6)
CG 5.4 (3) 10.7 (11) 3.4 (2) 4.5 (2) 2.4 (1) 4.9 (3) 2.7 (1) 8.6 (7)
R 6.4 (3) 11.6 (13) 6.0 (3) 6.1 (4) 2.7 (1) 9.3 (8) 3.4 (1) 6.7 (3)

PC, principal component classifier; CG, conjugate gradient classifier; R, ridge classifier.
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Fig. 2. Misclassification rate (%) plotted as a function of the domain extension, for μ(t) being the (a) Be(2, 6),
(b) Be(5, 5) or (c) Be(6, 2) density for the principal component (solid), conjugate gradient (dotted) and ridge (dashed)
classifiers with selected degrees of freedom. Classification is performed on the domains [0, u] with u ∈ [0.5, 0.9], and

the error values are plotted against u.

mean difference equals the first eigenfunction and so one component should be the best choice
in theory. These results again illustrate the general phenomenon that the principal component
approach is inappropriate for inference about means due to the possible lack of informativeness
of the principal components about the mean and the extra uncertainty associated with their
estimation.

5.3. Missing data and domain extension

We now demonstrate the usefulness of the domain extension approach presented in § 4, using
Gaussian processes on [0, 1] with the same covariance as in § 5.1 and considering three scenarios
for the mean difference in the form of a multiple of a beta density, (a) b(t; 2, 6), (b) b(t; 5, 5) and
(c) b(t; 6, 2), which reflect situations where discrimination due to a peak is in the left, central and
right parts of the domain, respectively. We sampled 50 curves from each group on a sequence of
100 equispaced points in [0, 1]. Then we generated endpoints of the observation interval for each
curve from the uniform distribution on (0.5, 1); that is, each curve was observed between 0 and
the endpoint and treated as missing beyond the endpoint. The new observation had an endpoint
sampled between 0.5 and 1. So the first half of [0, 1], I0 = [0, 0.5], was the common observation
domain of all curves. We considered extensions of I0 to Ik = [0, 0.5 + 0.05k] (k = 0, . . . , 8).
For each interval of this form that was contained in the observation domain of the curve to be
classified, we estimated the classifiers, choosing the best degrees of freedom via crossvalidation,
and classified the new curve. This procedure was repeated 1000 times. We plot the behaviour of
the resulting classification error as a function of the endpoint of the extended domain in Fig. 2.

When the peak of the mean difference is in the left part of [0, 1], extending the domain does not
lead to better classification. In this case the interval where the means mainly differ corresponds
to the part of the domain where all the data are available, and inflating the domain only increases
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Table 3. Misclassification rates (%), with standard errors in parenthe-
ses, achieved by classifiers with domain and degrees of freedom selected
by crossvalidation in the different settings; the minimum and maximum

misclassification rates are given in square brackets
(a) (b) (c)

PC 18.1 (0.38) [11.3, 33.7] 11.9 (0.32) [11.4, 15.2] 31.1 (0.46) [21.8, 46.0]
CG 19.6 (0.39) [15.4, 25.7] 7.4 (0.26) [5.6, 9.3] 30.4 (0.46) [19.2, 45.7]
R 22.4 (0.42) [17.2, 22.8] 6.9 (0.25) [5.4, 8.6] 28.4 (0.45) [20.7, 45.9]

PC, principal component classifier; CG, conjugate gradient classifier; R, ridge classifier.

the uncertainty due to missing data. In the second case, the peak of the mean difference is
exactly at 0.5, and extending the domain leads to little improvement. The third scenario is the
opposite of the first, as the discrimination is mainly in the right part of [0, 1]. In this case,
extending the domain reduces the error considerably because good classification is only possible
by employing the right part of the domain. The classification error is about 45% when using only
I0, but drops to about 20% when using also the part of the interval where the data are partially
observed.

5.4. Performance with selected domain

Domain extension may or may not improve the performance of classifiers, depending on the
interplay between the form of the mean difference, the covariance structure and the missingness
pattern. In practice, the user is not an oracle with access to misclassification errors for candidate
subsets whose estimates are plotted in Fig. 2, and hence would select the best domain by cross-
validation. In Table 3 we report simulation results for classifiers with both domain and degrees
of freedom selected by crossvalidation, for the same configurations as in § 5.3. Selection of the
domain leads to a considerable improvement of the error rate compared with the worst-performing
domain. On the other hand, this improvement has some limitations and a gap remains between the
achieved value and the best value; this can be explained by the fact that crossvalidation provides
only an estimate of the error, not the true value.

6. AneuRisk data example

We apply the proposed method to theAneuRisk dataset from an interdisciplinary project aimed
at investigating the effects of blood vessel morphology, blood fluid dynamics and biomechanical
properties of the vascular wall on the pathogenesis of cerebral aneurysms. An introduction to
the data can be found in Sangalli et al. (2014b). This dataset has previously been analysed in
several works that focused on different methodological aspects, such as function and derivative
estimation (Sangalli et al., 2009b), exploratory analysis and classification (Sangalli et al., 2009a),
and alignment and clustering (Sangalli et al., 2014a), among others.

The data consist of measurements of the radius and curvature of the internal carotid artery in
a sample of 65 patients, 33 of which have an aneurysm at the bifurcation of the vessel or after it,
while the other 32 either have an aneurysm before the bifurcation, which is much less dangerous,
or are healthy. The goal is to classify the patients based on the morphology of their internal
carotid artery. In this example we work with only one of the observed variables, the radius. The
data have previously been pre-processed, registered and smoothed, and are observed on a grid of
2000 points in the interval [−100.3, 5.1], where the argument represents the distance between the
observation point and the terminal bifurcation of the internal carotid artery, with positive values
indicating points inside the skull. As we can see in Fig. 3, the data are partially observed because
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Fig. 3. Radius along the carotid artery from the AneuRisk dataset, along with the
mean of the group of subjects with an aneurysm after the bifurcation (dotted) and the
mean of the group of subjects with an aneurysm before the bifurcation or without
an aneurysm (dashed). Curves for two example subjects are highlighted as solid

lines. Note the different start and end points for different subjects in the study.

the start and end points are different from subject to subject. All subjects are observed on the
subset I0 = [−32.9, −7.4], which corresponds to 24.3% of the whole domain.

We first apply the regularized linear classifiers to curves restricted to the common domain
I0. The classification error estimated by crossvalidation is 29.2% for the principal compo-
nent method, 29.2% for the conjugate gradient method, and 32.3% for ridge regularized
classification.

We compare the above procedure with a different approach consisting of a multivariate clas-
sification method applied to principal component scores. The covariance kernel is estimated
from observations centred to their respective group means, its eigenfunctions are computed,
and quadratic discriminant analysis is applied to the inner products of the uncentred curves
with the eigenfunctions. This procedure is similar to that in Sangalli et al. (2009a). The best
classifier of this type turns out to exhibit a misclassification error of 32.3%, obtained with two
eigenfunctions.

These values show that in this dataset, when attention is restricted to the common domain I0,
our proposed method is comparable to the more standard multivariate technique.

Next, we consider classification on extended domains including observed values outside the
common domainI0.We build the sequence of domainsI0, . . . , IK by enlarging the domain at each
step by 1.25% of the complement of I0. This step size is a compromise between the fineness of
the grid and the computational cost. We consider extended domains up to K = 40, corresponding
to I40 = [−66.6, −1.2], because not enough subjects have observed values outside this interval
for reliable estimation and crossvalidation. All regularized linear classification methods benefit
from the domain extension; in particular, the error rate for the principal component method drops
from 29.2% to 23.2%, for the conjugate gradient method from 29.2% to 25.8%, and for ridge
regularization from 32.3% to 25%. The best domain is I10 = [−41.3, −5.8] for the conjugate
gradient method and I11 = [−42.2, −5.7] for the other two methods.

The alternative method based on multivariate classification of scores cannot be applied on
extended domains since the individual scores of incomplete curves cannot be computed, although
they can be predicted (Kraus, 2015). By contrast, the proposed methods are entirely formulated
in terms of distributional parameters, which can be consistently estimated from incomplete data,
unlike individual quantities.
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Appendix

Proof of Proposition 1

The misclassification probability for ψm is D(ψm) given in (1). Since ψm ∈ Sm, we compute

|〈μ,ψm〉|
〈ψm, Rψm〉1/2

= 〈μ, R−
mμ〉

〈μ, R−
m RR−

mμ〉1/2
= ‖(R−

m )
1/2μ‖.

By Lebesgue’s monotone convergence theorem, the right-hand side converges to ‖R−1/2μ‖, finite or
infinite, and therefore the limiting misclassification probability that is attained along the regularization
path ψm, as m → ∞, is 1 −�(‖R−1/2μ‖/2).

Proof of Proposition 2

The conjugate gradient method minimizes the quadratic objective function in the Krylov subspace
Km(R,μ) whose elements are in the form η = ∑m−1

k=0 ckRkμ = p(R)μ, where p is a polynomial of order
lower than m. Then η ∈ Km(R,μ) can be written as η = ∑∞

j=1 p(λj)bjϕj with bj = 〈μ,ϕj〉. The objective
function at η equals

〈 η, Rη〉/2 − 〈μ, η〉 = 〈 p(R)μ, Rp(R)μ〉/2 − 〈μ, p(R)μ〉

=
∞∑

j=1

b2
j {p(λj)

2λj/2 − p(λj)}

=
∞∑

j=1

b2
j

2λj
q(λj){q(λj)− 2},

(A1)

where q(λ) = p(λ)λ is a polynomial of degree at most m such that q(0) = 0. The conjugate gradient method
seeks the polynomial with these properties that minimizes the objective function. To prove the proposition
we shall find a polynomial q with the required properties such that the objective function above is smaller
than or equal to the objective function for the principal component classifier. The principal component
classifier uses ψPC

m = ∑m
j=1 λ

−1
j bjϕj, and the objective function at ψPC

m is

〈ψPC
m , RψPC

m 〉/2 − 〈μ,ψPC
m 〉 = −

m∑
j=1

b2
j

2λj
. (A2)

Consider the polynomial of degree m,

q(λ) = 1 − (−1)m
λ− λ1

λ1
· · · λ− λm

λm
,
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with q(0) = 0. We see that q(λj) = 1 for j = 1, . . . , m, so the first m summands in the series (A1) and
(A2) are equal. For j > m we have that 0 � q(λj) � 2 due to the properties of the eigenvalue sequence; so
q(λj){q(λj)− 2} � 0 and therefore the corresponding summands in the series (A1) are negative, whereas
they are zero in the series (A2). Hence, for this polynomial,

∞∑
j=1

b2
j

2λj
q(λi){q(λi)− 2} � −

m∑
j=1

b2
j

2λj
,

and so the objective at the conjugate gradient solution must be smaller than or equal to the objective at
the principal component solution. The inequality between the minima of the quadratic objective function
implies the inequality between the misclassification probabilities stated in the proposition.

Proof of Proposition 3

Proceeding as in the proof of Proposition 1, we need to show that

〈μ, R−1
α μ〉

〈μ, R−1
α RR−1

α μ〉1/2
=

∑∞
j=1

b2
j

λj+α{∑∞
j=1

λjb
2
j

(λj+α)2
}1/2

−−−→
α→0+

( ∞∑
j=1

b2
j

λj

)1/2

= ‖R−1/2μ‖,

where bj = 〈μ,ϕj〉 is the coefficient of μ in the eigenbasis. If
∑∞

j=1 b2
j /λj < ∞, the convergence follows

from Lebesgue’s monotone convergence theorem. Otherwise, we use the inequality
∑∞

j=1 λjb2
j /(λj + α)2 �∑∞

j=1 b2
j /(λj + α) to bound the left-hand side expression from below by {∑∞

j=1 b2
j /(λj + α)}1/2, which

diverges to infinity again by Lebesgue’s theorem.

Proof of Theorem 1

The probability of misclassifying a new observation using the conjugate gradient classifier based on ψ̂CG
mn

is D(ψ̂CG
mn
) = 1 −�{|Z(ψ̂CG

mn
)|/2}. We need to show that the fraction in Z(ψ̂CG

mn
) converges in probability

to ‖R−1/2μ‖/2 along the regularization path satisfying the assumptions of the theorem. To deal with the
numerator in Z(ψ̂CG

mn
), one can show that

〈μ, ψ̂CG
mn

〉 − 〈μ,ψCG
mn

〉 = Op

(
n−1/2ω−1

mn
‖γ (mn)‖ + n−1ω−3

mn

)
. (A3)

This result follows from an analogue of (5.9) in Theorem 5.3 of Delaigle & Hall (2012b) and intermediate
results in the proof of that theorem which can be established in our context. The necessary modifications of
the proofs of Theorems 5.1, 5.2 and 5.3 in Delaigle & Hall (2012b) are as follows. All results remain valid
for incomplete instead of complete curves, because the proofs depend only on the root-n consistency of the
covariance estimators, which holds also for functional fragments (Kraus, 2015, Proposition 1). Moreover,
the derivations in Delaigle & Hall (2012b) can be repeated without assuming that the theoretical solution
ψ = R−1μ exists as an element of L2(I). Indeed, the proofs in Delaigle & Hall (2012b) are based on
stochastic expansions of R̂ jψ = R̂ jR−1μ, in our notation, about R jψ = R jR−1μ = R j−1μ and derived
quantities, but the same steps can be followed for R̂ j−1μ̂ about R j−1μ in our setting. In other words, it can
be shown that ψ̂CG

mn
and ψCG

mn
converge to each other without assuming that ψCG

mn
converges. Similarly, for

the denominator in Z(ψ̂CG
mn
) we have that

〈 ψ̂CG
mn

, Rψ̂CG
mn

〉 − 〈ψCG
mn

, RψCG
mn

〉 = Op

(
n−1/2ω−1

mn
‖γ (mn)‖ + n−1ω−3

mn

)
. (A4)

This last result is analogous to (7.27) of Delaigle & Hall (2012b), whose proof can be repeated with the
same modifications for our situation as before. Therefore, regardless of whether ‖R−1μ‖ or ‖R−1/2μ‖ is
finite or infinite, the theoretical and empirical regularized quantities approach each other at the rates given
in (A3) and (A4). The result on D(ψ̂CG

mn
) then follows as in the proof of Proposition 1.
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Proof of Theorem 2

We show that D(ψ̂PC
mn
) = 1−�{|Z(ψ̂PC

mn
)|/2} converges in probability to 1−�(‖R−1/2‖/2). The strategy

of the proof is similar to that of Theorem 3.1 in Cardot et al. (1999) for the principal component approach
to the functional linear model. The difference lies in the incompleteness of the functional data and in that
we do not assume that the underlying theoretical inverse problem has a solution. We write

‖ψ̂PC
mn

− ψPC
mn

‖ � ‖R̂−
mn

− R−
mn

‖∞‖μ̂‖ + ‖R−
mn

‖∞‖μ̂− μ‖.

Proceeding as in the proof of Lemma 5.1 in Cardot et al. (1999), we can show that

‖R̂−
mn

− R−
mn

‖∞ � λ̂−1
mn
λ−1

mn
‖R̂ − R‖∞ + 2λ−1

mn
‖R̂ − R‖∞

mn∑
j=1

aj.

Here λ̂j are the eigenvalues of R̂ in descending order and ϕ̂j are the corresponding eigenfunctions. In
establishing the above inequality one uses the facts that |λ̂j −λj| � ‖R̂ −R‖∞ and ‖ϕ̂j −sign〈 ϕ̂j,ϕj〉ϕj‖ �
aj‖R̂ − R‖∞, which are known from Bosq (2000, Lemmas 4.2 and 4.3) for the empirical covariance
operator from complete curves but hold also for functional fragments; see the proof of Proposition 2 in
the supplementary document for Kraus (2015). Since ‖R̂ − R‖∞ = Op(n−1/2), we see that λ̂−1

mn
λ−1

mn
‖R̂ −

R‖∞1[λ̂mn>λmn /2] � 2λ−2
mn

‖R̂ − R‖∞ = λ−2
mn

Op(n−1/2). Since the probability of the event [λ̂mn < λmn/2]
is bounded by λ−2

mn
O(n−1) and hence converges to 0, it follows that λ̂−1

mn
λ−1

mn
‖R̂ − R‖∞ = λ−2

mn
Op(n−1/2).

Combining this with the facts that ‖μ̂‖ = Op(1), ‖R−
mn

‖ = λ−1
mn

and ‖μ̂− μ‖ = Op(n−1/2) gives

‖ψ̂PC
mn

− ψPC
mn

‖ � λ−2
mn

Op(n
−1/2)+ λ−1

mn
Op(n

−1/2)

mn∑
j=1

aj.

Similar arguments can be used in the analysis of the denominator in Z(ψ̂PC
mn
). In conclusion, we obtain that

the estimation errors for the quantities in the numerator and denominator converge to zero at the rates

〈μ, ψ̂PC
mn

〉 − 〈μ,ψPC
mn

〉 = λ−2
mn

Op(n
−1/2)+ λ−1

mn
Op(n

−1/2)

mn∑
j=1

aj, (A5)

〈 ψ̂PC
mn

, Rψ̂PC
mn

〉 − 〈ψPC
mn

, RψPC
mn

〉 = λ−2
mn

Op(n
−1/2)+ λ−1

mn
Op(n

−1/2)

mn∑
j=1

aj. (A6)

In light of (A5) and (A6), the asymptotic behaviour of the misclassification probability is driven by the
behaviour of the theoretical classifier addressed in Proposition 1.

Proof of Theorem 3

We show that the fraction |Z(ψ̂R
mn
)| converges in probability to ‖R−1/2μ‖/2 as n → ∞. For the

numerator we write

〈μ, ψ̂R
αn

〉 − 〈μ, R−1
αn
μ〉 = 〈μ, (R̂−1

αn
− R−1

αn
)μ̂〉 + 〈μ, R−1

αn
(μ̂− μ)〉. (A7)

For the first term on the right we find that

|〈μ, (R̂−1
αn

− R−1
αn
)μ̂〉| � ‖μ‖‖R̂−1

αn
− R−1

αn
‖∞‖μ̂‖

= ‖μ‖‖R̂−1
αn
(R̂αn − Rαn)R

−1
αn

‖∞‖μ̂‖
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� ‖μ‖‖R̂−1
αn

‖∞‖R̂αn − Rαn‖∞‖R−1
αn

‖∞‖μ̂‖
� α−2

n Op(n
−1/2),

since ‖R̂−1
αn

‖∞ � α−1
n , ‖R−1

αn
‖∞ � α−1

n , ‖μ̂‖ = Op(1) and ‖R̂αn − Rαn‖∞ = ‖R̂ − R‖∞ = Op{(n0 +
n1)

−1/2} (Kraus, 2015, Proposition 1). For the second term on the right-hand side of (A7), we obtain

|〈μ, R−1
αn
(μ̂− μ)〉| � ‖μ‖‖R−1

αn
‖∞‖μ̂− μ‖ � α−1

n Op(n
−1/2).

The quantity in the denominator of Z(ψ̂R
mn
) can be rewritten as

〈 ψ̂R
αn

, Rψ̂R
αn

〉 − 〈ψR
αn

, RψR
αn

〉 = 〈 ψ̂R
αn

− ψR
αn

, Rψ̂R
αn

〉 + 〈ψR
αn

, R(ψ̂R
αn

− ψR
αn
)〉. (A8)

The first term on the right is

〈 ψ̂R
αn

− ψR
αn

, Rψ̂R
αn

〉 = 〈 R̂−1
αn
μ̂− R−1

αn
μ, RR̂−1

αn
μ̂〉

= 〈 R−1
αn
(Rαn − R̂αn)R̂

−1
αn
μ̂, RR̂−1

αn
μ̂〉 + 〈 R−1

αn
(μ̂− μ), RR̂−1

αn
μ̂〉. (A9)

For the first summand in (A9) we have

|〈 R−1
αn
(Rαn − R̂αn)R̂

−1
αn
μ̂, RR̂−1

αn
μ̂〉| � ‖μ̂‖2‖R̂−1

αn
‖2

∞‖RR−1
αn

‖∞‖R̂ − R‖∞

� α−2
n Op(n

−1/2),

using properties mentioned previously and the fact that ‖RR−1
αn

‖∞ � 1, and for the second summand
we have

|〈 R−1
αn
(μ̂− μ), RR̂−1

αn
μ̂〉| � ‖RR−1

αn
‖∞‖R̂−1

αn
‖∞‖μ̂− μ‖ � α−1

n Op(n
−1/2).

Putting these results together, we see that the absolute value of the first term on the right-hand side of (A8)
is dominated by α−2

n Op(n−1/2). The second term on the right-hand side of (A8) can be analysed in a similar
way to the first two terms on the right-hand side of (A7) with RR−1

αn
μ in place of μ. Thus we bound the

absolute value from above by α−2
n Op(n−1/2). These results imply that the estimation errors vanish at rates

〈μ, ψ̂R
αn

〉 − 〈μ,ψR
αn

〉 = α−2
n Op(n

−1/2),

〈 ψ̂R
αn

, Rψ̂R
αn

〉 − 〈ψR
αn

, RψR
αn

〉 = α−2
n Op(n

−1/2).

Hence the empirical classifier has the same limiting error as the theoretical one addressed in Proposition 3.
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sults.

Some key words: Classification; Conjugate gradients; Domain selection; Functional data; Partial observation; Regu-
larization; Ridge method.

S1. DERIVATIONS UNDER UNEQUAL PRIOR CLASS PROBABILITIES

Let πj be the prior probability of class j (j = 0, 1). The optimal classifier based on the one-
dimensional projection 〈X,ψ〉 assigns X to the class Cψ(X) given by

Cψ(X) = 1{π1fψ,1(〈X,ψ〉)>π0fψ,0(〈X,ψ〉)}

= 1{〈X−µ0,ψ〉2−〈X−µ1,ψ〉2>2〈ψ,Rψ〉 log(π0/π1)}
= 1{〈X−µ̄,ψ〉〈µ,ψ〉>〈ψ,Rψ〉 log(π0/π1)},

where µ̄ = (µ0 + µ1)/2 and µ = µ1 − µ0. The effect of unequal prior class probabilities is
a shift of the decision boundary and the classifier is invariant with respect to multiplication of ψ
by a non-zero constant.

Due to the fact that 〈X − µ̄, ψ〉 = 〈X − µ0, ψ〉 − 〈µ, ψ〉/2 = 〈X − µ1, ψ〉+ 〈µ, ψ〉/2, the
misclassification probability for an observation coming from class 0 or 1 with probabilities π0,

C© 2016 Biometrika Trust
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π1 is

π0P0{Cψ(X) = 1}+ π1P1{Cψ(X) = 0}
= π0P0{(〈X − µ0, ψ〉 − 〈µ, ψ〉/2)〈µ, ψ〉 > 〈ψ,Rψ〉 log(π0/π1)}

+ π1P1{(〈X − µ1, ψ〉+ 〈µ, ψ〉/2)〈µ, ψ〉 < 〈ψ,Rψ〉 log(π0/π1)}

= π0P0

{〈X − µ0, ψ〉
〈ψ,Rψ〉1/2 >

〈ψ,Rψ〉1/2
|〈µ, ψ〉| log(π0/π1) +

|〈µ, ψ〉|
2〈ψ,Rψ〉1/2

}

+ π1P1

{〈X − µ1, ψ〉
〈ψ,Rψ〉1/2 <

〈ψ,Rψ〉1/2
|〈µ, ψ〉| log(π0/π1)− |〈µ, ψ〉|

2〈ψ,Rψ〉1/2
}

= π0

[
1− Φ

{〈ψ,Rψ〉1/2
|〈µ, ψ〉| log(π0/π1) +

|〈µ, ψ〉|
2〈ψ,Rψ〉1/2

}]

+ π1Φ

{〈ψ,Rψ〉1/2
|〈µ, ψ〉| log(π0/π1)− |〈µ, ψ〉|

2〈ψ,Rψ〉1/2
}
.

Since the function

π0[1− Φ{z−1 log(π0/π1) + z/2}] + π1Φ{z−1 log(π0/π1)− z/2}
is decreasing in z > 0, the minimization of the misclassification probability is equivalent to the
maximization of

|〈µ, ψ〉|
〈ψ,Rψ〉1/2

like in the case of equal prior probabilities discussed in the main body of the paper. If
‖R−1/2µ‖ <∞, the upper bound for the above fraction is ‖R−1/2µ‖ and the corresponding
misclassification probability equals

π0

[
1− Φ

{
log(π0/π1)

‖R−1/2µ‖ +
‖R−1/2µ‖

2

}]
+ π1Φ

{
log(π0/π1)

‖R−1/2µ‖ −
‖R−1/2µ‖

2

}
.

When ‖R−1/2µ‖ <∞, that is, when the Gaussian measures with means µ1, µ2 and covariance
R are mutually absolutely continuous, this is the optimal misclassification probability among all
classifiers, i.e., the Bayes error, as shown in Theorem 2 in Berrendero et al. (2018). The Bayes
error is achieved by ψ = R−1µ, if ‖R−1µ‖ <∞.

We can proceed like in the case of equal probabilities and apply regularization techniques to
the inverse problem Rψ = µ. All theoretical results presented for the case of equal probabilities
can be restated and reproved with the above form of the optimal error rate for the general case,
including in the situation with ‖R−1/2µ‖ =∞, in which case the optimal error rate is zero and
the two Gaussian measure are mutually singular.

In the empirical version of the problem one either estimates the prior class probabilities by
nj/(n0 + n1) if the training sample can be seen as a sample from the mixture of populations
with these probabilities, or uses some fixed values.

S2. SELECTION OF THE REGULARIZATION PARAMETER AND DOMAIN BY
CROSS-VALIDATION

Given the target domain I, regularization method and regularization parameter, Algorithm S1
describes the estimation of the misclassification probability by cross-validation.



Supplement for Classification of functional fragments 3

Algorithm S1. Estimation of the misclassification probability by cross-validation
Set V = {(j, i) : j ∈ {0, 1}, i ∈ {1, . . . , nj}, Oji ⊇ I}
Repeat for (j, i) ∈ V

Estimate the mean and covariance function restricted to I
using all training functions except Xji

Estimate the projection direction ψ̂ using the given regularization method
and regularization parameter

Apply Ĉψ̂ to the restriction of Xji to I and save the predicted class label to cji
Set the misclassification indicator δji = 1[cji 6=j]

Output
∑

(j,i)∈V δji/|V |

The misclassification probability is estimated for a grid of values of the regularization param-
eter using Algorithm S1. The value that minimizes the error is selected.

When selecting the domain as well, one repeats the above process for each candidate domain
in place of I.

Once the regularization parameter and possibly domain are selected, the classifier is re-
estimated using all training curves and applied to the new curve Xnew.

S3. ADDITIONAL SIMULATION RESULTS

S3·1. Processes with non-smooth trajectories
Fig. S1 presents simulation results to compare the behaviour of classifiers on the conjugate

gradient, principal component and ridge regularization path for Gaussian processes with non-
smooth trajectories. We considered the Ornstein–Uhlenbeck process with covariance function
ρ(s, t) = exp(−|s− t|). We used the same configurations for the mean difference between the
classes as in Subsection 5.1 in the main body of the paper, except in cases (v) and (vi), where the
mean difference now was the first and tenth eigenfunction of the Ornstein–Uhlenbeck covariance
kernel.

The main conclusion from Subsection 5.1 of the paper is still valid for this situation. All three
regularization methods reach about the same best error rate but the conjugate gradient method
does it with less degrees than the other methods. The principal component method appears to
be less stable than in the case of the smooth process of Subsection 5.1 which can probably be
explained by the increased error of the estimation of the eigenfunction.

S3·2. Behaviour under different covariance operators in groups
The methods presented in the paper are derived under the assumption of equal covariance oper-

ators in both groups. Fig. S2 shows simulation results when this assumption is violated. We used
Gaussian processes with covariance function exp(−|s− t|2/0.01) in one group and exp(−|s−
t|) in the other group. We considered the same scenarios for the mean difference as in Subsec-
tion 5.1 in the paper, except for scenarios (v) and (vi), where the mean difference was the first
and tenth eigenfunction of the mixture covariance 0.5 exp(−|s− t|2/0.01) + 0.5 exp(−|s− t|).

We conclude that the findings of Subsection 5.1 are robust with respect to the assumption
of equal covariance operators. The principal component classifier again appears to be the least
preferable method. Moreover, the error rates in this situation with different covariances are be-
tween the error rates in situations in which the two groups both have one of the considered
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Fig. S1. Misclassification rate (%) versus degrees of free-
dom for non-smooth processes for different forms of µ(t),
(i) linear, (ii) quadratic, (iii) cubic, (iv) sinusoidal, (v)
first eigenfunction, (vi) tenth eigenfunction, (vii) sym-
metric beta, (viii) asymmetric beta, for principal compo-
nent (solid), conjugate gradient (dotted) and ridge (dashed)

classifiers.

covariance structures. Hence if there is a difference in the means, unequal covariances do not
appear to have a serious negative effect on the performance of the classifiers.

S3·3. Performance under increasing training sample size
We performed additional simulations to study the effect of the training sample size. Fig. S3

presents results for the same settings as in Subsection 5.1 in the paper but with 100 training
observations in each group, twice as many as in the paper.

Overall, the misclassification rates in Fig. S3 are slightly lower than in Fig. 1 in the paper due
to the reduction of the estimation error. The difference is, however, small, suggesting that at the
considered training sample sizes the estimation error is a relatively unimportant part of the total
misclassification error.

S4. PERFORMANCE ON BENCHMARK DATA

We applied the proposed methods to two datasets, referred to as the wheat data and the
phoneme data, on which Delaigle & Hall (2012) and Berrendero et al. (2018) previously com-
pared functional classifiers. See these papers for references to the original sources of the data.
We repeated with our classifiers their procedure which consisted of randomly splitting the data
to the training set and test set, building the classifier on the training set and applying it to the test
set to compute the proportion of misclassified curves, repeating this whole process two hundred
times to estimate the misclassification rate. Table S1 reports the results. We can see that misclas-
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Fig. S2. Misclassification rate (%) versus degrees of free-
dom for processes with unequal covariance operators for
different forms of µ(t), (i) linear, (ii) quadratic, (iii) cubic,
(iv) sinusoidal, (v) first eigenfunction, (vi) tenth eigenfunc-
tion, (vii) symmetric beta, (viii) asymmetric beta, for prin-
cipal component (solid), conjugate gradient (dotted) and

ridge (dashed) classifiers.

sification rates decrease with increasing training sample size. Overall, on these data all classifiers
appear to perform similarly and similarly to other methods studied in Delaigle & Hall (2012) and
Berrendero et al. (2018). The ridge method might seem to perform slightly worse than the other
two on the wheat data but in view of the standard errors we do not over-interpret this and other
differences.
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Fig. S3. Misclassification rate (%) versus degrees of free-
dom for 200 training observations for different forms of
µ(t), (i) linear, (ii) quadratic, (iii) cubic, (iv) sinusoidal,
(v) first eigenfunction, (vi) tenth eigenfunction, (vii) sym-
metric beta, (viii) asymmetric beta, for principal compo-
nent (solid), conjugate gradient (dotted) and ridge (dashed)

classifiers.

Table S1. Misclassification rate (%) and its standard error achieved
for wheat and phoneme data

Training sample size PC CG R

Wheat 30 0.94 (1.89) 0.93 (2.06) 2.48 (2.79)
50 0.36 (1.23) 0.58 (1.84) 1.73 (3.02)

Phoneme 30 24.1 (4.79) 23.3 (3.87) 22.1 (2.90)
50 21.7 (2.76) 21.6 (2.12) 21.0 (2.07)

100 20.1 (1.67) 20.1 (1.51) 20.1 (1.55)

PC, principal components; CG, conjugate gradients; R, ridge.
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a b s t r a c t

In functional data analysis it is usually assumed that all functions are completely, densely
or sparsely observed on the same domain. Recent applications have brought attention
to situations where each functional variable may be observed only on a subset of the
domain while no information about the function is available on the complement. Various
advanced methods for such partially observed functional data have already been devel-
oped but, interestingly, some essential methods, such as K -sample tests of equal means
or covariances and confidence intervals for eigenvalues and eigenfunctions, are lacking.
Without requiring any complete curves in the data, we derive asymptotic distributions of
estimators of the mean function, covariance operator and eigenelements and construct
hypothesis tests and confidence intervals. To overcome practical difficulties with storing
large objects in computer memory, which arise due to partial observation, we use the
nonparametric bootstrap approach. The proposed methods are investigated theoretically,
in simulations and on a fragmentary functional data set from medical research.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Functional data analysis is an established field [17,28,34,54] with well-developed methodologies for common types of
observation of random curves, i.e., full (or dense) and sparse observation regimes. Due to new applications recent years
have seen the emergence of a new type of observation of functional data, called functional fragments or partially observed
functional data. For various examples see Bugni [6], Delaigle and Hall [14], Liebl [38], Gellar et al. [21], Goldberg et al.
[23], Kraus [35], Delaigle and Hall [15], Gromenko et al. [24], Kneip and Liebl [32], Dawson and Müller [13], Mojirsheibani
and Shaw [45], Stefanucci et al. [55], Descary and Panaretos [16], Kraus and Stefanucci [37] or Liebl and Rameseder [40].

Functional data are collections of observations of random elements of a function space, such as curves, images, surfaces,
spatio-temporal fields. We consider random functions in a separable Hilbert space. Without loss of generality we work
with the space L2([0, 1]) of square-integrable functions on [0, 1] equipped with inner product ⟨f , g⟩ =

∫ 1
0 f (t)g(t)dt and

norm ∥f ∥ = ⟨f , f ⟩1/2 but our results are applicable to more general spaces. Partially observed functional data consist of
realizations of random functions that are not observed on the entire domain. Each function in the sample may be observed
on a different subset of the domain and no information is available on the function values at arguments in the complement
of this subset. For the ith functional variable Xi ∈ L2([0, 1]) there is a subset Oi ⊆ [0, 1] such that Xi(t) is observed for
t ∈ Oi and not observed for t ∈ [0, 1]\Oi. The observation sets may be random, corresponding to data that are missing by
happenstance, or non-random for designed experiments. We assume that the observation sets are mutually independent
and independent of the curves. We refer to Liebl and Rameseder [40] for a study of the case of dependent missingness.

Although some advanced procedures, such as goodness-of-fit tests, regression, classification and reconstruction
methods, have been developed for functional fragments, basic methods of inference about the fundamental characteristics

E-mail address: david.kraus@mail.muni.cz.

https://doi.org/10.1016/j.jmva.2019.05.002
0047-259X/© 2019 Elsevier Inc. All rights reserved.
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of functional variables are still missing. In particular, the asymptotic distribution of estimators of the mean function
and covariance operator, K -sample tests of equal means or covariances, and confidence intervals for eigenvalues and
eigenfunctions have not been studied yet in the setting of incomplete functions. Users who wish to perform these
basic tasks currently have the only option: to omit the partially observed functions and apply existing procedures to
the complete data only. This approach is not only clearly sub-optimal due to a possibly large loss of information and
resulting decay of power and accuracy, but also hardly or totally inapplicable in situations where the data contain few or
no complete curves.

In this paper, we address this deficiency of existing methodology and develop essential methods of inference about the
mean and covariance structure of incomplete functional data. Random functions are characterized by the mean function
µ = E X and the covariance operator R : L2([0, 1]) → L2([0, 1]) defined as

(Rf )(·) =

∫ 1

0
ρ(·, t)f (t)dt, f ∈ L2([0, 1]),

where ρ(s, t) = cov{X(s), X(t)} is the covariance function, assuming it exists. The covariance structure is best understood
via principal component analysis or eigendecomposition of R in the form

R =

∞∑
m=1

λmϕm ⊗ ϕm,

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues, ϕm are the corresponding orthonormal eigenfunctions, and (a⊗b)f = ⟨b, f ⟩a
for a, b, f ∈ L2([0, 1]). For a theoretical background see, e.g., Bosq [5].

We find appropriate assumptions on the observation pattern that enable us to establish the asymptotic distribution
of estimators of µ and R. We develop tests for comparing the mean functions in K populations of functional data based
on samples of fragments. Next, we propose several tests of equal covariance operators in K samples. We also construct
confidence intervals for the eigenvalues and eigenfunctions estimated from incomplete data.

The practical implementation of methods for functional fragments is more complicated than for complete curves. The
main difficulty is that temporal averaging (e.g., in inner products for dimension reduction) is impossible due to missing
values. This leads to asymptotic distributions whose parameters follow rather complicated formulas. More importantly,
since dimension reduction is not possible, the asymptotic distributions are, upon discretization, characterized by large
objects (matrices or arrays) that are difficult or even impossible to store and manipulate in computer memory. The
bootstrap turns out to be a solution to this problem. We provide specific algorithms for resampling functional fragments
for mean and covariance testing and for confidence intervals for eigenelements.

In a simulation study we investigate the performance of the proposed tests, focusing in particular on the impact of
missingness on the different tests and on the effect of the interplay between missingness and the form of differences
between groups. The study shows that the proposed methods are superior to the currently only available approach based
on omitting incomplete curves.

The proposed methodology is applied to a data set of temporal profiles of heart rate. The data consist of several hundred
curves recorded by an automatic device during several hours in the evening during the transition from the day to night
regime of heart activity. The profiles are not observed always available on the entire domain of interest because either
the device did not measure or record measurements, or the person switched off the device. These fragmentary data were
previously analysed in Kraus [35], where further details can be found.

Section 2 develops methods of inference about means in one and K samples. Section 3 deals with tests about covariance
operators and with inference about principal components. Section 4 presents bootstrap approximations. Results of the
simulation study and the data example are reported in Sections 5 and 6. In the Appendix we provide a central limit
theorem for non-identically distributed functional variables needed in the asymptotic analysis of fragments, and proofs
of all theorems. Additional simulation results and further results of the data analysis.

2. Mean inference from incomplete curves

2.1. Estimation of the mean function

In this section we focus on inference about the mean of functional data. Let us first consider estimation of the mean
function µ of a homogeneous population. Let there be n independent functional observations. Each curve Xi, i ∈ {1, . . . , n}
may be observed incompletely, with values known only for arguments in a subset Oi ⊆ [0, 1], with no information on the
complement of Oi. The observation sets may be non-random or random. They are assumed to be mutually independent
and independent of the curves and to consist of a finite union of intervals. We denote by Oi(t) the indicator that the value
of Xi(t) is observed.

The mean function µ(t) can be estimated by the cross-sectional average of available observations

µ̂(t) =
J(t)
N(t)

n∑
i=1

Oi(t)Xi(t),
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where N(t) =
∑n

i=1 Oi(t) is the number of available observations at time t and J(t) = 1[N(t)>0]. The estimator is defined
to be zero when N(t) = 0. In Kraus [35, Proposition 1] it was shown that under non-restrictive assumptions on the
observation pattern the estimator µ̂ is consistent for the mean function µ, namely, it was proven that E ∥µ̂−µ∥

2
= O(n−1)

as n → ∞. We now aim to provide the asymptotic distribution of the estimator. The result will be essential in the
derivation of the limiting distribution of the test statistics that we construct afterwards.

We denote πi(t) = EOi(t) = Pr{Oi(t) = 1} and π̄ (t) = n−1∑n
i=1 πi(t). Furthermore, we denote by Ui(s, t) = Oi(s)Oi(t)

the indicator of observing the function values at the pair of arguments s and t , and define νi(s, t) = EUi(s, t), ν̄(s, t) =

n−1∑n
i=1 νi(s, t) and M(s, t) =

∑n
i=1 Ui(s, t). We need to introduce conditions on the observation pattern as follows.

Condition 1.

(a) Let there be a function π (t) such that π0 = inft∈[0,1] π (t) > 0 and supt∈[0,1] |π̄ (t) − π (t)| → 0 for n → ∞.
(b) Let there be a function ν(s, t) such that ν̄(s, t) → ν(s, t) for all s, t ∈ [0, 1].
(c) Let there be a value ν0 > 0 such that for each (s, t) ∈ [0, 1]2 either ν(s, t) ≥ ν0 or ν(s, t) = 0, and let the convergence

sup(s,t)∈[0,1]2 |ν̄(s, t) − ν(s, t)| → 0 for n → ∞ hold.

Condition (a) guarantees the consistency of the estimator µ̂, see Kraus [35]. Condition (b) is needed for the weak
convergence of the estimator. Condition (c) is needed for consistent estimation of the covariance operator of the limiting
distribution. We emphasize that no complete curves are required since these conditions may be satisfied even when the
sample contains only fragments. We illustrate this attractive property in the simulation study in Section 5.

When the observation indicators O1, . . . ,On are identically distributed, then Condition (a) is satisfied if π (t) =

P{Oi(t) = 1} is bounded away from zero, Condition (b) is satisfied automatically and Condition (c) is satisfied if for
each (s, t) ∈ [0, 1]2, ν(s, t) = P{Oi(s) = 1,Oi(t) = 1} is either bounded away from zero or equal to zero. The case
of non-identically distributed observation indicators may be relevant, for example, for designed experiments in which
non-random, designed observation sets may vary across subjects.

By ∥ · ∥2 below we denote the Hilbert–Schmidt norm of an operator.

Theorem 1. Assume that E(∥X1∥
2) < ∞. Let Conditions 1(a) and 1(b) hold. Then

n1/2
{µ̂(·) − µ(·)}, N(·)1/2{µ̂(·) − µ(·)}

are asymptotically distributed as mean zero Gaussian processes with covariance operators K ′, K with kernels

κ ′(s, t) = π (s)−1π (t)−1ν(s, t)ρ(s, t), κ(s, t) = π (s)−1/2π (t)−1/2ν(s, t)ρ(s, t),

respectively.
If, moreover, Definition 1(c) is satisfied, then K ′ and K can be consistently estimated by the operators ˆK ′ and ˆK with

kernels κ̂ ′(s, t) = π̂ (s)−1π̂ (t)−1ν̂(s, t)ρ̂(s, t) and κ̂(s, t) = π̂ (s)−1/2π̂ (t)−1/2ν̂(s, t)ρ̂(s, t), respectively, i.e., E ∥ ˆK ′
− K ′

∥
2
2 → 0

and E ∥ ˆK − K ∥
2
2 → 0, where π̂ (t) = N(t)/n, ν̂(s, t) = M(s, t)/n, ρ̂(s, t) is the empirical covariance based on all complete

pairs of function values at s, t, and the value of the kernels is set to 0 whenever π̂ (s) or π̂ (t) is 0.

The proof of this and other theorems is provided in the Appendix. Since the observable functional variables may be
non-identically distributed due to possibly non-identically distributed observation indicators, the proof uses a central limit
theorem for non-identically distributed functional random variables given in the Appendix.

Notice that the covariance kernels κ ′(s, t) and κ(s, t) of the limiting distributions are zero when ν(s, t) = 0 regardless
of the value of ρ(s, t). Therefore, it is not necessary to estimate ρ(s, t) at such points. This is why Definition 1(c) does
not require the function ν(s, t) to be bounded away from zero on the entire domain [0, 1]2 which is needed for the
estimation of R, as will be seen in Section 3, Definition 2(a). This means that the theorem applies also in the context of
short fragments of curves considered, e.g., by Delaigle and Hall [15] or Descary and Panaretos [16], where each curve in
the sample is observed on a short interval and no completely observed curves are available.

2.2. Tests of equality of means in several populations

Let us now consider K independent samples of functional data. Let the jth sample (j ∈ {1, . . . , K }) consist of
independent curves Xj1, . . . , Xjnj coming from the same distribution with mean µj and covariance operator Rj. The
functions may not be observed completely. It is assumed that for each function Xji its values are available on a subset Oij.
Let the observation subsets be mutually independent and independent of the curves. Our aim is to test the null hypothesis
that µ1 = · · · = µK against the general alternative that the null does not hold. The literature on hypothesis testing for
means of functional data is rich. See, for example, [2,3,8,9,18,28,39,43,49,52,53,56,57,59].

In the literature on complete functional samples there exist two main approaches to comparing mean functions. One
is based on the L2 distance between the means and one uses projections on finite dimensional subspaces.

The assessment of the hypothesis will be based on the contrasts of the group means and a null estimate of the common
mean, i.e., on the differences µ̂j − µ̂, j ∈ {1, . . . , K }. Here we use µ̂j(t) = Jj(t)Nj(t)−1∑nj

i=1 Oji(t)Xji(t), j ∈ {1, . . . , K }, with
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Nj(t) =
∑nj

i=1 Oji(t) and Jj(t) = 1[Nj(t)>0]. The estimator µ̂ is obtained as a weighted average of the group means in the
form µ̂(t) =

∑K
j=1 ŵj(t)µ̂j(t) with weights

ŵj(t) =
Nj(t)/r̂2j∑K
k=1 Nk(t)/r̂2k

,

where r̂2j = tr R̂j is the trace of the estimated covariance operator in the jth sample (the estimators R̂j are discussed
later). The role of the scaling by r̂2j is to account for possibly different covariance structures in the samples. This way of
combining estimated means of heteroscedastic samples is inspired by the univariate case and its standard multivariate
extensions. If the covariance structures are known to be the same in all samples, the factors r̂2j can be replaced by the
trace of an estimator of the common covariance operator, which leads to the estimated mean based on the pooled sample
of curves.

The first test we propose is inspired by the method of Cuevas et al. [9] who in the context of fully observed functional
data developed an ANOVA test based on the L2 norms of the contrasts of the group means and the pooled sample mean.
A two-sample version of the test using the nonparametric bootstrap was proposed by Benko et al. [3]. Horváth et al.
[29] studied a two-sample test based on the L2 norm in the context of functional time series. The standardized contrast
processes Nj(·)1/2{µ̂j(·) − µ̂(·)}/r̂j, j ∈ {1, . . . , K } can be collected into a K -dimensional vector that is a random element
of the product space {L2([0, 1])}K with inner product ⟨f , g⟩ =

∑K
j=1⟨fj, gj⟩ for f = (f1, . . . , fK )⊤, g = (g1, . . . , gK )⊤. We use

its L2 norm as the test statistic, i.e., base the test on

TL2 =

K∑
j=1

∥Nj(·)1/2{µ̂j(·) − µ̂(·)}/r̂j∥2
=

K∑
j=1

∫ 1

0
Nj(t){µ̂j(t) − µ̂(t)}2/r̂2j dt (1)

and reject when the value of the statistic is significantly large.
Another main approach to curve mean testing uses dimension reduction. See, e.g., Aue et al. [2], Horváth and Kokoszka

[28] or Horváth et al. [29]. The idea is to focus on a finite number of important features of the infinite-dimensional
data. The functional observations are projected on a finite-dimensional subspace and multivariate ANOVA or a similar
multivariate procedure is applied to the resulting vectors of Fourier scores. This strategy is not directly applicable in the
situation of incompletely observed curves because, unlike in the fully observed case, Fourier scores of functional fragments
cannot be computed by numerical integration as inner products of the functional variable and the basis function since
the functional variable is not available on the entire domain.

Let ψ̂1, . . . , ψ̂d be some linearly independent functions in L2([0, 1]). Without loss of generality we assume that they
are orthonormal. These functions may be either deterministic or random (estimated from the data). In the construction
of our projection tests we use Fourier scores of the standardized contrast processes with respect to the basis functions
ψ̂l. We denote these scores Qjl = ⟨Nj(·){µ̂j(·) − µ̂(·)}, ψ̂l⟩/(r̂jn

1/2
j ), j ∈ {1, . . . , K }, l ∈ {1, . . . , d} and collect them in the

score vector Q = (Q11, . . . ,Q1d, . . . ,QK1, . . . ,QKd)⊤. The score statistic is the quadratic form

Td = Q⊤V̂−Q , (2)

where V̂− is the Moore–Penrose pseudoinverse of the estimated (Kd) × (Kd) covariance matrix of Q whose entry on the
position with index (jl, km) is

V̂jl,km = ⟨π̂
1/2
j ψ̂l, V̂jk(π̂

1/2
k ψ̂m)⟩ =

∫
[0,1]2

π̂j(s)1/2ψ̂l(s)v̂jk(s, t)ψ̂m(t)π̂k(t)1/2dsdt

for j, k ∈ {1, . . . , K }, l,m ∈ {1, . . . , d}. Here V̂jk is the covariance operator with kernel

v̂jk(s, t) =

K∑
l=1

r̂−1
j {δjl − Nj(s)1/2ŵl(s)Nl(s)−1/2

}κ̂l(s, t){δkl − Nk(t)1/2ŵl(t)Nl(t)−1/2
}r̂−1

k , (3)

where δjk is the Kronecker delta. The test rejects for large values of Td.
Analogously to the case of one group considered in Section 2.1, we denote for j ∈ {1, . . . , K }, i ∈ {1, . . . , nj}

the following quantities characterizing the observation patterns in each group, πji(t) = EOji(t) = Pr(Oji(t) = 1),
π̄j(t) = n−1

j
∑nj

i=1 πji(t), Uji(s, t) = Oji(s)Oji(t), νji(s, t) = EUji(s, t), ν̄j(s, t) = n−1
j
∑nj

i=1 νij(s, t) and Mj(s, t) =
∑nj

i=1 Uji(s, t).
Under mild assumptions we obtain the asymptotic distribution of both test statistics.

Theorem 2. For j ∈ {1, . . . , K } assume that nj → ∞, nj/(n1 + · · · + nK ) → aj > 0 and E ∥Xj1∥
2 < ∞. Let the observation

patterns in each group satisfy Definition 1. Then under the null hypothesis of equal means we obtain the following results:

(i) The test statistic TL2 is asymptotically distributed as
∑

∞

k=1 γkCk, where Ck are independent chi-square distributed variables
with one degree of freedom and γk can be consistently estimated by the eigenvalues of the operator V̂ given in (3).

(ii) Assume that there exist linearly independent non-random functions ψ1, . . . , ψd such that ∥ψ̂l − ψl∥
P
−→ 0 for l ∈

{1, . . . , d}. Then the test statistic Td is asymptotically chi-square distributed with (K − 1)d degrees of freedom.
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The test statistic based on the L2 norm is not distribution-free but the critical values can be obtained straightforwardly
by simulation, provided that the eigenvalues of V̂ consistently estimate γk. Similarly, the consistency of V̂ (and hence of
V̂ ) is needed for the score statistic. The consistency of V̂ is guaranteed by Definition 1(c). It may sometimes happen that
Mj(s, t) is low for some s, t , making the estimator V̂ less reliable. For this reason, and also for computational reasons, to
avoid the estimation of the limiting covariance one can use the bootstrap method, as we describe in Section 4.

In the literature on complete functional data, the most common choice of the basis functions for the projection test
is derived from principal component analysis (see Horváth and Kokoszka [28] and references therein, or Fremdt et al.
[19]). The approach uses several leading eigenfunctions of the pooled sample covariance operator. The motivation for this
choice is the property that the first eigenfunctions capture the principal modes of variation, the most important features
of random deviations of the functional variables from the mean. Another approach is to use a fixed set of basis functions,
such as several elements of the Fourier basis of sines and cosines or several orthonormal Legendre polynomials.

For several reasons we prefer deterministic bases to the basis of eigenfunctions. One drawback of the latter approach
is that the principal components of variability may be only weakly related or entirely unrelated (orthogonal) to the
differences between the mean functions, resulting in a test that is weak or inconsistent against this alternative. It may
of course happen that the deterministic functions we choose are orthogonal to the alternative too, or that the leading
eigenfunctions capture the mean differences well. However, with fixed functions it is at least possible to say before the
analysis which alternatives can be detected. With principal components it is not known beforehand which departures
from the null can be captured because the eigenfunctions are usually unknown. Moreover, their property of capturing
the largest portion of variability, which is typically the main argument for using them, is not exactly what one wishes in
mean testing. In fact, one would rather wish to maximize the signal-to-noise ratio or non-centrality, which, for example, in
the case of components with equal magnitude of means would mean to minimize variability. In reality, the true interplay
between the magnitude of components of the mean difference and their variability is not known, and we, therefore, prefer
fixed functions.

The choice of the number of basis functions is important with projection methods. For the approach using eigenfunc-
tions, we follow the recommendation of Horváth et al. [29] to use the smallest number of components needed to explain
at least 85% of the total variability. For the method using fixed functions, in light of the above discussion of the relation
of the power and variability we do not base the choice of d on the explained variability. Instead, we can specify what
shape differences we wish to detect and use the corresponding basis functions. For example, using just d = 3 Legendre
polynomials describing constant, monotonic as well as convex or concave non-monotonic differences seems to be a good
choice in many applications.

3. Covariance inference under partial observation

3.1. Asymptotics for the estimated covariance operator and principal components

Given a collection of independent realizations of curves X1, . . . , Xn with mean function µ and covariance operator
R observed on subsets O1, . . . ,On, the covariance function ρ(s, t) can be estimated by the empirical covariance using
pairwise complete observations, that is, by

ρ̂(s, t) =
I(s, t)
M(s, t)

n∑
i=1

Ui(s, t){Xi(s) − µ̂st (s)}{Xi(t) − µ̂st (t)},

where I(s, t) = 1[M(s,t)>0] and

µ̂st (s) =
1[M(s,t)>0]

M(s, t)

n∑
i=1

Ui(s, t)Xi(s).

If M(s, t) = 0, we define ρ̂(s, t) = 0 and µ̂st (s) = 0. Under certain assumptions on the observation pattern, the operator
R̂ with kernel ρ̂(s, t) was shown to be a consistent estimator of R in Kraus [35, Proposition 1].

In the theorem below we give the asymptotic distribution under a set of conditions for which we denote Ei(s, t, u, v) =

Oi(s)Oi(t)Oi(u)Oi(v), the indicator that the observation of Xi at points s, t, u, v is available, and set θi(s, t, u, v) =

Pr{Ei(s, t, u, v) = 1}, θ̄ (s, t, u, v) =
∑n

i=1 θi(s, t, u, v)/n and L(s, t, u, v) =
∑n

i=1 Ei(s, t, u, v).

Condition 2.

(a) Let there be a function ν(s, t) such that ν0 = inf(s,t)∈[0,1]2 ν(s, t) > 0 and sup(s,t)∈[0,1]2 |ν̄(s, t) − ν(s, t)| → 0 for
n → ∞.

(b) Let there be a function θ (s, t, u, v) such that θ̄ (s, t, u, v) → θ (s, t, u, v) for all s, t, u, v ∈ [0, 1].
(c) Let there be a value θ0 > 0 such that for each (s, t, u, v) ∈ [0, 1]4 either θ (s, t, u, v) ≥ θ0 or θ (s, t, u, v) = 0, and

let the convergence sup(s,t,u,v)∈[0,1]4 |θ̄ (s, t, u, v) − θ (s, t, u, v)| → 0 for n → ∞ hold.
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Condition (a) means that there are enough observations at all pairs of arguments. The condition is needed for the
consistency of R̂, see Kraus [35] for a proof under an essentially equivalent condition. Condition (b) guarantees the weak
convergence in the theorem below, and the additional condition (c) guarantees that the covariance of the asymptotic
distribution can be estimated. We stress that these conditions do not require that the data contain any complete curves.
They may be satisfied even in situations, where all functional observations are fragmentary. When the observation
indicators O1, . . . ,On are identically distributed, then Condition (a) is satisfied if ν(t) = P{Oi(s) = 1,Oi(t) = 1} is bounded
away from zero, Condition (b) is satisfied automatically and Condition (c) is satisfied if for each (s, t, u, v) ∈ [0, 1]4,
θ (s, t, u, v) = P{Oi(s) = 1,Oi(t) = 1,Oi(u) = 1,Oi(v) = 1} is either bounded away from zero or equal to zero.

Theorem 3. Assume that E(∥X1∥
4) < ∞. Let Conditions 2(a) and 2(b) hold. Then n1/2(R̂ − R) and the operator with kernel

M(·, ·)1/2{ρ̂(·, ·) − ρ(·, ·)} are asymptotically distributed as mean zero Gaussian operators whose covariance operators H′, H
have kernels

η′(s, t, u, v) = ν(s, t)−1ν(u, v)−1θ (s, t, u, v){ζ (s, t, u, v) − ρ(s, t)ρ(u, v)},

η(s, t, u, v) = ν(s, t)−1/2ν(u, v)−1/2θ (s, t, u, v){ζ (s, t, u, v) − ρ(s, t)ρ(u, v)},

respectively, where ζ (s, t, u, v) = E[{X(s) − µ(s)}{X(t) − µ(t)}{X(u) − µ(u)}{X(v) − µ(v)}].
If, in addition, Definition 2(c) is satisfied, then H′ and H can be consistently estimated by the operators Ĥ′ and Ĥ with kernels

η̂′(s, t, u, v) = ν̂(s, t)−1ν̂(u, v)−1θ̂ (s, t, u, v){ζ̂ (s, t, u, v)− ρ̂(s, t)ρ̂(u, v)} and η̂(s, t, u, v) = ν̂(s, t)−1/2ν̂(u, v)−1/2θ̂ (s, t, u, v)
{ζ̂ (s, t, u, v)− ρ̂(s, t)ρ̂(u, v)}, respectively, i.e., E ∥Ĥ′

−H′
∥
2
2 → 0 and E ∥Ĥ−H∥

2
2 → 0, where η̂′(s, t, u, v) and η̂(s, t, u, v) are

set to 0 whenever ν̂(s, t) or ν̂(u, v) is 0, θ̂ (s, t, u, v) = L(s, t, u, v)/n and ζ̂ (s, t, u, v) is the empirical fourth central moment
of the functional random variable computed using all complete quadruples of function values at arguments s, t, u, v.

The weak convergence in the theorem above is on the separable Hilbert space of Hilbert–Schmidt operators equipped
with the Hilbert–Schmidt norm ∥ · ∥2. The limiting covariance operator H is an operator that maps a Hilbert–Schmidt
operator F with kernel f (u, v) to an operator with kernel

∫ 1
0

∫ 1
0 η(s, t, u, v)f (u, v)dudv, similarly for other objects in the

theorem.
Next, we study the estimators λ̂m and ϕ̂m of the eigenvalues and eigenfunctions of R. The estimators are obtained by

the eigendecomposition of R̂. Their root-n consistency was established by Kraus [35, Proposition 2]. Here we find the
approximate distribution of the fluctuation of the estimators around their true counterparts (with appropriate sign for
the eigenfunctions as usual).

Theorem 4. Assume that E(∥X1∥
4) < ∞ and R has eigenvalues with multiplicity 1. Let Conditions 2(a) and 2(b) hold. Denote

by H ′∞ a random operator following the limiting Gaussian distribution of n1/2(R̂ − R) with mean zero and covariance H′

given in Theorem 3. Then, for n → ∞, we obtain the following results:

(i) n1/2(λ̂m − λm) is asymptotically distributed as ⟨H ′∞ϕm, ϕm⟩, which is a normal variable with mean zero and variance∫
[0,1]4

ϕm(s)ϕm(t)η′(s, t, u, v)ϕm(u)ϕm(v)dsdtdudv.

(ii) n1/2(ϕ̂m − ŝmϕm), where ŝm = sign⟨ϕ̂m, ϕm⟩, is asymptotically distributed as the Gaussian random function QmH ′∞ϕm,
where

Qm =

∞∑
k=1
k̸=m

ϕk ⊗ ϕk

λm − λk
.

The limiting covariance operator of n1/2(ϕ̂m − ŝmϕm) is
∞∑
k=1
k̸=m

∞∑
l=1
l̸=m

ϕk ⊗ ϕl

(λm − λk)(λm − λl)

∫
[0,1]4

ϕk(s)ϕm(t)η′(s, t, u, v)ϕm(u)ϕl(v)dsdtdudv.

If, additionally, Definition 2(c) is satisfied, then the limiting variance and covariance above can be consistently estimated by
plugging-in estimates from Theorem 3.

The theorem is proved in the Appendix with the help of perturbation theory. The theorem generalizes the classic results
of Dauxois et al. [11] who considered completely observed functions. See Kokoszka and Reimherr [33] for related results
for functional time series. In the case of complete Gaussian curves Dauxois et al. [11] showed that the limiting covariance
structure of the empirical covariance operator simplifies [see also 46] which eventually leads to a simpler form of the
limiting variance of the empirical eigenvalue, namely to 2λ2m. No such simplification is in general possible in the case of
incomplete curves, even if they are Gaussian. Therefore, to make inference about eigenvalues or eigenfunctions, e.g., to
construct confidence intervals, one possibility is to estimate the function η′(s, t, u, v) and use the complicated expressions
above for the limiting covariance structure. In Section 4 we provide an alternative approach based on the bootstrap which
enables to avoid the possibly unstable estimation of η′ and computer memory demanding storage and manipulation with
the estimate.
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3.2. Testing the equality of covariance operators

We now study tests for equality of covariance operators of several populations. Let there be K independent samples
of partially observed functions with mean µj and covariance Rj in the jth sample, as described in Section 2.2. We aim to
test the null hypothesis that R1 = · · · = RK against the general alternative. The general problem of hypothesis testing
for covariance operators was previously studied in various contexts by various methods. See, e.g., [3,4,7,20,25,26,30,31,
36,44,46,49–51,57,58].

Tests of the null hypothesis of equal covariance operators can be based on the differences between the estimators R̂j
and the null estimator R̂ which is the pooled covariance operator with kernel

ρ̂(s, t) =

K∑
j=1

ŵj(s, t)ρ̂j(s, t),

where

ŵj(s, t) =
Mj(s, t)∑K
k=1 Mk(s, t)

.

The differences are expressed by the contrast operators with kernels Mj(·, ·)1/2{ρ̂j(·, ·) − ρ̂(·, ·)}. We propose two types
of tests measuring the importance of the contrasts: one approach is based on the Hilbert–Schmidt norm of the contrasts
and one is based on their projections on a subspace.

The first approach is inspired by methods that were previously considered in the case of fully observed functions,
e.g., by Boente et al. [4]. The importance of the contrasts is expressed by the Hilbert–Schmidt norm. The test statistic
takes the form

SHS =

K∑
j=1

∥Mj(·, ·)1/2{ρ̂j(·, ·) − ρ̂(·, ·)}∥2
2 =

K∑
j=1

∫
[0,1]2

Mj(s, t){ρ̂j(s, t) − ρ̂(s, t)}2dsdt (4)

(in this notation we identify kernels and the corresponding operators).
The second approach uses projections of the contrasts onto a finite-dimensional subspace of the space of

Hilbert–Schmidt operators. This type of tests was used for complete functions in various settings, e.g., by Horváth et al.
[27], Panaretos et al. [46], Panaretos et al. [47], Kraus and Panaretos [36], Fremdt et al. [20], and Jarušková [30]. It is
natural to project on the subspace generated by the leading eigenfunctions of R̂ because they carry information about
the object of interest, the covariance operator (unlike in the case of mean functions where we prefer to use a fixed basis
for the projection test). Let ϕ̂1, . . . , ϕ̂d be the first d eigenfunctions of R̂. Then the operators

Ûlm =

{
ϕ̂l ⊗ ϕ̂l, l = m,
(ϕ̂l ⊗ ϕ̂m + ϕ̂m ⊗ ϕ̂l)/21/2, l < m

with kernels ûll(s, t) = ϕ̂l(s)ϕ̂l(t) and ûlm(s, t) = {ϕ̂l(s)ϕ̂m(t) + ϕ̂m(s)ϕ̂l(t)}/21/2, l < m form an orthonormal basis of
a d(d + 1)/2-dimensional subspace of HS(L2([0, 1])). The Fourier coefficients of the projection of the jth standardized
contrast on this subspace are

Rjlm = ⟨Mj(·, ·){ρ̂j(·, ·) − ρ̂(·, ·)}/n1/2
j , Ûlm⟩ =

∫
[0,1]2

Mj(s, t){ρ̂j(s, t) − ρ̂(s, t)}ûlm(s, t)dsdt/n
1/2
j . (5)

Denote by R the Kd(d + 1)/2-dimensional score vector with components Rjlm, j ∈ {1, . . . , K }, 1 ≤ l ≤ m ≤ d. The test
statistic measures the size of the projection of the contrast operators on the subspace. It takes the form

Sd = RŴ−R, (6)

where Ŵ− is the Moore–Penrose pseudoinverse of the estimator of the asymptotic covariance matrix whose entry with
indices (jlm, kpq) is

Ŵjlm,kpq = ⟨ν̂j(·, ·)1/2ûlm(·, ·), B̂jk{ν̂k(·, ·)1/2ûpq(·, ·)}⟩

=

∫
[0,1]4

ν̂j(s, t)1/2ûlm(s, t)β̂jk(s, t, u, v)ûpq(u, v)ν̂k(u, v)1/2dsdtdudv,
(7)

j, k = 1, . . . , K , 1 ≤ l ≤ m ≤ d, 1 ≤ p ≤ q ≤ d. The kernel of B̂jk is

β̂jk(s, t, u, v) =

K∑
l=1

{δjl − Mj(s, t)1/2ŵl(s, t)Ml(s, t)−1/2
}η̂l(s, t, u, v)

× {δkl − Mk(u, v)1/2ŵl(u, v)Ml(u, v)−1/2
}.

(8)

We now give the asymptotic distribution of the Hilbert–Schmidt and projection statistics.
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Theorem 5. For j ∈ {1, . . . , K } assume that nj → ∞, nj/(n1 + · · · + nK ) → aj > 0, E ∥Xj1∥
4 < ∞ and all eigenvalues of

Rj have multiplicity 1. Let the observation patterns in each group satisfy Definition 2. Then under the null hypothesis of equal
covariance operators we obtain the following results:

(i) The test statistic SHS is asymptotically distributed as
∑

∞

k=1 δkCk, where Ck are independent chi-square distributed variables
with one degree of freedom and δk can be consistently estimated by the eigenvalues of the operator B̂ given in (8).

(ii) The test statistic Sd is asymptotically chi-square distributed with (K − 1)d(d + 1)/2 degrees of freedom.

The asymptotic distribution of SHS can be approximated by simulation like in Boente et al. [4]. Section 4 presents
a practical bootstrap implementation of these tests in which it is not necessary to compute the operator B̂.

Tests based directly on covariance operators are not the only option. As an alternative we explore the approach of Pigoli
et al. [50] who argue that although covariance operators are contained in the Hilbert space of Hilbert–Schmidt operators,
they do not form a linear subspace, and propose other distances than those based on the difference of covariances, such
as the Procrustes distance and the square root distance. This direction of research was further investigated by Cabassi
et al. [7] and Masarotto [44]. One of the proposals of Pigoli et al. [50] was to use the Hilbert–Schmidt distance between
square root covariance operators dsqrt(R1,R2) = ∥R

1/2
1 −R

1/2
2 ∥2. They report good power results for a two-sample test of

equal covariances in the setting of complete functions based on this distance between estimated operators, dsqrt(R̂1, R̂2).
We extend this approach to K samples consisting of partially observed functions.

Since the data may contain incomplete functions, the empirical covariance operators R̂j used before may have negative
eigenvalues. To be able to work with empirical square root covariance operators, we need to modify the covariance
estimators to ensure they are non-negative definite. We use

R̂j+ =

nj∑
l=1

(λ̂jl)+ϕ̂jl ⊗ ϕ̂jl,

where (λ̂jl)+ = max(λ̂jl, 0) is the positive part of the eigenvalue λ̂jl of R̂j and ϕ̂jl is the corresponding eigenfunction. As
discussed in Kraus [35], negative eigenvalues are typically of small magnitude in comparison with leading eigenvalues
and, therefore, are negligible in practice. For a test statistic, we need to use the distance dsqrt to define a null estimator
of R and contrasts between the group estimators R̂j+ and the null estimator. The common covariance operator can be
estimated by

R̂sqrt =

(∑K
j=1 njR̂

1/2
j+∑K

j=1 nj

)2

,

which is the weighted Fréchet mean of the group-specific operators, i.e., the minimizer with respect to R of
∑K

j=1 nj

dsqrt(R̂j+,R)2.
The attained minimum of this objective function,

Ssqrt =

K∑
j=1

njdsqrt(R̂j+, R̂sqrt)2 =

K∑
j=1

∥n1/2
j (R̂1/2

j+ − R̂
1/2
sqrt)∥

2
2, (9)

can serve as a test statistic for comparing covariance operators in K samples. The statistic summarizes the size of the
contrasts between the group and null estimators of the square root covariance operator. Following Pigoli et al. [50] we
use resampling to approximate the null distribution of the statistic.

Notice that the contrasts between the group and null estimators in Ssqrt and SHS are weighted differently. In SHS we
weight the contrast kernels by Mj(s, t)1/2 which in the fragmentary setting reflects the accuracy of the estimation of the
covariance kernel at each point of [0, 1]2 due to the number of observations available at that point. In Ssqrt this would not
be meaningful because the square root covariance operator is a function of the entire covariance operator and thus the
accuracy of the estimation of the square root covariance kernel at one point depends also on the numbers of available
observations at all other points. We therefore simply weight by n1/2

j reflecting the overall accuracy of the square root
covariance estimator. Both SHS and Ssqrt are the attained minimum of the corresponding objective functional that defines
the null estimator.

4. Practical implementation and bootstrap approximations

Functional data procedures are practically implemented by discretization. Functional observations are evaluated at
q points of a grid in the domain. Functions then correspond to q-vectors (possibly with missing values), operators on
the function space correspond to (q × q)-matrices and operators on operators correspond to four-way arrays with all
dimensions q.

To make inference (tests and confidence intervals), one can use the asymptotic distributions found in the previous
section. However, the implementation of such procedures would be excessively demanding in terms of computer memory,
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especially in the case of covariance inference. For example, when the evaluation grid consists of q = 100 points, arrays
such as the one corresponding to the fourth moment kernel ζ (s, t, u, v) contain q4 = 108 entries. To compare covariances,
e.g., in K = 3 samples, one would have to work with an array with K 2q4 = 9×108 entries whose size already approaches
the memory limits of usual computers, even if symmetry is exploited. In the case of multivariate, spatial or image data
the number of evaluation points q is typically much larger than for functions of a one-dimensional argument. Aston et al.
[1] give an example of acoustic phonetic data with bivariate, time–frequency argument with q = 8100. In conclusion,
the size of objects representing the asymptotic covariance structure for tests or confidence intervals may be far beyond
memory limits.

Projection covariance tests for complete functions can avoid the computation, storage and manipulation with such large
arrays by computing principal scores of each function with respect to the required low number d of eigenfunctions [20,27,
46,47]. The covariance matrix of the score then depends on easy-to-handle d-dimensional four-way arrays instead of large
q-dimensional four-way arrays. This dimension reduction approach is not applicable in the case of incomplete functions
because the principal scores ⟨Xji − µ̂j, ϕ̂m⟩ cannot be computed when Xji is available only on a subset of its domain [they
can only be predicted, see 35]. Therefore, even the computation of the projection test statistic (6) is difficult due the large
arrays the matrix Ŵ depends on.

The computation of the Hilbert–Schmidt statistic (4) and the square root covariance statistic (9) does not involve
large four-way arrays. However, to use the asymptotic distribution of SHS (see Theorem 5) one needs to estimate the
eigenvalues of an operator on operators. Upon discretization and vectorization, this leads to a large eigenproblem of
dimension (Kq2) × (Kq2), e.g., 30 000 × 30 000 for K = 3, q = 100. Again, dimension reduction cannot be used due to
incomplete functions.

To overcome these difficulties we use the bootstrap. For completely observed functional data bootstrap tests of equal
mean functions or covariance operators were studied by Benko et al. [3] and Paparoditis and Sapatinas [48,49]. In our
missing data setting, all bootstrap procedures consist of appropriate resampling of fragmentary curves, which means that
each bootstrap sample is again a collection of partially observed functions. The proposed procedures enable to completely
avoid the computation of each entry of the large four-way covariance array and the storage and decomposition of the
whole array.

The implementation of the tests of equal means is described in Algorithm 1. To correctly reproduce the limiting
distribution of the group mean estimators under the null, the resampling is done separately in each group of groupwise
centred fragmentary observations. The stratification guarantees that neither the missingness patterns nor distributional
characteristics of the functions beyond the means need to be equal in all groups. The L2 statistic is computed directly for
each bootstrap sample and the observed value is then compared with the resampled values. The direct computation of
the projection test statistic from observed or resampled data would require the estimation of the covariance functions
v̂jk in (3), which may be memory demanding and possibly unstable in regions with few complete pairs. We avoid it by
estimating the covariance matrix of the score vector from the resampled score vectors, calculating the quadratic form
statistic using the observed score vector and the bootstrap estimate of its covariance matrix, and comparing it with its
asymptotic chi-square distribution.

Algorithm 1 Bootstrap approximation for tests of equal mean functions

1: Calculate µ̂j from observed samples of fragments Xj1, . . . , Xjnj , j = 1, . . . , K , and µ̂
2: Calculate the test statistic TL2 and the score vector Q
3: Set Xji0 = Xji − µ̂j + µ̂

4: For b = 1, . . . , B
5: For each j = 1, . . . , K , sample with replacement from fragments Xj10, . . . , Xjnj0

to get fragments X∗

j10, . . . , X
∗

jnj0

6: Calculate the statistic T ∗(b)
L2

and score vector Q ∗(b) from X∗

j10, . . . , X
∗

jnj0
, j = 1, . . . , K

7: Approximate the p-value of the L2-test using TL2 and T ∗(1)
L2
, . . . , T ∗(B)

L2

8: Calculate the empirical covariance matrix V̂ ∗ of Q ∗(1), . . . ,Q ∗(B) and the statistic Td = Q⊤V̂ ∗−Q
9: Approximate the p-value of the projection test using Td and the χ2

(K−1)d distribution

Algorithm 2 describes the bootstrap implementation of confidence intervals for eigenelements. Resampling is applied to
fragments and eigenelements are computed. The resampled eigenfunction is possibly reflected about zero so that its sign
agrees with that of the observed data empirical eigenfunction. Standard methods of construction of confidence intervals
can then be used. Since we again wish to avoid the calculation of variance estimates of eigenelements (see Theorem 4),
we use the normal or basic bootstrap method [12, Chapter 5]. Intervals for eigenvalues are constructed on the logarithmic
scale and untransformed. This is appropriate in general because in the case of completely observed Gaussian curves the
asymptotic variance of n1/2(λ̂m − λm) is 2λ2m and thus the log-transformation approximately stabilizes variance.

Bootstrap covariance testing is described in Algorithm 3. Unlike in the case of mean testing, it is not possible to
transform the data to the common null covariance structure and use stratified resampling. Bootstrap samples are instead
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Algorithm 2 Bootstrap confidence intervals for eigenvalues and eigenfunctions

1: Calculate R̂ from the observed fragmentary functional data X1, . . . , Xn

2: Calculate the eigenvalues λ̂m and eigenfunctions ϕ̂m of R̂

3: For b = 1, . . . , B
4: Sample with replacement from fragments X1, . . . , Xn to get fragments X∗

1 , . . . , X
∗
n

5: Calculate R̂∗ from X∗

1 , . . . , X
∗
n and its eigenvalues λ̂∗(b)

m and eigenfunctions ϕ̂∗(b)
m

6: Replace ϕ̂∗(b)
m by sign⟨ϕ̂

∗(b)
m , ϕ̂m⟩ϕ̂

∗(b)
m

7: Based on λ̂∗(b)
m , ϕ̂∗(b)

m , b = 1, . . . , B, calculate bootstrap confidence intervals for λm using log-transformation and
pointwise bootstrap confidence intervals for ϕm(t)

drawn from the pooled sample of groupwise centred fragments, similarly to Paparoditis and Sapatinas [49, Subsection 2.2]
for complete curves. Then, under the null hypothesis, if characteristics of observation patterns (θj) and fourth order
moments (ζj) are the same in all groups, the pooled resampling asymptotically replicates the limiting distributions of
interest. The Hilbert–Schmidt norm and square root covariance statistics are computed directly and the significance is
decided upon by comparing the observed statistics with the resampled ones. Like in the case of mean testing, dimension
reduction is impossible due to partial observation, and thus the computation of the covariance matrix of the score vector
would require to compute large four-way arrays. Instead, the bootstrap is used to estimate the covariance matrix of the
score and the quadratic statistic with this matrix is used.

Algorithm 3 Bootstrap approximation for tests of equal covariance operators

1: Calculate µ̂j and R̂j from observed samples of fragments Xj1, . . . , Xjnj , j = 1, . . . , K , and R̂

2: Perform eigendecomposition of R̂, determine d and calculate Ûlm, 1 ≤ l ≤ m ≤ d
3: Calculate the test statistics SHS and Ssqrt and the score vector R with respect to Ûjm
4: Set Xji0 = Xji − µ̂j
5: For b = 1, . . . , B
6: For each j = 1, . . . , K , sample with replacement from the pooled collection of fragments

Xji0, j = 1, . . . , K , i = 1, . . . , nj to get fragments X∗

j10, . . . , X
∗

jnj0

7: Calculate the statistics S∗(b)
HS and S∗(b)

sqrt and the score vector R∗(b) with respect to Ûjm
from X∗

j10, . . . , X
∗

jnj0
, j = 1, . . . , K

8: Approximate the p-value of the Hilbert–Schmidt norm test using SHS and S∗(1)
HS , . . . , S

∗(B)
HS and the p-value of the square

root covariance test using Ssqrt and S∗(1)
sqrt , . . . , S

∗(B)
sqrt

9: Calculate the empirical covariance matrix Ŵ ∗ of R∗(1), . . . , R∗(B) and the statistic Sd = R⊤Ŵ ∗−R
10: Approximate the p-value of the projection test using Sd and the χ2

(K−1)d(d+1)/2 distribution

While we do not provide formal proofs of the validity of the bootstrap approximations, these could be obtained along
the lines of the proofs in Paparoditis and Sapatinas [48] and Paparoditis and Sapatinas [49] using our asymptotic results
(Theorems 1–5). Note that in our setting the observation sets might be non-identically distributed (e.g., in the case of
designed experiments), and hence the bootstrap is applied to possibly non-identically distributed observed fragments.
Their average characteristics, however, converge under Definitions 1 and 2. It is possible to use the bootstrap even with
mildly non-identically distributed data, as discussed in the general context by Liu [41] who shows that if average moment
characteristics of possibly non-identically distributed variables converge, the bootstrap is still applicable.

The use of the bootstrap for the square root covariance test is based on empirical evidence from simulation studies
(Section 5 and the Supplementary Material). Its theoretical justification would require to first establish the asymptotic
distribution of the estimated square root covariance operator, which is not available even in the case of completely
observed curves [50].

5. Simulation results

The main goal of the study is to investigate the impact of partial observation on the performance of the different mean
and covariance tests and compare the proposed tests using complete and incomplete curves with the simple approach
using complete curves only.

We repeatedly generate three samples of curves of sizes n1 = 80, n2 = 100, n3 = 120. Curves in the jth sample take
the form

X(t) = µj(t) + λ
1/2
j0 βj0hj(t) +

20∑
k=1

λ
1/2
jk βjk21/2 cos(kπ t), t ∈ [0, 1],
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Table 1
Empirical rejection probability (in %) of the L2 test, TL2 , and projection test, Td , of equal means. A dash indicates the
same value as on the preceding row. The observation patterns (1)–(9) and mean configurations A–D are described in
the text.
Observation pattern Mean configuration

A B C D

TL2 Td TL2 Td TL2 Td TL2 Td
Tests using complete and incomplete curves (proposed approach)

(1) 5.6 6.2 69 60 49 56 52 63
(2) 5.4 6.7 59 52 28 29 38 50
(3) – – – – 50 56 44 62
(4) 4.4 6.5 66 58 51 57 51 62
(5) – – – – 44 49 50 58
(6) 5.4 7.1 58 51 50 55 42 49
(7) – – – – 28 34 37 42
(8) 5.4 5.8 55 47 34 37 42 48
(9) 5.4 7.8 37 40 20 23 26 34

Tests using complete curves only (simple approach)

(2), (3) 5.7 7.4 40 34 26 32 27 35
(4), (5) 3.6 7.4 28 27 18 26 19 28
(6), (7) 4.9 26.8 7 31 6 29 6 31
(8) 4.0 11.5 13 22 8 20 10 21

where βjk, j ∈ {1, 2, 3}, k ∈ {0, . . . , 20} are mutually independent standard normal variables. Additional simulations with
t5 distributed coefficients are reported in the supplementary material. In all simulations we use 1000 repetitions of the
test procedures, each based on 500 bootstrap samples. All tests are performed on the nominal level of 5%. All results have
been computed in R 3.4.

The tests are applied to complete trajectories, observation pattern (1), and to fragments obtained by deleting missing
periods following several random or nonrandom patterns. Observation patterns (2) and (3) are nonrandom: under
pattern (2), the period [0, 0.5] is removed from 50% of the curves in the first sample, 50% in the second sample and
60% in the third sample; pattern (3) is symmetric about 0.5, i.e., the period [0.5, 1] instead of [0, 0.5] is missing in the
same subset of curves. Under patterns (4)–(7), a random missing period is generated independently for each curve and
removed from the trajectory. First, we consider random missing periods taking the form M = [C − E, C + E] ∩ [0, 1] with
C = dU1/2

1 and E = fU2, where U1, U2 are independent variables uniformly distributed on [0, 1] and d, f are parameters. For
missingness pattern (4) we set d = 1.4 and f = 0.2; this gives 39% of completely observed curves and the cross-sectional
percentage of observed values decreases from 99% at time 0 to 79% at time 1. Pattern (5) is symmetric about 0.5. For
pattern (6) we use the same model as for (4) and set d = 1.2 and f = 0.5; this leads to 7% of complete curves and the
cross-sectional probability of observation is 94% at 0 and decreases to about 45% near 1. Pattern (7) is again obtained
by reflecting pattern (6) about 0.5. Pattern (8) consists of observation periods generated independently for each curve
in the form O = [U1,U2] ∩ [0, 1], where U1, U1 are independent variables uniformly distributed on [a, C], [C, 1 − a],
respectively, a = −0.3 and C is uniformly distributed on [0, 1]; the percentage of complete curves in this case is 16%
and the cross-sectional observation probability at 0.5 is 77% and decreases to 44% towards both endpoints of the domain.
Finally, for pattern (9) curves are observed on random intervals generated as [C − 0.2, C + 0.2] ∩ [0, 1], where C is
uniformly distributed in [0, 1]. This corresponds to fragments of curves of length at most 0.4, hence the datasets contain
no complete curves, the median length of observed fragments is 0.3 and the cross-sectional probability of observation is
0.3 in the middle of the domain and decreases towards the endpoints, where it is 0.15.

In the study of mean tests four configurations of the mean functions are considered. Under configuration A the null
hypothesis is satisfied: all mean functions are zero. Under configuration B the mean functions differ by a constant vertical
shift: µ1(t) = 0, µ2(t) = 0.18, µ3(t) = −0.1. Under configuration C there are monotonic differences between the means:
µ1(t) = 0, µ2(t) = 0.35 exp(−4t), µ3(t) = −0.25 exp(−3t). Under configuration D the means differ in a more complex,
nonmonotonic way and they cross: µ1(t) = 0, µ2(t) = 2t exp(−3t), µ3(t) = 0.1 − 8t2 exp(−5t). We set λj0 = 0.5,
λjk = 3−k and hj(t) = 1, that is, the covariance structure is the same in all three groups. Additional simulations with
unequal covariance structures lead to similar results and are included in the Supplementary Material. We report in the
first part of Table 1 the size and power of the L2 test based on TL2 given in (1) and of the projection test based on Td given
in (2) using d = 3 Legendre polynomials of order zero, one and two. Blank entries in the table correspond to situations
where the true rejection probability is the same as in the entry above; such situations arise when the observation pattern
is obtained by reflecting the preceding pattern and the processes {X(t) : t ∈ [0, 1]} and the time-reversed processes
{X(1 − t) : t ∈ [0, 1]} have the same distribution.

We see in the first part of Table 1 that under the null hypothesis, configuration A, the rejection probability of the L2
tests is close to the nominal level. The size of the projection test seems to be somewhat above the nominal level due to
the sample size, especially under observation pattern (9), where the missingness rate is the highest. Our simulation study
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Table 2
Empirical rejection probability (in %) of the Hilbert–Schmidt norm test, SHS , projection test, Sd , and square root covariance test, Ssqrt , of equal
covariance operators. A dash indicates the same value as on the preceding row. The observation patterns (1)–(5) and covariance configurations A–D
are described in the text.
Observation pattern Covariance configuration

A B C D

SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt
Tests using complete and incomplete curves (proposed approach)

(1) 5.4 5.8 4.8 69 82 80 69 58 69 78 62 81
(2) 4.6 6.4 4.9 54 63 41 37 32 38 76 64 54
(3) – – – – – – – – – 46 30 48
(4) 5.0 5.1 5.8 64 74 72 61 53 62 72 56 73
(5) – – – – – – – – – 77 60 77

Tests using complete curves only (simple approach)

(2), (3) 4.1 7.3 4.6 32 38 41 33 28 34 45 30 47
(4), (5) 4.3 5.5 4.2 26 32 33 25 24 28 34 23 36

of power provides raw rejection probabilities in Table 1 and size-adjusted powers (using the method from Subsection 3.2
of Lloyd [42]) in Table S2 in the Supplementary Material. The possibility of size issues should be kept in mind in
applications: especially in marginal cases, users should not simply compare p-values with a single threshold but rather
carefully report them.

Under scenario B the L2 test is more powerful than the projection method. The reason is that the projection method uses
in addition to the constant basis function two other terms (linear and quadratic) that do not contribute to the detection
of the constant difference between the means but on the other hand they increase the degrees of freedom and hence
decrease the power. The L2 method uses infinitely many directions in the space of alternatives but these redundant
features are downweighted by the decreasing eigenvalues (the constant difference of means agrees with the constant
leading eigenfunction which receives the highest weight in the L2 statistic). Most partial observation patterns lead to
a relatively small decrease of power because under this scenario the mean functions differ by a constant vertical shift
which is a very simple, global feature that is easily detected even with reduced, fragmented data. The loss of power is
largest under pattern (9), where also the reduction of observed data is considerably larger than under the other patterns.

Both tests have comparable power under scenario C. Both tests lose power under observation pattern (2) because
a large portion of data is missing on the interval [0, 0.5], where the difference between the means is the largest; on the
other hand, the reflected pattern (3) does not lead to a loss of power because curves are missing only in [0.5, 1], where
the means do not differ much. A similar effect is seen under observation patterns (6) and (7).

Under scenario D the projection test seems to be slightly more powerful than the L2 (even after the size adjustment
in Table S2 in the Supplementary Material) because the nonmonotonic differences between the mean functions are well
captured by both the first three Legendre polynomials and the first three eigenfunctions but the contribution of the latter
is downweighted in the L2 statistic whereas the projection statistic treats all three components equally.

The second part of Table 1 shows for each missingness pattern and mean configuration the performance of the tests
applied to the subset of complete curves only. The complete curve approach would be the only possibility if the tests
developed in this paper were not available. Results for the pairs of patterns (2) and (3), (4) and (5), (6) and (7) are
presented on the same rows of the second part of the table because the subsets of complete curves are the same under
both patterns in each pair. Pattern (9) is omitted because it contains no complete curves and hence inference is impossible
without our methods. Under patterns (2) (or (3)) and (4) (or (5)), the use of complete curves only, which form 46% and
39%, respectively, of the whole sample, leads to a considerable loss of power in most situations. Configuration C under
pattern (2) is an exception. Here removing incomplete curves does not decrease the power because they are observed on
the subdomain [0.5, 1], where the means do not differ much. Under patterns (6) (or (7)) and (8) there are only 7% and
16% complete curves, respectively. With such small sample sizes the projection test becomes unreliable in terms of level
and the L2 test loses almost all power.

Next, we study the behaviour of the tests for comparing covariance operators. Under all scenarios we generate mean
zero trajectories. Configuration A satisfies the null hypothesis with λj0 = 0.5, λjk = 3−k and hj(t) = 1, j ∈ {1, 2, 3}.
Under configuration B the same parameters are used except for the third sample where the overall scale is larger, namely
λ3,0 = 1.5 × 0.5 and λ3,k = 1.5 × 3−k. Under scenario C the first two eigenvalues in the third sample are interchanged,
i.e., λ3,0 = 3−1, λ3,1 = 0.5 and λ3,k = 3−k, k ∈ {2, . . . , 20}, otherwise the parameters are the same as in A. Scenario D
differs from A in that we set h3(t) = 1 for t ∈ [0, 0.5] and h3(t) = 2.21/2 for t ∈ (0.5, 1]. Table 2 shows the size and
power of the Hilbert–Schmidt norm test based on SHS in (4), projection test based on Sd in (6) with d selected to explain at
least 85% of the total variability of the null covariance estimate, and square root covariance test based on Ssqrt in (9). Like
before, entries where the true rejection probability equals the one above are left blank. We use only observation patterns
(1)–(5). Under the other patterns the amount of missing information is too large for second order inference.
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Under the null hypothesis, configuration A, the first part of Table 2 shows that the rejection probability of all tests is
close to the nominal level under all missingness patterns, with the projection test being slightly above the level in some
cases.

It is interesting to notice the different impact of missingness on the power in different situations. We report raw
power in Table 2 and size-adjusted power in Table S4 in the Supplementary Material. While in many situations the loss
of power due to missingness is similar for all three tests, in some situations the square root test appears to be more
sensitive to missingness. For example under scenario B and missingness pattern (2), the square root covariance test loses
almost half of its power relative to no missingness, much more than the other two tests. This can be explained by the
fact that the square root covariance estimator depends on the estimator of the covariance kernel at all arguments which
means that uncertainty due to missingness localized in a certain region in the domain, like under pattern (2), propagates.
Similarly, under scenario D and pattern (2) the Hilbert–Schmidt and projection tests do not lose much power and the
square root test does because the difference between the covariances is due to the differences of hj(t) for t ∈ [0.5, 1]
while missingness occurs for t ∈ [0, 0.5]. For these reasons, under the same scenario, pattern (3) leads to a larger loss
of power than pattern (2) for the Hilbert–Schmidt and projection tests, whereas the loss of the square root covariance is
not much higher than under pattern (2), where it was already high.

The second part of Table 2 shows results for tests applied to the subset of complete curves only. Like before, patterns (3)
and (5) are shown on the same rows as patterns (2) and (4), respectively, because the subsets of complete curves are the
same. We observe a large decrease of power in comparison with the power of the proposed tests in cases, where the
neglected incomplete curves carry information on the difference between covariance operators. When the difference is
mostly in the frequently missing region (e.g., configuration D, pattern (3)), removing incomplete curves affects the power
much less.

These results highlight the usefulness of the proposed methods as an efficient, and often the only viable approach to
testing with incomplete functions. In no situation the proposed methods behaved worse than the simple approach using
complete curves only, and in many cases it behaved dramatically better. Additional results for non-Gaussian curves can
be found in the Supplementary Material.

6. Application to partially observed heart rate temporal profiles

We illustrate our methods on curves describing the evolution of heart rate in 427 male participants in the period
from 8 PM to 2 AM corresponding to the domain [20, 26]. The data come from the Swiss Kidney Project on Genes in
Hypertension. There are three groups of persons according to their age: younger than 40 years (164 persons), between 40
and 65 (180), and older than 65 (83). The curves and their first derivative are plotted in Fig. 1. Although the percentage of
observed values at each time or at each pair of time points is relatively high (Fig. 2), only 58% of the curves are complete.

Plots of the estimated mean functions in Fig. 1 indicate differences between the age groups both in terms the temporal
profiles and their first derivative. We first compare the group means of heart rate profiles. The p-values of the L2 test
and projection test using three Legendre polynomials are 0.006 and less than 0.001, respectively, confirming the clearly
visible differences. To compare the dynamics of heart rate during the transition between day and night we test whether
the means of the first derivative differ. The L2 and projection test have nearly zero p-values, meaning that the mean heart
rate profiles differ between age groups more than by a vertical shift. The plots suggest it may be interesting to compare
some pairs of groups. E.g., while the mean profiles of the middle and oldest group significantly differ (p < 0.01 for both
tests), they appear to be approximately parallel. The difference between the derivatives is indeed insignificant (p = 0.07
for the L2 test, p = 0.09 for the projection test).

Without the methods developed in this paper one would have to use complete curves only. There are 249 complete
functions (43, 110 and 96 in the three age groups). The projection test still detects the differences between the three
groups (p = 0.008) but the L2 test loses significance (p = 0.066). When comparing the second and third group, the
projection test now fails to detect the difference (p = 0.13) and the L2 test gives a marginally significant result (p = 0.048).
This can be explained by a loss of power seen in simulations because the removed incomplete curves are more often
observed at earlier times, where also the difference between the two mean curves is more pronounced.

Estimates of the covariance function, eigenvalues and eigenfunctions of heart rate profiles and of their derivatives for
each age group are plotted in Fig. 3 and Fig. 4. Further plots can be found in the supplementary document. The plots
suggest some differences between the groups. The variance and covariance appears to be higher in younger participants,
especially earlier in the time interval (during the day). We assess the significance of these differences using the proposed
tests. For the projection test we consider up to three principal components (plotted in the supplementary document),
which corresponds to the projection on a subspace of dimension six in the space covariance operators. Table 3 reports
the p-values. None of the tests rejects the null hypothesis on usual significance levels. Similarly, pairwise comparisons
provided no overwhelming evidence of differences. It is of course possible that there are differences between groups that
may be detected with larger samples. To gain further insight into the structure of possible differences one can inspect the
values of the standardized score components Rjlm/Ŵ

1/2
jlm,jlm (see (5) and (7)) whose graphical representation is provided

in the supplement.
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Fig. 1. Individual heart rate profiles and their first derivative (left panels) and the corresponding group-specific and null estimates of the mean
(right panels).

Fig. 2. Cross-sectional percentage of observed values (left) and percentage of pairwise complete observations (right).

Table 3
p-values of the Hilbert–Schmidt norm test, SHS , the square root covariance test, Ssqrt , and the projection tests,
Sd , with d = 1, 2, 3, for comparing covariance structures of heart rate profiles and of their first derivative in
three age groups. The fraction of variance explained by the first d principal components of the null covariance
estimate is indicated in parentheses.

SHS Ssqrt S1 S2 S3
Curves 0.338 0.118 0.317 (88.2%) 0.439 (97.3%) 0.275 (99.1%)
First derivative 0.226 0.114 0.322 (62.6%) 0.131 (94.4%) 0.094 (98.7%)
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Fig. 3. Estimated covariance functions of heart rate profiles (top row) and of their derivatives (bottom row) in age groups.

Fig. 4. Estimated eigenvalues and eigenfunctions of heart rate profiles (top row) and of their derivatives (bottom row) in age groups with pointwise
95% bootstrap confidence intervals.



598 D. Kraus / Journal of Multivariate Analysis 173 (2019) 583–603

Appendix A. A central limit theorem

We provide a general central limit theorem for independent but not necessarily identically distributed random
elements of a separable Hilbert space. It is needed in the proofs, where non-identical distributions arise due to partial
observation, but is of more general interest. It extends the standard result for independent identically distributed
functional variables [5, Theorem 2.7] by relaxing the assumption of identical distributions and by considering triangular
arrays. The notation ∥ · ∥∞ below means the operator norm.

Theorem 6. Let Yni, n ∈ {1, 2, . . . }, i ∈ {1, . . . , n} be random elements of a separable Hilbert space H with mean zero,
E ∥Yni∥

2 < ∞ and covariance operators Cni. Let Yn1, . . . , Ynn be mutually independent for each n ∈ {1, 2, . . . }. Denote
Sn = n−1/2∑n

i=1 Yni and Gn = n−1∑n
i=1 Cni. Assume that

(i) ∥Gn − G∥∞ → 0 as n → ∞ for some covariance operator G ,
(ii) for all ε > 0,

n−1
n∑

i=1

E(∥Yni∥
21[∥Yni∥>n1/2∥Gn∥∞ε]

) → 0

as n → ∞,
(iii) tr Gn → tr G as n → ∞.

Then Sn converges in distribution to a Gaussian random element with mean zero and covariance operator G .

Appendix B. Proofs

Proof of Theorem 1. We rewrite N1/2(µ̂−µ) = π̂1/2n1/2(µ̂−µ). The main task is to establish the weak convergence of
the process

n1/2(µ̂− µ) =
1
π
Sn +

(
J
π̂

−
1
π

)
Sn + n1/2(J − 1)µ, (B.1)

where Sn = n−1/2∑n
i=1 Oi(Xi − µ). We show that the first term on the right side of (B.1) converges in distribution to

a mean zero Gaussian process with covariance operator with kernel π (s)−1π (t)−1ν(s, t)ρ(s, t) that can be consistently
estimated by π̂ (s)−1π̂ (t)−1ν̂(s, t)ρ̂(s, t), and that the norms of the other two terms converge in probability to 0. The proof
of the weak convergence of N1/2(µ̂ − µ) then follows from the convergence of π̂ to π , the consistency of the estimator
of its covariance kernel can be shown analogously.

The weak convergence of Sn is shown with the help of Theorem 6, a central limit theorem for independent non-
identically distributed Hilbert space variables given in the Appendix. We apply the theorem with Yni = Oi(Xi − µ).
The covariance operator Gn of Sn is given by the kernel ν̄(s, t)ρ(s, t). Denote by G the covariance operator with kernel
ν(s, t)ρ(s, t). Conditions of the central limit theorem Theorem 6 can be shown using Definition 1(b) as follows. Condition
(i) of Theorem 6 is satisfied because

∥Gn − G∥
2
∞

≤ ∥Gn − G∥
2
2 =

∫
[0,1]2

{ν̄(s, t) − ν(s, t)}2ρ(s, t)2dsdt → 0

as n → ∞ by the dominated convergence theorem. Condition (ii) of Theorem 6 holds because

n−1
n∑

i=1

E(∥Yni∥
21[∥Yni∥>n1/2∥Gn∥∞ε]

) ≤ n−1
n∑

i=1

E(∥Xi − µ∥
21[∥Xi−µ∥>n1/2∥Gn∥∞ε]

)

= E(∥X1 − µ∥
21[∥X1−µ∥>n1/2∥Gn∥∞ε]

),

which converges to 0 by the dominated convergence theorem. Finally,
∫ 1
0 ν̄(t, t)ρ(t, t)dt →

∫ 1
0 ν(t, t)ρ(t, t)dt by the

dominated convergence theorem again, and thus condition (iii) of Theorem 6 is satisfied. Hence the process Sn is
asymptotically Gaussian with covariance kernel ν(s, t)ρ(s, t).

The expectation of the squared norm of the second term on the right side of (B.1) can be rewritten as∫ 1

0
E
[{

J(t)
π̂ (t)

−
1
π (t)

}2

Sn(t)21[π̂ (t)≥π0/2]

]
dt +

∫ 1

0
E
[{

J(t)
π̂ (t)

−
1
π (t)

}2

Sn(t)21[π̂ (t)<π0/2]

]
dt. (B.2)

The first summand above is dominated by∫ 1

0
E
[

{π (t) − π̂ (t)}2

π4
0 /4

Sn(t)2
]
dt ≤

∫ 1

0
E
[

{π (t) − π̂ (t)}2

π4
0 /4

]
ρ(t, t)dt
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which converges to zero by the dominated convergence theorem since E[{π (t)− π̂ (t)}2] = {π (t)− π̄ (t)}2 +n−2∑n
i=1 πi(t)

{1 − πi(t)} → 0 for n → ∞. Next, we first compute{
J(t)
π̂ (t)

−
1
π (t)

}2

1[π̂ (t)<π0/2] =

[
J(t)
{
π (t) − π̂ (t)
π̂ (t)π (t)

}2

+ {1 − J(t)}
1

π (t)2

]
1[π̂ (t)<π0/2]

≤ [J(t)n2/π2
0 + {1 − J(t)}/π2

0 ]1[π̂ (t)<π0/2] ≤ n2/π2
01[π̂ (t)<π0/2].

Then the second summand in (B.2) is smaller than or equal to∫ 1

0
E{n2/π2

01[π̂ (t)<π0/2]Sn(t)
2
}dt ≤

∫ 1

0
n2/π2

0 Pr{π̂ (t) < π0/2}ρ(t, t)dt ≤ n2 sup
t∈[0,1]

Pr{π̂ (t) < π0/2}/π2
0 trR,

which converges to 0 because, in light of Hoeffding’s inequality and Definition 1(a), for all t ∈ [0, 1],

Pr{π̂ (t) < π0/2} ≤ exp[−2n{π̄ (t) − π0/2}2] ≤ exp
[
−2n

{
π0/2 − sup

t∈[0,1]
|π̄ (t) − π (t)|

}2]
→ 0.

This completes the proof of the convergence in probability of the norm of the second term on the right hand side of (B.1)
to zero. The last term in (B.1) can be shown to converge to zero using similar arguments based on Hoeffding’s inequality.

We now turn to the proof of the consistency of the estimator of the covariance kernel. To show that

E
∫

[0,1]2

{
ν̂(s, t)ρ̂(s, t)
π̂ (s)π̂ (t)

−
ν(s, t)ρ(s, t)
π (s)π (t)

}2

dsdt → 0,

we can split the integral into the integrals over A0 = {(s, t) ∈ [0, 1]2 : ν(s, t) = 0} and A1 = {(s, t) ∈ [0, 1]2 : ν(s, t) ≥ ν0}

because Definition 1(c) implies that A0 ∪ A1 = [0, 1]2. On A0 we obtain

E
∫
A0

{
ν̂(s, t)ρ̂(s, t)
π̂ (s)π̂ (t)

}2

{1[min(π̂ (s),π̂ (t))≥π0/2] + 1[min{π̂ (s),π̂ (t)}<π0/2]}dsdt

≤

∫
A0

E{ν̂(s, t)2} E{ρ̂(s, t)2}dsdt
(
(π0/2)−4

+ n4 sup
(s,t)∈[0,1]2

Pr[min{π̂ (s), π̂ (t)} < π0/2]
)
.

Here the integral converges to zero by the dominated convergence theorem as the integrand can be shown to go to 0 and
the second term in the brackets asymptotically vanishes due to an exponential rate of decrease of the supremum that
can be established with the help of Hoeffding’s inequality as before, hence the whole quantity above converges to 0. We
now focus on A1. We rewrite

ν̂(s, t)ρ̂(s, t)
π̂ (s)π̂ (t)

−
ν(s, t)ρ(s, t)
π (s)π (t)

=
ν̂(s, t)
π̂ (s)π̂ (t)

{ρ̂(s, t) − ρ(s, t)} +

{
ν̂(s, t)
π̂ (s)π̂ (t)

−
ν(s, t)
π (s)π (t)

}
ρ(s, t) (B.3)

and show that the integral over A1 of the expectation of the square of each summand converges to zero. For the first
summand we compute∫

A1

E
([

ν̂(s, t)
π̂ (s)π̂ (t)

{ρ̂(s, t) − ρ(s, t)}
]2

{1[min(π̂ (s),π̂ (t))≥π0/2] + 1[min{π̂ (s),π̂ (t)}<π0/2]}

)
dsdt

≤ E
∫
A1

{ρ̂(s, t) − ρ(s, t)}2dsdt
[
(π0/2)−4

+ n4 sup
(s,t)∈[0,1]2

Pr(min{π̂ (s), π̂ (t)} < π0/2)
]
,

where the integral term converges to 0 by similar arguments to those in the proof of Proposition 1 in Kraus [35] with the
help of Definition 1(c) and the second term goes to 0 by Hoeffding’s inequality again. For the second summand on the
right in (B.3) we can write∫

A1

E
[
I(s, t)

{
π (s)π (t)ν̂(s, t) − π̂ (s)π̂ (t)ν(s, t)

π̂ (s)π̂ (t)π (s)π (t)

}2]
ρ(s, t)2dsdt

+

∫
A1

E
[
{1 − I(s, t)}

{
ν(s, t)
π (s)π (t)

}2]
ρ(s, t)2dsdt.

(B.4)

Like before, we split the first term in (B.4) into two summands by writing∫
A1

E
[
I(s, t)

{
π (s)π (t)ν̂(s, t) − π̂ (s)π̂ (t)ν(s, t)

π̂ (s)π̂ (t)π (s)π (t)

}2

{1[min(π̂ (s),π̂ (t))≥π0/2] + 1[min{π̂ (s),π̂ (t)}<π0/2]}

]
ρ(s, t)2dsdt.

The first summand is bounded by 16π−8
0

∫
A1

E[{π (s)π (t)ν̂(s, t) − π̂ (s)π̂ (t)ν(s, t)}2]ρ(s, t)2dsdt , which converges to 0
by the dominated convergence theorem since the expectation in the integrand can be shown to converge to 0; the
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second summand in the displayed expression above is dominated by n4π−4
0 ∥R∥

2
2 sup(s,t)∈[0,1]2 Pr(min{π̂ (s), π̂ (t)} < π0/2),

which converges to 0 by Hoeffding’s inequality. Finally, the second term in (B.4) is dominated by sup(s,t)∈A1 Pr(ν̂(s, t) <
ν0/2)π−4

0 ∥R∥
2
2, which converges to 0 again by Hoeffding’s inequality.

Proof of Theorem 2. Denote Zj(·) = Nj(·)1/2{µ̂j(·) − µ̂(·)}/r̂j and Z = (Z1, . . . , ZK )⊤. Under the null hypothesis we can
write Z = D̂H , where H = (H1, . . . ,HK )⊤ with Hj = N1/2

j (µ̂j − µ) and D̂ is a bounded linear operator from {L2([0, 1])}K

to {L2([0, 1])}K that maps an element f to an element g whose jth component is given by gj(t) =
∑K

l=1(D̂jlfl)(t) =∑K
l=1 r̂

−1
j {δjl − Nj(t)1/2ŵl(t)Jl(t)Nl(t)−1/2

}fl(t) (here δjl is the Kronecker delta and Jl(t)Nl(t)−1/2 is zero if Jl(t) = 1[Nl(t)>0]

is zero). From Theorem 1 we see that H converges in distribution to the random element H∞
= (H∞

1 , . . . ,H
∞

K )⊤ whose
components are mutually independent Gaussian processes with mean zero and covariance operators Kj, j = 1 . . . , K
analogous to the operator K in Theorem 1. The operator D̂ converges in probability to the operator D whose elements
are defined by (Djlfl)(t) = r−1

j {δjl − πj(t)1/2a
1/2
j wl(t)πl(t)−1/2a−1/2

l }fl(t) with wl(t) = alπl(t)/r2l /(
∑K

k=1 akπk(t)/r2k ) (the

convergence is in the operator norm, i.e., ∥D̂ − D∥∞

P
−→ 0). Therefore, it follows from Slutsky’s and continuous mapping

theorem that Z = D̂H converges weakly to Z∞
= DH∞. This is a K -dimensional mean zero Gaussian random process

with cross-covariance operator between Z∞

j and Z∞

k equal to Vjk =
∑K

l=1 DjlKlD
∗

kl, j = 1, . . . , K , k = 1, . . . , K . These
can be consistently estimated by plugging-in the estimators D̂jl and ˆKl. The kernel of the estimator V̂jk takes the form
v̂jk(s, t) =

∑K
l=1 r̂

−1
j {δjl − Nj(s)1/2ŵl(s)Nl(s)−1/2

}κ̂l(s, t){δkl − Nk(t)1/2ŵl(t)Nl(t)−1/2
}r̂−1

k .
For (i), the continuous mapping theorem gives that the statistic TL2 = ∥Z∥

2 converges weakly to the random variable
∥Z∞

∥
2. The process Z∞ is a Gaussian random element of the separable Hilbert space {L2([0, 1])}K . Therefore, it can be

expanded in a Karhunen–Loève series with Gaussian coefficients. Consequently, the distribution of its squared norm is
that of the series given in the theorem. The consistency of V̂ implies the consistency of the estimated eigenvalues.

To prove (ii), notice that the components of the score vector satisfy Qjl = ⟨π̂
1/2
j Zj, ψ̂l⟩. The continuous mapping theorem

and Slutsky’s theorem in conjunction with the convergence of ψ̂l imply that Q is asymptotically distributed as a Gaussian
vector with mean zero and covariance matrix with entries Vjl,km = ⟨π

1/2
j ψl, Vjk(π

1/2
k ψm)⟩. The consistency of V̂jl,km follows

from the consistency of V̂jk and π̂j and convergence of ψ̂l. The process (π̂1/2
1 Z1, . . . , π̂

1/2
K ZK ) lies in a (K − 1)-dimensional

subspace of the K -dimensional product space {L2([0, 1])}K and the same holds for its limit. Therefore, the score vector
lies in a (K − 1)d-dimensional subspace of RKd, leading to (K − 1)d degrees of freedom of the chi-square distribution.

Proof of Theorem 3. The kernel of n1/2(R̂ − R) is

n1/2
{ρ̂(s, t) − ρ(s, t)} = n1/2

{ρ̂(s, t) − ρ̌(s, t)} +
1

ν(s, t)
σ (s, t) +

{
I(s, t)
ν̂(s, t)

−
1

ν(s, t)

}
σ (s, t)

+ n1/2
{I(s, t) − 1}ρ(s, t),

(B.5)

where ρ̌ is defined like ρ̂ with the true mean in place of the estimated mean and σ (s, t) = n−1/2∑n
i=1 Ui(s, t)[{Xi(s) −

µ(s)}{Xi(t) − µ(t)} − ρ(s, t)]. Let us focus on the second summand on the right side of (B.5). All the other terms are
negligible in the appropriate sense as we explain later. The kernel σ (s, t) corresponds to the operator Sn = n−1/2∑n

i=1 Yni,
where Yni are the integral operators with kernels yni(s, t) = Ui(s, t)[{Xi(s) − µ(s)}{Xi(t) − µ(t)} − ρ(s, t)]. We will apply
Theorem 6 to Yni, which is a triangular array of row-wise independent non-identically distributed zero-mean random
elements of the separable Hilbert space of the Hilbert–Schmidt operators on L2([0, 1]). The covariance operator of Yni is
the Hilbert–Schmidt operator Cni on Hilbert–Schmidt operators given by

⟨A1,CniA2⟩ = cov(⟨Yni,A2⟩, ⟨Yni,A1⟩) =

∫
[0,1]4

α1(s, t) cov{yni(s, t), yni(u, v)}α2(u, v)dsdtdudv,

where A1, A2 are Hilbert–Schmidt operators with kernels α1, α2, respectively. The kernel of Cni is cni(s, t, u, v) =

cov{yni(s, t), yni(u, v)} = θi(s, t, u, v){ζ (s, t, u, v)−ρ(s, t)ρ(u, v)}. The covariance operator of Sn is Gn = n−1∑n
i=1 Cni with

kernel θ̄ (s, t, u, v){ζ (s, t, u, v) − ρ(s, t)ρ(u, v)}. Like in the proof of Theorem 1, one can use the dominated convergence
theorem to show that ∥Gn − G∥2 → 0, where G has kernel θ (s, t, u, v){ζ (s, t, u, v) − ρ(s, t)ρ(u, v)}. Thus condition (i)
of Theorem 6 is verified. Condition (ii) can be verified like in the proof of Theorem 1. Next, condition (iii) is satisfied
because trGn =

∫
[0,1]2 θ̄ (s, t, s, t){ζ (s, t, s, t)−ρ(s, t)

2
}dsdt converges to trG =

∫
[0,1]2 θ (s, t, s, t){ζ (s, t, s, t)−ρ(s, t)

2
}dsdt .

Therefore, Sn is asymptotically distributed as a Gaussian random operator with mean zero and covariance operator G and,
consequently, by the continuous mapping theorem the second term on the right-hand side of (B.5) weakly converges to
the mean zero Gaussian operator with covariance operator H′ given in Theorem 3.

The operators corresponding to the first and fourth summand on the right side in (B.5) were shown to converge to
zero in the proof of Proposition 1 in Kraus [35] in the sense that the expectation of their squared Hilbert–Schmidt norm
converges to zero. Also, the Hilbert–Schmidt norm of the third term on the right in (B.5) converges to zero in mean
square which can be shown by arguments analogous to those used for the second term on the right in (B.1) in the proof
of Theorem 1. Therefore, in view of Slutsky’s lemma these terms are negligible for the weak convergence.
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The weak convergence of the operator with kernel M(s, t)1/2{ρ̂(s, t) − ρ(s, t)} follows from the convergence of ν̂(s, t)
to ν(s, t). The consistency of the estimators of H′ and H can be proved along the lines of the proof for K ′ and K in
Theorem 1.

Proof of Theorem 4. The proof uses perturbation theory in which R̂ is regarded as a perturbed version of R, i.e., R̂ =

R + (R̂ − R). Recall that the perturbation satisfies E ∥R̂ − R∥
2
2 = O(n−1) [35, Proposition 1], and, therefore, ∥R̂ − R∥∞ =

OP (n−1/2).
Similarly to the proof of Theorem 3.1 in [10], we rewrite n1/2(λ̂m −λm) = n1/2(λ̂m −λm)1Ωn +n1/2(λ̂m −λm)1ΩC

n
, where

Ωn = {ω : ∥R̂ − R∥∞ < εn} for a numerical sequence εn satisfying n−1/2
≪ εn ≪ n−1/4. Since Pr(Ωn) → 1 as n → ∞,

the term n1/2(λ̂m − λm)1ΩC
n
converges to 0 in probability. For ∥R̂ − R∥∞ sufficiently small, i.e., on Ωn for n large enough,

we have by Corollary 3.4 of [22] that n1/2(λ̂m − λm)1Ωn = n1/2
⟨(R̂ − R)ϕm, ϕm⟩1Ωn + n1/2O(∥R̂ − R∥

2
∞
)1Ωn . Here the last

term converges to 0 in probability because εn ≪ n−1/4 and the first term on the right side converges in distribution to
the limit given in part (i) of the theorem. Hence the result follows from Slutsky’s theorem. The expression for the limiting
variance is obtained by rewriting var⟨H ′∞ϕm, ϕm⟩ = var⟨H ′∞, ϕm ⊗ ϕm⟩ = ⟨ϕm ⊗ ϕm,H

′(ϕm ⊗ ϕm)⟩.
Next, we can write n1/2(ŝmϕ̂m −ϕm) = n1/2(ŝmϕ̂m −ϕm)1Ωn +n1/2(ŝmϕ̂m −ϕm)1ΩC

n
. For n sufficiently large, Corollary 3.3

of [22] gives n1/2(ŝmϕ̂m − ϕm)1Ωn = n1/2Qm(R̂ − R)ϕm1Ωn + n1/2O(∥R̂ − R∥
2
∞
)1Ωn . The first term on the right converges

in distribution to the limiting distribution as claimed in part (ii) and the other terms converge in probability to 0. The
limiting covariance operator is obtained by inspecting the cross-covariance operator for each pair of summands in the
series QmH ′∞ϕm. The cross-covariance between (ϕk⊗ϕk)H ′∞ϕm = ⟨ϕk,H

′∞ϕm⟩ϕk and (ϕl⊗ϕl)H ′∞ϕm = ⟨ϕl,H
′∞ϕm⟩ϕl

is

cov(⟨ϕk,H ′∞ϕm⟩, ⟨ϕl,H
′∞ϕm⟩)(ϕk ⊗ ϕl) = cov{⟨(ϕm ⊗ ϕk),H ′∞

⟩, ⟨(ϕm ⊗ ϕl),H ′∞
⟩}(ϕk ⊗ ϕl)

= ⟨(ϕm ⊗ ϕk),H′(ϕm ⊗ ϕl)⟩(ϕk ⊗ ϕl).

The inner product in the last expression above equals the integral in part (ii) of the theorem.

Proof of Theorem 5. Let D̂ be the linear operator on the product space HS(L2([0, 1]))K that maps F = (F1, . . . ,FK )⊤,
where Fj are Hilbert–Schmidt operators on L2([0, 1]) with kernels fj(s, t), to G = (G1, . . . , GK )⊤ where Gj has ker-
nel gj(s, t) =

∑K
l=1{δjl − Mj(s, t)1/2ŵl(s, t)Il(s, t)Ml(s, t)−1/2

}fl(s, t). The mapping D̂ is a random linear operator on
HS(L2([0, 1]))K that acts by pointwise multiplication and linear combination of integral kernels; D̂ itself is not an integral
operator but it is bounded because the functions in the braces above are bounded. It converges in probability to the non-
random bounded linear operator D that maps F to G with Gj with kernel

∑K
l=1{δjl − νj(s, t)

1/2a1/2j wl(s, t)νl(s, t)−1/2a−1/2
l }

fl(s, t). The convergence is in the sense of the operator norm on linear operators on HS(L2([0, 1]))K , that is, ∥D̂−D∥∞

P
−→ 0,

where ∥D∥∞ = sup{∥DF∥2/∥F∥2 : F ∈ HS(L2([0, 1]))K } with ∥ · ∥2 being the Hilbert–Schmidt norm on HS(L2([0, 1]))K .
Now consider the standardized contrasts Z = (Z1, . . . ,ZK )⊤ with kernels zj(s, t) = Mj(s, t)1/2{ρ̂j(s, t) − ρ̂(s, t)}. They

are obtained as Z = D̂H , where H = (H1, . . . ,HK )⊤ with Hj with kernel hj(s, t) = Mj(s, t)1/2{ρ̂(s, t) − ρ(s, t)}. Under
the null hypothesis Theorem 3 yields that H converges in distribution to H ∞, a vector of K independent mean zero
Gaussian random operators with covariance operators Hj. Therefore, Z = D̂H converges in distribution to Z ∞

= DH ∞

by Slutsky’s and continuous mapping theorem.
The covariance operator B of Z ∞ is given by the cross-covariance operators Bjk between the components Zj and Zk

whose estimator B̂jk has kernel

β̂jk(s, t, u, v) =

K∑
l=1

{δjl − Mj(s, t)1/2ŵl(s, t)Ml(s, t)−1/2
}η̂l(s, t, u, v){δkl − Mk(u, v)1/2ŵl(u, v)Ml(u, v)−1/2

}.

The test statistic SHS = ∥Z ∥
2
2 is asymptotically distributed as ∥Z ∞

∥
2
2. The random variable Z ∞ is a Gaussian element

of the separable Hilbert space HS(L2([0, 1]))K , therefore it can be expanded in a Karhunen–Loève series with independent
Gaussian coefficients. Therefore, its squared norm is distributed as the series of independent chi-square variables weighted
by the eigenvalues of the covariance operator and part (i) of the theorem follows.

The components of the score vector satisfy Rjlm = ⟨ν̂j(·, ·)1/2zj(·, ·), Ûlm⟩. Due to the consistency of the estimated
eigenfunctions [35, Proposition 2], the operator Ûlm (up to the sign ambiguity for l ̸= m) converges to Ulm defined by
the true eigenfunctions, with kernel ulm(s, t). Therefore, the score vector weakly converges to the mean zero Gaussian
vector with components R∞

jlm = ⟨νj(·, ·)1/2z∞

j (·, ·),Ulm⟩ = ⟨z∞

j (·, ·), νj(·, ·)1/2ulm(·, ·)⟩ whose covariance matrix has entries
Wjlm,kpq = ⟨νj(·, ·)1/2ulm(·, ·),Bjk{νk(·, ·)1/2upq(·, ·)}⟩, j, k ∈ {1, . . . , K }, 1 ≤ l ≤ m ≤ d, 1 ≤ p ≤ q ≤ d. The
vector of operators with kernels νj(s, t)1/2z∞

j (s, t) lies in a hyperplane in HS(L2([0, 1]))K , thus the matrix W has rank
(K − 1)d(d + 1)/2. The consistency of Ŵ follows from the convergence of all quantities involved. Hence the limiting
distribution is the chi-square distribution as claimed in part (ii).

Proof of Theorem 6. First, we prove the convergence in distribution of one-dimensional projections using Lindeberg’s
central limit theorem. It follows from assumption (i) that for f ∈ H such that G f ̸= 0, var⟨Sn, f ⟩ = ⟨f , Gnf ⟩ → ⟨f , G f ⟩ as
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n → ∞. To verify Lindeberg’s condition, we compute

n−1
n∑

i=1

E(⟨Yni, f ⟩21[|⟨Yni,f ⟩|>n1/2⟨f ,Gnf ⟩1/2ε]) ≤ n−1
n∑

i=1

E(∥Yni∥
2
∥f ∥21[∥Yni∥>n1/2⟨f ,Gnf ⟩1/2∥f ∥−1ε]).

Now in light of assumption (i), there is a positive constant c such that for sufficiently large n, ⟨f , Gnf ⟩1/2/∥Gn∥∞ > c ,
and the above expression is further dominated by n−1∑n

i=1 E(∥Yni∥
2
∥f ∥21[∥Yni∥>n1/2∥Gn∥∞c∥f ∥−1ε]), which converges to 0 by

assumption (ii). Hence one-dimensional projections converge, and due to Theorem 2.3 of Bosq [5], all finite-dimensional
projections converge.

To complete the proof, let us prove the tightness of the sequence Sn, n = 1, 2, . . . The idea of the proof is similar to that
of Bosq [5, Theorem 2.7] but in the present situation the variables Yn1, . . . , Ynn are possibly non-identically distributed.
Let vj and δj, j = 1, 2, . . . be the eigenfunctions and eigenvalues of the limiting operator G . Consider a sequence lk,
k = 1, 2, . . . such that lk → ∞ for k → ∞. For ε > 0, let Nk, k = 1, 2, . . . be an increasing sequence of integers such
that

∑
∞

k=1 lkr
2
Nk
< ε, where r2N =

∑
∞

j=N δj. Define Bk = {x ∈ H :
∑

∞

j=Nk
⟨x, vj⟩2 ≤ l−1

k }. It follows from assumptions (i) and
(iii) that

Pr(Sn ∈ BC
k ) = P

(
∞∑

j=Nk

⟨Sn, vj⟩2 > l−1
k

)
≤ lk E

(
∞∑

j=Nk

⟨Sn, vj⟩2
)

= lk E

(
∥Sn∥2

−

Nk−1∑
j=1

⟨Sn, vj⟩2
)

= lk

(
tr Gn −

Nk−1∑
j=1

⟨vj, Gnvj⟩

)
→ lk

(
tr G −

Nk−1∑
j=1

⟨vj, G vj⟩

)
= lk

∞∑
j=Nk

⟨vj, G vj⟩ = lkr2Nk
.

Consider the compact set Kε = ∩
∞

k=1Bk and compute

lim sup
n→∞

Pr(Sn ∈ KC
ε ) ≤ lim sup

n→∞

∞∑
k=1

Pr(Sn ∈ BC
k ) ≤

∞∑
k=1

lim sup
n→∞

Pr(Sn ∈ BC
k ) ≤

∞∑
k=1

lkr2Nk
< ε,

where the second inequality is due to Fatou’s lemma. This proves the tightness.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.05.002.
The supplementary document available online contains further simulation results and additional graphs for the data
application. R code is available online.
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S1 Extended simulation results

Table S1 is an extended version of Table 1 presented in the main body of the paper. It includes
additional simulation results for tests of equal means for non-Gaussian distributed curves and
for groups with unequal covariance operators. The same model as in the paper is used except
that for the non-Gaussian case independent t5 distributed coefficients are generated and for
the case of unequal covariance operators we set λ3,0 = 0.2. Since the empirical size deviates
from the nominal level in some cases, Table S2 additionally reports size-adjusted powers for
the same settings using the method described by Lloyd (2005, Subsection 3.2).

Table S3 reports results for tests of equal covariance operators. In addition to the results
presented in Table 2 in the main body of the paper it contains results for t5 distributed
coefficients in the model for random curves. Table S4 reports size-adjusted powers for the
same settings.

S2 Additional results for the data analysis

Fig. S1 contains additional plots of the covariance function estimates of the heart rate data
shown in the main body of the paper. Fig. S2 shows the null estimates of the covariance func-
tions and their leading eigenfunctions that the projection covariance test uses. Components
of the score vector standardized by their estimated standard deviation are plotted in Fig. S3
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Table S1
Empirical rejection probability (in %) of the L2 test, TL2 , and projection test, Td, of equal means.
A dash indicates the same value as on the preceding row. The observation patterns (1)–(9) and mean
configurations A–D are described in Section 5 of the paper.

Distrib. Covar. Observ. Mean configuration
oper. pattern A B C D

TL2 Td TL2 Td TL2 Td TL2 Td
Gaussian Equal (1) 5.6 6.2 69 60 49 56 52 63

(2) 5.4 6.7 59 52 28 29 38 50
(3) — — — — 50 56 44 62
(4) 4.4 6.5 66 58 51 57 51 62
(5) — — — — 44 49 50 58
(6) 5.4 7.1 58 51 50 55 42 49
(7) — — — — 28 34 37 42
(8) 5.4 5.8 55 47 34 37 42 48
(9) 5.4 7.8 37 40 20 23 26 34

Gaussian Unequal (1) 4.2 5.2 79 75 58 63 57 67
(2) 4.0 5.6 66 62 28 32 37 52
(3) — — — — 56 62 47 66
(4) 4.0 5.7 77 72 58 62 55 64
(5) — — — — 50 55 53 63
(6) 3.9 4.9 64 60 55 57 43 52
(7) — — — — 29 36 38 46
(8) 4.5 7.0 64 62 39 42 47 54
(9) 4.0 6.5 42 48 23 25 27 38

t5 Equal (1) 5.4 7.3 72 61 51 58 54 63
(2) 4.7 7.6 58 53 27 30 38 52
(3) — — — — 50 60 44 63
(4) 5.1 6.4 70 60 52 57 51 60
(5) — — — — 46 52 50 60
(6) 3.7 6.1 56 50 50 54 41 50
(7) — — — — 27 32 37 43
(8) 5.1 7.1 58 52 33 36 44 51
(9) 5.4 6.6 38 42 21 24 26 34

t5 Unequal (1) 5.8 7.4 82 77 59 65 60 68
(2) 4.7 6.9 68 64 32 35 44 57
(3) — — — — 60 66 50 68
(4) 5.2 6.7 80 76 62 65 59 66
(5) — — — — 53 60 56 65
(6) 3.9 6.1 65 63 57 61 47 57
(7) — — — — 32 37 42 50
(8) 4.8 7.5 65 64 39 42 50 56
(9) 5.5 6.2 44 50 24 28 30 40
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Table S2
Size-adjusted empirical power (in %) for the same settings as in Table S1.

Distrib. Covar. Observ. Mean configuration
oper. pattern B C D

TL2 Td TL2 Td TL2 Td
Gaussian Equal (1) 66 56 47 52 49 59

(2) 56 43 25 23 34 41
(3) — — 47 48 40 54
(4) 68 52 52 48 52 54
(5) — — 45 43 51 51
(6) 58 46 50 49 42 45
(7) — — 28 29 37 37
(8) 54 45 34 34 41 45
(9) 36 33 20 17 26 27

Gaussian Unequal (1) 83 73 63 62 62 66
(2) 72 59 35 29 44 49
(3) — — 62 59 56 64
(4) 81 72 63 62 61 63
(5) — — 56 55 59 62
(6) 68 60 60 57 47 53
(7) — — 34 36 43 46
(8) 67 54 42 36 49 48
(9) 45 45 25 23 31 35

t5 Equal (1) 71 55 50 51 52 57
(2) 60 44 28 23 39 42
(3) — — 51 47 46 53
(4) 69 53 51 53 50 56
(5) — — 44 45 49 55
(6) 60 48 53 52 45 48
(7) — — 31 30 40 40
(8) 57 44 32 30 43 44
(9) 38 38 21 20 26 31

t5 Unequal (1) 80 71 58 59 58 62
(2) 68 56 32 27 44 48
(3) — — 61 56 50 60
(4) 80 71 62 60 59 62
(5) — — 53 54 56 61
(6) 70 61 61 57 51 54
(7) — — 37 35 46 47
(8) 66 56 40 35 51 49
(9) 43 45 23 24 28 36
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Table S3
Empirical rejection probability (in %) of the Hilbert–Schmidt norm test, SHS, projection test, Sd, and
square root covariance test, Ssqrt, of equal covariance operators. A dash indicates the same value as on
the preceding row. The observation patterns (1)–(5) and covariance configurations A–D are described
in Section 5 of the paper.

Distrib. Observ. Covariance configuration
pattern A B C D

SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt

Gaussian (1) 5.4 5.8 4.8 69 82 80 69 58 69 78 62 81
(2) 4.6 6.4 4.9 54 63 41 37 32 38 76 64 54
(3) — — — — — — — — — 46 30 48
(4) 5.0 5.1 5.8 64 74 72 61 53 62 72 56 73
(5) — — — — — — — — — 77 60 77

t5 (1) 3.6 5.7 4.2 26 32 35 30 26 35 38 41 44
(2) 3.3 6.5 3.4 22 31 18 14 17 16 38 41 23
(3) — — — — — — — — — 16 16 20
(4) 4.0 6.4 4.8 23 32 30 25 25 31 30 33 34
(5) — — — — — — — — — 36 38 40

Table S4
Size-adjusted empirical power (in %)) for the same settings as in Table S3.

Distrib. Observ. Covariance configuration
pattern B C D

SHS Sd Ssqrt SHS Sd Ssqrt SHS Sd Ssqrt

Gaussian (1) 66 79 81 67 56 69 78 60 81
(2) 54 59 42 38 29 38 78 60 55
(3) — — — — — — 47 26 49
(4) 64 73 69 61 52 59 72 56 71
(5) — — — — — — 77 59 74

t5 (1) 32 29 39 36 23 38 44 38 48
(2) 23 24 20 18 14 18 40 33 26
(3) — — — — — — 20 12 23
(4) 29 26 31 31 19 32 37 27 35
(5) — — — — — — 43 32 41
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Fig. S1. Estimated covariance functions of heart rate profiles (top row) and of their derivatives
(bottom row) in age groups.
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Fig. S3. Standardized components of the score vector for testing equal covariances contrasting age
groups against the null for heart rate profiles (top row) and for their derivatives (bottom row).
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