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Overview of the thesis

The thesis reviews a decade of my activities in the field of quantum magnetism of transition metal
compounds containing heavier transition metal ions where a strong spin-orbit coupling leads to
an on-site entanglement of spin and orbital degrees of freedom. Under certain circumstances, this
may give rise to an exotic magnetic behavior, very different from the conventional Heisenberg
magnets. The main focus is put on two kinds of materials — iridium Ir** and ruthenium Ru3*
compounds described by effective Spin—% models with bond-selective anisotropic interactions and
on ruthenium Ru** oxides realizing soft-spin physics due to the spin length fluctuating between

spinless and spinful states.

The study of such materials is at present not motivated by immediate technological appli-
cations but more fundamentally, aiming at the understanding of the basic processes driving the
magnetism of these compounds and at the explanation of the experimental observations which
presents a challenge per se. The potential utilization of the new unusual mechanisms of spin
behavior in condensed matter encountered here is envisioned in a more distant future. Here,
“topological quantum computing” may serve as an example of a particularly attractive keyword
that is often used in this context.

When thinking about the structure of the thesis, I took into consideration various (sometimes
conflicting) requests that appeared, as well as my limited enthusiasm to work on extensive texts.
The latter was finally compensated by the convenience of having a text that may deliver the
necessary knowledge to the students I supervise. The resulting thesis is composed of several
parts with varying level of difficulty and the amount of details:

(i) The first part (Sec. 1) contains a “popular” introduction — a description of the emergence
of magnetic models in insulating transition metals oxides (TMO) and a brief discussion of their
properties targeted to a broader audience and characterized by a rather colloquial style. In the
very end of this part I have tried to give a few hints on the features that make the magnetism of
above iridates and ruthenates so special.

(ii) The following part including Secs. 2.1-2.4 is supposed to serve as a supplementary material for
a graduate-level course on strongly correlated electron systems to be started at our faculty next
year and hence may be easily skipped by expert audience. Here a lot of technical details are given
and I do not avoid some illustrations of concepts from basic solid-state courses (such as the tight-
binding approximation) as it often happens that the students are lacking a solid understanding of
those and yet another exposition may be quite helpful. Being conceived as a study material, this
part systematically guides the reader through a derivation of an effective model with localized
degrees of freedom. It starts with a description of single-electron orbitals in a TMO crystal
environment (Sec. 2.1), followed by a discussion of intraionic interactions and multiplet structure
stemming from Coulomb repulsion of the valence electrons and spin-orbit coupling (Sec. 2.2).
After the preparatory sections concerning the ionic states, in Sec. 2.3 the ions will get connected
by electronic hopping captured in tight-binding approximation. The second part culminates by
introducing the Mott transition and illustrating the emergence of an effective model along with
a discussion of the virtual processes leading to superexchange interactions (Sec. 2.4).

(iii) The third part focuses on the two particular areas of my research — the pseudospin—% materials
with dominant Kitaev interactions (Sec. 3) and the soft-spin singlet-triplet systems (Sec. 4).
Rather than a detailed review of the already substantial body of literature on the subject (in
particular in the first area where many reviews appeared during the last few years), the goal is
to show the route toward the relevant microscopic models for these materials and to give a brief
introduction on their physical properties emphasizing the peculiar features not present in the



conventional magnets. Here I have also used the opportunity to partially collect the results that
sometimes appear rather scattered in the attached papers and give them a coherent presentation.

(iv) Finally, the closing and in fact the largest part contains reprints of the relevant papers and
a brief summary of their content including remarks on the “historical” context (Secs. 5 and 6).

In conformance with the Masaryk University habilitation rules, in the following list of the
attached papers I specify my contributions in terms of both quantity and content. The papers
are listed in the same order as appearing in Secs. 5 and 6.
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1 Introduction

Among the various classes of solid state materials, the transition metal compounds are probably
the richest one in terms of diverse physical phenomena as well as their complexity [1-3]. To
name a few prominent examples, we mention high-T, cuprate superconductors [4, 5], colossally
magnetoresistant manganites [6], multiferroics with strong magnetoelectric coupling [7], or the
more recently studied exotic properties of materials with large spin-orbit coupling [8] including
quantum spin liquid behavior [9,10]. The complexity of the physics of transition metal compounds
stems from several key aspects:

e (Geometry — many possible crystal lattices including those enforcing reduced dimensionality

e Localized versus itinerant behavior — competition of delocalization of the electrons preferring
metallic state and strong Coulomb repulsion among electrons at the individual ions that
supports insulating behavior

e Multiplet structure — we can experience many-body physics at the level of the individual
transition metal ions — electrons residing in various atomic orbitals of the valence shell are
subject to local correlations generated by Coulomb repulsion and Pauli principle

e [nter-ionic interactions — the electronic connection between the relevant ions may attain
many forms due to the various bonding geometries and several valence orbitals involved.
Combined with local correlations, non-trivial interactions emerge, giving rise to the multi-
faceted behavior of transition metal oxides.

e [eedback of the lattice — the lattice does not merely provide a rigid playground for the elec-
trons but may actively participate via electron-phonon coupling/crystal field effects. The
interplay of the electronic degrees of freedom with the lattice may generate new phenomena
such as Jahn-Teller effect.

In this and the following part of the thesis, we try to illustrate most the above points. Here in
Sec. 1, we stay at a basic level and focus on spin systems as a prototype example of systems
with localized degrees of freedom. After this initial exposition, Sec. 2 brings up the omitted
“details”, e.g. those related to the orbital structure. To this end, we will follow the standard
scheme used when deriving an effective model for a strongly correlated electronic system with
localized degrees of freedom and discuss the ingredients one mixes in.

1.1 How the transition-metal compounds are built up

The key information about a transition metal compound is provided by its chemical composition
and the type of the crystal lattice formed by the ions. Apart from the transition metal elements
(d-elements of the periodic table), the chemical formulas include electronegative p-elements (typ-
ically oxygen, but also other chalcogens, as well as halogens and pnictogens) and electropositive
elements from the left part of the periodic table (alkali metals, alkaline earth metals, and rare-
earth metals). The contrast in electronegativities has consequences for the valence/electronic
occupation of the individual ions but for now let us focus solely on the structure.

Several examples of crystal lattices demonstrating the structural features of transition metal
compounds are shown in Fig. 1. A common element of the selected sample lattices is a MOg
octahedron where the central transition metal ion M is surrounded by an octahedral cage of
oxygen anions O, often called ligands. Though most frequently met, this is not the only possibility,
the ligands surrounding the transition metal can be found also to form a tetrahedral cage, a
trigonal bipyramid etc.
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(a) La, Sr.CuO, (b) Sr,CuO,

2D plane

1D chain

Fig. 1: Sample crystal lattices of transition metals oxides: (a) Unit cell of a high-T, superconductor
Lag_,Sr,CuO4 showing the octahedral cages of oxygen ions around the Cu ions (left) and the CuOq
planes (right) as the basic constituents of the crystal lattice. Geometrically, the individual layers of
corner-shared CuQOyg octahedra correspond to square lattices of copper ions with 180° Cu—O—Cu bonding.
(b) Unit cell of another cuprate material SroCuOs that contains not only CuOsg planes in its structure
but also quasi-1D chains formed by copper and oxygen ions. (c) Layered crystal structure of honeycomb
iridates A3IrO3 where the honeycomb lattice of the iridium atoms results from placing the IrOg octahedra
into edge-shared configurations. The side view on the left shows weakly bound AlraOg layers separated
by A ions. In the top view, the honeycomb lattice of Ir ions as well as the 90° M—-O—-M bonds are
clearly visible. (d) Pyrochlore-lattice iridate R2lr2O7 (adapted from [8]).

The relevant transition metal ions may form various kinds of lattices depending on the way
their cages are attached to each other. Figure 1(a) and (b) illustrate the case of corner-shared
octahedra using two cuprate materials. Due to their ligand cages, the transition metals are
connected indirectly via oxygens in 180° M-O-M bonding geometry. The other ions, here La
and Sr, fill in the voids and hold the structure together. The octahedra are not equally stacked
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in all directions. Compared to M—O—-M bonds, the other links are much weaker so that one
can observe effectively isolated structures with reduced dimensionality which are composed of
strongly bound Cu and O ions. One can thus talk about weakly coupled square-lattice CuO,
planes [Fig. 1(a)] or even about almost decoupled one-dimensional chains [Fig. 1(b)].

A different situation occurs when the octahedra share their edges [see Fig. 1(c)]. The bonds
are now due to 90° M—O-M bridges but the direct M—M bonding becomes also important. Edge-
sharing of the octahedra implies a possibility of M~M bonds taking non-rectangular 60° or 120°
angles so that for example triangular or honeycomb two-dimensional networks of transition metal
ions can be generated. Figure 1(c) shows an example of a honeycomb iridate A;IrO3 where A is
an alkali metal Na or Li. Here the octahedra form honeycomb layers intercalated by A ions that
appear also in the voids of the honeycomb layers. Interestingly, a similar honeycomb structure
is displayed by the ruthenium halide a-RuCl; but it is completely missing the A ions. These
honeycomb compounds will be discussed in Sec. 3 as examples of so-called Kitaev materials.

Finally, as an example of a truly three-dimensional structure, in Fig. 1(d) we present pyro-
chlore-lattice iridates RolroO; with R being a rare-earth element such as Nd, Sm, or Yb. The
Ir ions in these compounds create a three-dimensional network of tetrahedra connected by their
corners. A closer inspection reveals Ir-O—Ir bonds at an angle of approximately 120° in this case.

1.2 Emergence of an effective spin system

The different levels of electronegativity cause an electron transfer among the elements constituting
the transition metal compound. The formal valence can be easily counted when assuming filled
valence shells by all the elements other than transition metals. Each oxygen ion is expected to
attract two electrons making it O?~ whereas the electrons are donated by ions such as Na*, Sr?*
or La**. Adopting these rules, we find for the compounds shown in Fig. 1: Laj" Sr2*Cu?t*03",
SratCu?t03~, AfIr** 037, and R3*Ir;"OZ | respectively. Even though such a formal valence
should be taken as indicative only, often it provides a reasonable starting estimate.

Being stripped of their outer s electrons and partly d electrons by the more electronegative
p-element ions, the transition metal ions expose their partially filled d shells. The extent of
the wave functions of the valence d orbitals turns out to be quite suitable for interesting things
to happen. Staying on a qualitative level of discussion, we may evaluate this extent from two
viewpoints: On one hand, d orbitals are small enough so that the Coulomb repulsion among the
valence electrons is sufficiently strong, leading to strongly correlated behavior of those electrons.
On the other hand, their extent still allows for a large electronic contact between the neighboring
ions which gives rise to significant interactions.

We thus have two opposing mechanisms simultaneously at play — a tendency of the electrons
to delocalize (travel through the crystal) and their Coulomb repulsion which tries to keep them
apart. Depending on the balance between the two, we may end up with a correlated metallic
state [Fig. 2(a)] or with an insulating state [Fig. 2(b)]. Note that the latter so-called Mott
insulator arises due to electron-electron interactions. This is very different to conventional band
insulator, where the insulating state appears when properly filling up the bands generated by
periodic crystal potential. In fact, simple band theory would easily predict a Mott insulator to
be metallic instead.

Both mechanisms are captured in their simplest form by a prototype model — single-band
Hubbard model. It considers a single orbital per site that may be, according to Pauli principle,
occupied by up to two electrons. However, a simultaneous presence of two electrons activates the
Coulomb repulsion denoted as Hubbard U. The “electronic contact” is described by an amplitude
t of the hopping process where an electron moves to a neighboring site. In formal terms, the
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(a) (b)

correlated metal Mott insulator
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Fig. 2: Schematic pictures of (a) correlated metallic state and (b) Mott-insulating state for a system
with one active orbital per site and half-filled case (on average we have one electron per site out of
two possible). The arrows indicate the spin of the electrons. (c) Virtual process in the single-orbital
Hubbard model that generates the exchange interaction on a bond. (d) An effective spin model that
reproduces the low-energy behavior of the Hubbard model at the particular bond.

corresponding Hamiltonian reads as

= —t Z CinCio T cjgcw + Uznnnu, (1.1)

where ¢;, is the usual fermionic operator annihilating an electron of spin ¢ at site 7, the first
sum runs through all nearest-neighbor bonds (i7), and the second one in effect counts the doubly
occupied sites that are penalized by the energy U. In the limit of strong repulsion compared to
the electronic hopping amplitude, U > t, and for the total number of electrons being equal to
the number of sites, double occupations of the sites are avoided and the system becomes a Mott
insulator depicted in Fig. 2(b). In the context of the single-band Hubbard model, we talk about
half-filled situation (one half of the maximum number of electrons are present), the real materials
with an integer formal valence of d ions that realize Mott insulating state are usually termed
“undoped”. By introducing extra electrons or holes (missing electrons), the material becomes
“doped” and typically turns into a metal at a sufficient doping level.

In the Mott insulating limit of a half-filled system, one does not need to give the positions
of electrons, the state is sufficiently described by specifying their spins only. We arrive at an
example of a model with localized degrees of freedom, here a spin model. Even though the
positions are frozen, there is still some “life” left. The spins are interacting and have a particular
ground-state configuration and a specific low-energy dynamics. The interactions are generated
by the virtual processes of the type shown in Fig. 2(c). An electron for a short while visits its
neighbor, creating a virtual excited state with an energy U, and by the second hopping in the
opposite direction, the one-electron-per-site rule is restored. This process and the resulting small
kinetic energy gain are possible only when the two electrons can actually meet in the same orbital
— they need to be in a singlet state. In a way, the process can be understood as a formation of
a bonding orbital occupied by the two electrons in a singlet state, which is caused by a weak
hybridization of the localized ionic orbitals. The preference of singlets of neighboring spins is
the desired spin-spin interaction. More quantitatively, the virtual processes can be accounted for
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within a second-order perturbation theory giving rise to the Heisenberg Hamiltonian

Her =J > Si- S, (1.2)
(i)

with the exchange constant J = 4t>/U and S = (S%, 5%, 5%) being the spin operators describing
spin—% of the localized electrons.’ The label “exchange” is explained in a pictorial way by Fig. 2(c)
where the result of the virtual process is a configuration with the two spins exchanged. Formally,
the operator S;-S; can be also written as %1(2731-]» —1) where P;; is Dirac permutation operator that
exchanges the quantum states of two particles [11]. For the effective model to adequately capture
the low energy physics of the original Hubbard model [H of Eq. (1.1)], the energy scale of J needs
to be well below U which is satisfied in the assumed U > t limit. More detailed illustration of the
emergence of the effective spin model will be given in Sec. 2.4 based on numerical simulations of
the Hubbard model. In the next section we will briefly review the basic features of spin models.

1.3 Spin systems at a glance

As introduced in the previous section, a spin system is a system of spins residing at sites of a given
lattice that are subject to spin-spin interactions. Despite the apparent simplicity compared to
the underlying real material, there is still a large variability of the spin systems. One can consider
various lattice geometries, interactions beyond nearest neighbors, anisotropic interactions of the
general matrix form > 5 JQBSZ-O‘Sf replacing the isotropic scalar product in Eq. (1.2), or
more than two-site interactions. For simplicity, here we limit ourselves to the isotropic Heisenberg
Hamiltonian as appearing in Eq. (1.2). The exchange constant J came out positive for the
particular mechanism discussed above but in principle it may also take a negative value favoring
a triplet on the bond.

The general tendency of physical systems is an evolution towards equilibrium driven by mini-
mization of the free energy F' = U—T'S. This contains two competing contributions — the internal
energy U and the entropy term —7'S. The balance between the two is determined by the temper-
ature. In the low-temperature regime where the entropy does not matter, the bond interactions
captured by the Hamiltonian in Eq. (1.2) and contributing to U will be optimized. The coupled
spins will thus try to become aligned in the negative J case or contra-aligned for positive J. On
a square lattice this leads to long-range ferromagnetic (FM) or antiferromagnetic (AF) order pre-
sented as examples in Fig. 3(a) and (b), respectively.? When measuring the spins or the magnetic
moments, we will find a position-dependent average of the type (Sg) ~ mg ~ ¢/@® where Q is
the characteristic wavevector of the ordering — the ordering vector. For a ferromagnet it is equal
to zero since all the spins point in the same direction. For an antiferromagnet, the spin direction
alternates with the site index n as €™ in both 2 and y directions and the ordering vector is
Q = (7/a,7/a) where a denotes the lattice parameter.> The corresponding Fourier component
M g of the magnetization may serve as an order parameter determining the “strength” of the
magnetic order. At elevated temperatures the order becomes gradually weakened by thermal
fluctuations [see Fig. 3(c)]. This may be understood as a consequence of the term —7'S that
now prefers a state with higher entropy, i.e. less ordered. At certain critical temperature, the
magnetic order ceases to exist and the system becomes paramagnetic with zero order parameter.

Tt is customary to work with dimensionless spin operators. We will follow this convention and use dimensionless
variants (i.e. divided by %) of all angular momentum operators through the whole text.

2To be precise, a strictly two-dimensional Heisenberg system considered here would not order at finite tem-
peratures, however, in reality one encounters quasi-2D systems.

3The reciprocal space is often measured in units of 1/a, in that case Q = (7, 7).
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(a) (b) (©)
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Fig. 3: (a) Ferromagnetic and (b) antiferromagnetic ordering of spins on a square lattice. The ordering
vector @ is expressed in units of 1/(lattice parameter). (c) Typical temperature dependence of the order
parameter (Fourier component of the magnetization at the ordering vector Q). Ty stands for the Néel
temperature — the critical temperature of an antiferromagnet. (d) Mexican-hat profile of the energy
depending on the magnetization. Blue/red arrows indicate the direction of magnetization changes that
are “for free” or cost energy, respectively. (e) Schematic spin-wave dispersion (energy w as function of
the wavevector @) in the case of a ferromagnet on a square lattice. (f) The same for a square-lattice
antiferromagnet.

With the order established, the behavior of the system becomes more collective and specific
modes — wave-like excitations of the spins — can be observed in its low-energy dynamics. For
an isotropic system, the magnetization can take any direction with the same resulting energy
[see Fig. 3(d)], only its length is fixed by energy minimization. Therefore, a global simultaneous
rotation of all the magnetic moments does not cost any energy and the excitations of the system
that are close in nature to such a rotation will be the lowest-energy modes with the dispersion
w ~ q“. More generally, these modes — called Goldstone modes — appear whenever the system
spontaneously breaks a continuous symmetry as our system did when developing long-range
magnetic order with certain magnetization direction. The determination of the rules for the
number and type of the Goldstone modes is a deep theoretical problem [12,13]. As a result
for our particular model, the Heisenberg ferromagnet shows one Goldstone mode with o = 2 at
Q = (0,0) while in the Heisenberg antiferromagnet we find two modes with a« = 1 at g = (0,0)
and the ordering @ = (m, 7). The overall dispersion of the spin waves for these two cases
is depicted in Figs. 3(e) and (f), respectively. When such a dispersion of spin waves for a
real spin system is resolved experimentally, for example by inelastic scattering of neutrons, it
brings relatively rich information enabling to narrow down the type and strength of the spin-spin
interactions constituting the corresponding spin model.

Nevertheless, such a luxury is often not accessible, neutron experiments frequently suffer
from low intensity, have to be performed on powders instead of monocrystals providing only
direction-averaged information etc., so that alternative ways to get at least some insights into
the spin-spin interactions are needed. A standard tool used to estimate the magnitude of the
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Fig. 4: (a) Schematic temperature dependence of the static spin susceptibility x = dM/dB for a
ferromagnet. The inset tries to suggest the physical picture behind the curve that is described in the
text. (b) The same for an antiferromagnet where the susceptibility becomes anisotropic below the Néel
temperature and differs for the field polarized perpendicular or parallel to the magnetization. The inset
shows an extrapolation of ! to get the Curie-Weiss scale ©.

spin-spin interactions and one of the first experimental probes applied to freshly baked samples
is the temperature dependence of the static spin susceptibility illustrated in Fig. 4. Here one uses
the high-temperature behavior of the spins in homogeneous magnetic field that tries to align them
in parallel fashion. Without the spin-spin interactions the high-temperature spin susceptibility
would approximately follow the Curie law x ~ 1/T for isolated moments. This is modified by
the interactions that try to imprint their characteristic correlations onto the partially polarized
spins. The result above the critical temperature is the Curie-Weiss law x ~ 1/(T — ©) where
the Curie-Weiss scale © combines the spin-spin interaction parameters in some way. Roughly
speaking, FM J < 0 supports the parallel alignment induced by the magnetic field and leads to
positive © (enhances the susceptibility), AF J > 0 works in the opposite way (suppresses the
susceptibility). Going down in temperature, an anomaly at the critical temperature signals a
phase transition into a magnetic ordered state. Unless a more sophisticated fitting is involved,
one typically plots x~!(T") and extrapolates the linear part to get © as shown in Fig. 4(b).

So far we were naively discussing the spin systems as a set of arrows that want to align and
this is only prevented at high temperatures by thermal fluctuations. However, the situation is
more complex and the magnetic order has to fight with additional enemies. An intrinsic enemy is
the very nature of spin as a quantum object. To see its consequences, we rewrite the Heisenberg
Hamiltonian (1.2) in terms of the spin raising/lowering operators S* = S% 4 i5¥:

Mo =J Y Si-8; =T 3(SFS7 +S755) + 878 . (1.3)
(i) (i)

Assuming the AF ordering with the moments along z direction, the last S*S* part of the in-
teraction would be completely happy. But more energy can be gained from the resonance of
configurations with flipped spins as sketched in Fig. 5(a). The degree of the ordering is thus
sacrificed for a gain of “kinetic” energy. The processes bringing disorder by misaligning spins
are now of quantum origin and may be thus termed as quantum fluctuations in analogy with the
thermal ones. The severity of quantum fluctuations strongly depends on the spin length (with
larger spins behaving more classically and spin—% being the most “quantum” one), the nature of
the spin-spin interactions and the dimensionality of the system (with lower-dimensional systems
being more susceptible to quantum fluctuations). As an example of the level of quantum fluc-
tuations found in quantum antiferromagnet, in Fig. 5(b) we sketch an exact ground state of a
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(a) (b)
QOO0
S5;S; l T S;'S; J |GS) = +
000
i j |GS) = %(ITlTl) = FITTLL) = SILTTL) = A1LUTTY = SITLLD) + |lTlT))

Fig. 5: (a) Resonant spin-flip processes driven by the part of the Heisenberg interaction that is per-
pendicular to the ordered moment direction. Spin—% is considered here so that only two S7 eigenstates
exist, those are indicated by up/down arrows. (b) Exact ground state of a Heisenberg square consisting
of four spin—% sites. It can be represented either as a superposition of configurations of properly aligned
or misaligned spins (bottom) or via a resonance of two coverings of the square by singlets of neighboring
spins (right). A singlet state of two spins is marked by a gray oval. An analogous resonance of several
possible coverings is familiar from quantum chemistry of benzene and other aromatic molecules. In that
case coverings by double bonds between carbon atoms are resonating.

square of four Heisenberg-interacting spins. Here the configurations with properly contra-aligned
spins (Néel configurations) represent only two thirds of the whole state in terms of probability.
Focusing on the topology of the bonds, the square is in fact a 1D system with periodic boundary
conditions. Even though the amount of quantum fluctuations (measured by the energy gain with
respect to the Néel configuration) is reduced when the 1D system grows in length, the quantum
fluctuations are still strong enough to completely melt the long-range order in the case of a 1D
Heisenberg chain at 7' = 0.

Sometimes the enemy is more visible — in case of frustrated spin systems one can explicitly see
that the simple orderings of e.g. Néel type cannot satisfy the spin-spin interactions. An example
of a geometric frustration is presented in Fig. 6(a) where we take a piece of so-called kagome lattice
and try to populate it with AF-interacting spins. This attempt is soon over as we inevitably fail
to make three interacting spins on a triangle mutually antiparallel. The nature of the ground
state of the Heisenberg model on kagome lattice is still a subject of intense studies and it seems
that the long-range order is indeed destroyed by the geometric frustration [14]. This is in contrast
to the triangular lattice which, despite being composed from frustrated triangles as well, shows

(a) (b)
></\>< «(®A§® T X
®® .52 1]
V

0 :
0 1/2 J, 14,

Fig. 6: (a) Frustration of spins that are subject of AF interaction when placed on a kagome lat-
tice. (b) Competition of nearest-neighbor and next-nearest-neighbor interaction in Ji-J2 model that,
depending on the Jy/J; ratio shows two distinct types of spin ordering separated by a disordered phase.
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a long-range order with a “compromise” angle of 120° between neighboring spins [15]. Another
case of frustration is demonstrated in Fig. 6(b) for a geometrically non-frustrated square lattice.
Once we activate the next-nearest-neighbor Heisenberg interaction .Js in addition to the nearest-
neighbor .J;, those two interactions start to compete as they support different spin arrangements.
Depending on the ratio of J; and J5, this competition leads to a reduction of the magnetic order
strength or — around the balanced ratio J; ~ J;/2 — even to a complete absence of any long-range
order [16,17].

1.4 Kitaev systems — a quick introduction

In the end of this section we briefly introduce the spin systems that are the main subject of
the thesis — Kitaev-like and soft-spin systems. Both of them go in some sense far beyond the
concepts of a Heisenberg magnet. Leaving a detailed discussion for the respective sections 3 and
4, here we stay at the “popular” level and address only the essential features that make those
systems special.

The Kitaev-like magnets are strongly frustrated systems of spins residing on honeycomb
lattice that interact predominantly via a particular bond-selective interaction introduced by
Alexei Kitaev in his famous model [18]. In contrast to the isotropic Heisenberg interaction, the
Kitaev interaction picks only one component of the two spins on a bond, i.e. it replaces the
scalar product S; - S§; by for example S7S7. This is not that unique yet, the same kind of
anisotropy can be found in the famous Ising model which is one of the prototype models for
magnetism introduced in early 1920’s [19]. The key point of the Kitaev model, however, is that
the interaction axis is bond-dependent and follows the pattern depicted in Fig. 7(a). Formally,
the Hamiltonian of the Kitaev model can be written as

HKitaev = _Kz Z stf - Ky Z SZyS]y - KZ Z stjz7 (14>
(

(i5) = (i)ly ij)|lz

where each of the three sums run through the bonds of a particular direction. Often an “isotropic”
version of the model with K, = K, = K, = K is considered. The interaction constant may
take both signs, in fact there is a one-to-one mapping between ferromagnetic (K > 0) and
antiferromagnetic (K < 0) cases. The model can be extended to arbitrary spins but let us limit
our discussion to the spin—% variant proposed by Kitaev.

The honeycomb lattice is a geometrically non-frustrated lattice, the antiferromagnetic Heisen-
berg interaction discussed earlier would therefore establish long-range AF order similarly to the
case of the square lattice depicted in Fig. 3(b). The Kitaev interaction, either ferromagnetic or
antiferromagnetic, fails to do so. The reason is its intrinsic frustration stemming from a competi-
tion of the interactions at the three bond directions. As observed in Fig. 7, each site of the lattice
is a member of three bonds exhausting all the possible bond directions. To optimize the energy
of the attached z-bond, both spins it connects should be parallel (for positive K') or anti-parallel
(for negative K') and pointing along the z direction. On the other hand, the y-bond wants them
to point in the y direction, and the x-bond makes yet another request. The three options for
an optimum spin direction are mutually orthogonal. An intuitive compromise might be to align
spins along the (z+y+2)/v/3 direction. This would bring a classical energy 3 x %}LK = }LK which
is the same as if we fully satisfied one bond direction and therefore does not seem promising.
The spins choose a different way how to cope with the inherent frustration of their interactions
and form so-called Kitaev quantum spin liquid. It is a exotic state where nearest-neighbor spins
show well-defined correlations while further neighbors have zero correlations. Remarkably, this
ground state can be obtained by an exact calculation making the Kitaev model one of the few
examples of exactly solvable models in the field of quantum magnetism. Related to the exact
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(a)

Fig. 7: (a) Honeycomb lattice with three distinct directions of bonds indicated by colors. The Kitaev
interaction between nearest-neighbor spins is of the form Sf‘S]‘?‘ with the active component o = z, ¥, z
determined by the bond direction. (b) Top view of the honeycomb lattice of edge-shared octahedra in
the iridate NagIrOs. More details on the structure of the compound can be found in Fig. 1(c). The
main axes of the octahedra labeled by x, y, and z coincide with the spin axes of the Kitaev interaction.
The active one for a particular bond is perpendicular to the bond direction. (¢) A closer view on the
Ir-O-Ir bonds with marked square IrsOs plaquettes where the main exchange processes happen. The
Kitaev axis for the given bond is perpendicular to the corresponding plaquette.

solution are other fancy features of the model — an extensive number of conserved quantities
(their number grows linearly with the system size), topological quantum order, or fractionalized
elementary excitations that cannot be understood as simple wave-like rotations of the spins like
it is in the case of conventional magnets.

While the original Kitaev model was introduced on purely theoretical grounds in the context
of topological quantum computing, it was the proposal by George Jackeli and Giniyat Khali-
ullin [20] of its possible realization in Mott insulators with large spin-orbit coupling — i.e. actual
materials — that attracted the attention of a broader solid state community. The possible real-
ization of a quantum spin liquid accessible to an exact solution triggered a lot of interest and
made the “Kitaev materials” one of the recent hot topics in condensed matter physics. The
intense research on NaylrO3 and other candidate compounds revealed that the dominant Kitaev
interaction is supplemented by several other interactions that drive those materials away from
the desired quantum spin liquid into a long-range ordered state, though some Kitaev-like fea-
tures are preserved. In Sec. 3, after explaining the microscopic origin of the strongly anisotropic
and bond-selective interactions, we will provide details on the theoretical investigations of this
situation as well as the most important experimental results for the proper context.

1.5 Soft-spin systems — a quick introduction

In the soft-spin systems, the elementary building object itself is redefined. Instead of a rigid spin
such as spin—% appearing in the Heisenberg model of Sec. 1.2, each site carries now a superposition
of various spinless and spinfull states. The balance between them brings a new degree of freedom.
In the situations when this balance and thus the fraction of the spinfull states is easily changed,
the average spin moment becomes “soft” and prone to fluctuations. It should be emphasized
that this effect is different to spin rotations, i.e. fluctuations of the spin direction of rigid spins.

Having a basic idea of what the soft-spin systems are, we may address the question how they
actually emerge in nature. The key elements are the quasidegeneracy of the above spinless and
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Fig. 8: (a) Schematic energy-level structure of a d* ion with large spin-orbit coupling. The ground
state is a nonmagnetic singlet. The magnetic moment is contributed primarily by the transition between
singlet and triplets (M), only a small part of it is carried by the triplet (M32). (b) The two competing
energy scales of the model — the cost of the triplet A and the inter-ionic exchange J. (c) Quantum
critical point separating the state full of singlets and a condensate of triplets established at sufficiently
large J/A. In the condensate state, singlet a triplets are mixed on-site in a quantum superposition with
the relative fractions given by the condensate density p. The condensate carries staggered magnetic
moments corresponding to long-range antiferromagnetic order. (d) Change of the excitation spectrum
upon condensation. Dispersing triplet excitations touch zero energy at QCP and transform into a spin-
wave like rotational mode (magnon) and an oscillation of the spin length (“Higgs” mode). Numbers
indicate the degeneracy of the modes.

spinfull states and the presence of inter-ionic exchange interactions that are capable of mixing
them. When these two are well balanced, the soft-spin scenario may occur. The soft-spin
system that will be extensively discussed in Sec. 4 is based on transition metal ions containing
four valence electrons that are subject of moderate spin-orbit coupling. The spin-orbit coupling
arranges the low-energy spectrum of valence states according to the level scheme in Fig. 8(a).
The lowest state is a nonmagnetic singlet, above it, separated by the spin-orbit coupling strength
A, are three excited states forming a triplet. The situation with the magnetic moment is more
complicated compared to the above introductory description. The largest part of the moment
sits primarily on the transition between the singlet and triplet states, while the triplet states
carry only a minor contribution. Nevertheless, the essence of the soft-spin scenario remains the
same. The exchange interactions between the d* ions under consideration are most naturally
formulated as processes altering the configurations of singlets and triplets on a particular bond.
When the microscopic details are considered, one finds that there are two dominant processes
of similar strength — an exchange of a triplet and a singlet at the two sites and a creation or
annihilation of triplet pairs on the bonds. Both bring down triplets in energy and give them
dispersion. The fate of the system now depends on the ratio of the two energy scales — the triplet
cost A and the strength J of the exchange interactions [see Fig. 8(b)—(d) for a vague depiction].
Starting in the limit A > J, triplets are relatively costly and the system is full of singlets
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occupying most of the lattice sites. Dispersing triplets serve as elementary excitations moving in
this singlet background, their dispersion is still relatively weak and the bandwidth determined
by J by far does not exceed the basic energy scale A\. When increasing J, the triplet dispersion
becomes more pronounced [Fig. 8(d) left] and at some critical J/\ it will touch zero level at the
AF ordering vector Q. Being zero energy excitations, the triplets will get incorporated into the
ground state changing its nature. We just experienced a quantum phase transition — the system
passed a quantum-critical point (QCP) separating the state full of singlets from the phase that
could be regarded as a condensate of triplets (objects of a bosonic character). In the condensed
state, each site can be imagined as a superposition of both singlet and triplet whose proportions
are related to the condensate density p. This superposition carries a magnetic moment of M
type [c.f. Fig. 8(a)] with the value proportional to /p (1 — p). The structure of the condensate
imposes AF staggering of those magnetic moments so the condensation in fact created a long-
range AF order. Near the QCP, the condensate is still not very rigid and shows pronounced
fluctuations of its amplitude, giving rise to an unusual spectrum of magnetic excitations. This
and other problems related to the peculiar AF order established by a condensation of triplets
will be addressed in detail in Sec. 4.



2 Effective models with localized degrees of freedom

The purpose of this part is to expose in detail the way to arrive at an effective model for a
transition metal compound where the localization tendencies discussed in Sec. 1.2 take over. The
system is then effectively described as consisting of localized degrees of freedom that are subject
to mutual interactions.

The derivation of the corresponding model may be a rather complex task involving several
stages. First, one has to identify the localized degrees of freedom themselves. This typically
consist in an inspection of the multiplet structure of the active ions that depends on their valence,
the crystal environment determining single-electron orbital levels, and the intra-ionic interactions
that generate the many-electron states forming the multiplet structure. The low-energy states of
the multiplet structure are then used as a local basis of the effective model. We will cover these
topics in the following two sections, focusing in particular on the cases of interest: d* and d°
transition metal ions with strong spin-orbit coupling. Next, one has to open the communication
channels between the individual ions. They are provided by the electronic hopping to be described
within the framework of the tight-binding approximation in the third section of this part. Finally,
as will be discussed in the last section, one combines the above pieces of information and obtains
the interactions among the localized degrees of freedom by considering perturbatively the virtual
processes generated by the electronic hopping.

2.1 Orbital splitting in a crystal environment

The valence electrons in transition metal ions occupy d-type orbitals. In contrast to the case of
a free-standing ion, they are exposed to a crystal environment which necessarily modifies their
wavefunctions and energy levels. The Coulomb interaction with the charges of the surrounding
ions as well as the electronic coupling to their orbitals both imprint the symmetry of the crystal
environment to the new orbitals of the ion under consideration. Leaving the intra-ionic interac-
tions aside for a moment, we are going to inspect the restructuring of the single-electron levels
by the additional crystal field. The general prediction for the symmetry of the new eigenstates
depending on the symmetry of the environment can be made based on group theory. However,
a more intuitive approach is to explicitly calculate the new levels when including the crystal
field potential of a proper symmetry. It is handled by using first-order perturbation theory for
the originally five-fold degenerate d-orbitals which leads to split energy levels corresponding to
certain combinations of those orbitals. Such an approach is acceptable in particular in our case of
interest where the valence electrons of the transition metal ions retain their localized character.
The advantage of an explicit, though crude calculation, is that one gets an idea about the relative
values of the splittings.

2.1.1 Crystal field within point-charge model

A simple picture of the crystal field is provided by so-called point-charge model where we imagine
the ligands as point charges acting electrostatically on the valence electrons of the transition
metal ion. In the case of the most frequent structural unit — the MOg octahedron, the oxygen

ions surrounding the transition metal M are supposed to carry the nominal charge ) = —2e¢
corresponding to the formal valence O?~. The valence electrons with the charge ¢ = —e are then
perturbed by the potential
qQ 1
Ver(r) = 2.1
or(r) 47r60; |r — R,,| 2.1)
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with n going through the six oxygens at positions R,. These positions may form an ideal
octahedron or incorporate its distortion. Both situations will be inspected later in this section.
Note that the prefactor containing ¢() is positive due to the repulsion of the valence electrons and
the negatively charged oxygen ions. Such a treatment of the crystal environment is of course much
simplified and in reality its prediction can be substantially modified, e.g. by covalency effects
(electronic coupling). Nevertheless, the symmetry of the environment is properly embedded in
Ver(r). The next step is the multipole expansion of the crystal field based on the general formula

1 oo Tl [oe} Tl 47T +1 )
r—r| > rl_il Pi(cosa) =) Tl_il N1 DY) Yim(0, ). (2.2)
=0 ' > =0 '> m——1

Here r— (r-) is the smaller (larger) number from the pair |r| and |r'| and « is the angle between
r and 7. The angles 9, p and ', ¢’ are the conventional spherical angles specifying the direction
of r and 7/, respectively. By inserting (2.2) into Eq. (2.1), we obtain the final multipole expansion

LSS A Vinl,) (23)

%
cr(r 47T€0
=0 m=—1
with the multipole coefficients A;,, given by
47 1 )
Aim = 57 Zn: RI i (Uns on) - (2.4)

This expansion may be also understood as a power series in r/R,. Since the typical distance
of the electron from the octahedron center is visibly less than the distance R,, of the ligands,
the potential terms will weaken with increasing [. Moreover, as we will see below, only terms
with [ < 4 will actually contribute to the Vop matrix elements between d-type orbitals due to
symmetry reasons.

2.1.2 Matrix elements of the crystal field

In the absence of the crystal field, the orbitals of the d shell with the angular momentum [ = 2
are five-fold degenerate and their wavefunctions are of the form

A (1,9, 0) = f(1r) Yo, (9, @) (m=-2,-1,0,+1,+2). (2.5)

The radial part of the wavefunction f(r) is common to all the orbitals while they differ in the an-
gular dependence captured by the spherical harmonics. These wavefunctions will be the starting
point of the perturbation theory to incorporate the crystal field. For our purposes it is sufficient
to consider the first order, the resulting energy shifts and the corresponding combinations of
the d,, orbitals are therefore obtained simply by diagonalizing the 5 x 5 matrix of the perturba-
tion Veop expressed in the unperturbed d,, basis. Employing the multipole expansion (2.3), the
necessary matrix elements read as

0o +1 o
qQ
(i [Verldma) = 7= ;Elmm /0 2 F2(r) dr / Yo, Vim Yo, dQ2. (2.6)

The middle integral is just the average (r') of some power of the radial distance. The second
integral is more tricky but can be evaluated using Clebsch-Gordan coefficients? following the

4Some of the formulas involving Clebsch-Gordan coefficients would be more elegantly formulated using Wigner
3j symbols. However, CG coeflicients will be frequently utilized in 2.2 when adding various angular momenta so
we keep using them everywhere for simplicity.
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formula (c.f. Eq. 3.8.73 from Ref. [21])

. o, + 1)(2ly + 1
/ Yy Yigms dQ:\/ ( 147r(2)l(+21) )<zlz200uo> (Iilymyms | Im) | (2.7)

In our case, some of the quantum numbers are fixed and we arrive at

Q X & 21 +1
(Ao, |Ver|dmy) = SN A (1200 | 20) (12mmy | 2my) . (2.8)
=0 m=—1

4meg 4

Looking at the structure of the Clebsch-Gordan coefficients or the original integral containing
spherical harmonics, we notice that we are in fact adding angular momenta with quantum num-
bers [ and 2 and evaluating the overlap with an eigenstate of total angular momentum having
the quantum number 2. To have nonzero matrix elements, this implies that the multipolar order
[ cannot exceed | = 4 (hexadecapole) as mentioned earlier.

Since the angular momentum conservation is broken by the non-spherical environment, it is
not very helpful to strictly keep the corresponding eigenstates |d,,) of Eq. (2.5) as the working
basis. Instead, it is more convenient to utilize their real combinations that are be better adjusted
to the octahedral symmetry. We follow the convention by Tanabe and Sugano [22] and introduce
them as

€)= Z(ds) +1d1)) ~yz (2.9)
) = _\/Li(|d+1> —|d-1)) ~ T (2.10)
C) = _\/Li(|d+2> —|d-2)) ~ Ty (2.11)
lu) = |do) ~ 327 —1? (2.12)
) = 5(lds2) + |d—2)) ~ ot =y (2.13)

Here the polynomials on the right indicate the symmetry resulting from the particular combi-
nation of spherical harmonics. The matrix elements of Vp obtained via Eq. (2.8) need to be
converted to the basis of real harmonics leading to a new 5 x 5 matrix for the diagonalization.
When showing the corresponding matrices in the following paragraphs, we will be always using
the above order of the basis states.

2.1.3 Cubic case - ¢, and ¢, orbitals

Let us now apply the above general results to the specific case of an ideal octahedron of oxygen
ions surrounding the transition metal ions. The crystal field for this situation expressed using
Eq. (2.3) and expanded up to | = 4 takes the form (assuming q@Q = 2¢?)

e {6+7ﬁ7”4

Vi — v T
or(r) 2meg R 3 R*

5
Yo + T (Yy_a+ Y4,+4)] } (2.14)

or, in a more familiar Cartesian representation involving the main octahedron axes [see Fig. 9(a)]

2

C 35 4 4 4 34
Ver(r) = mecRR {6+ 1R <{E +y +z =7 : (2.15)

From the symmetry point of view, the above potential is characterized by the point group O,
capturing the symmetries of a cube or an octahedron. The first contribution to Vi is a monopole
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term from the six charges at distance R and can be ignored since it shifts all the orbitals equally.
The second term with [ = 4 is a hexadecapole potential and leads to the actual splitting of the
orbitals. To see the splitting, we express the second term in the orbital basis. First using the
original states |d_s), |d_1), |do), |d+1), |d42) described by spherical harmonics, this gives us a
non-diagonal matrix

1 0 0 0 5
) A 0 -4 0 0 O
_ 1
pi=n_ e ()1 2.16
cF 2regR R* 6 00 6 00 (2.16)
0O 0 0 —4 0
5 0 0 0 1

that is, however easy to diagonalize. In the Tanabe-Sugano basis (2.9)-(2.13), the matrix repre-
senting Vop comes already in a diagonal form
V(l=4) _ X Jiae(—2. -2 2 11 41 1
CF - g( 37 3 37_'_ , + ) (2 7)
separating in energy two sets of states as shown in Fig. 9(a). At the lower level we find the
three states |£), 1), |¢) called ty, orbitals, since they form a basis of the three-dimensional Ty,

representation of the group O [23]. The upper level contains so-called e, orbitals (forming a
basis of the E, representation of this group). The ty,-¢, splitting

)
6megR R4

Acr = E(ey) — E(tyy) = (2.18)
is for historical reasons denoted as 10Dq with D being the prefactor in the z* + y* 4 2* part
of the electrostatic potential and ¢ being proportional to e(r?). The typical value of Acr for
TMO is a few electronvolts. The shapes of the 5, and e, orbitals depicted in Fig. 9(a) enable
us to intuitively understand the origin of the splitting. The e, orbitals have their lobes oriented
directly toward the negatively charged oxygen ions. Therefore they experience a larger Coulomb
repulsion compared to the ¢y, orbitals and move higher in energy.?

2.1.4 Further splitting due to tetragonal and trigonal distortion of the octahedra

The MOg octahedra in transition metal oxides are subject to various forms of distortions. There-
fore their symmetry is not ideal and further splitting of orbitals occurs. We will discuss two
important cases: (i) tetragonal distortion i.e. compression or elongation of the octahedron along
one of its main axes, (ii) trigonal distortion where the compression or elongation happens in a
direction perpendicular to one pair of faces of the octahedron.

In both cases we will consider a volume-conserving deformation — contracting or elongating
the octahedron geometry by factor (1 — ) in one direction and compensating this change in the
remaining two directions:

R =(1-¢)Ry+

1
R, . 2.19
Vi-e (2.19)
Here R stands for the component of the ligand position R in the selected contraction (¢ > 0)
or elongation (¢ < 0) direction and R is perpendicular to it.

®Thanks to this direct contact between the pair of e, orbitals and the surrounding octahedral cage, strong
Jahn-Teller effects may happen in the e, orbital systems [3]. The system spontaneously distorts the octahedra in
a systematic way to gain energy by e, orbital splitting.
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Fig. 9: (a) Splitting of d-type orbitals in a cubic field of an ideal octahedron. The crystal field of the
negatively charged oxygen ions makes a distinction between the to, orbitals zy, yz, and zx whose lobes
point inbetween the oxygens and e, orbitals x? — y? and 322 — r? with their lobes oriented toward the
oxygens. (b) Further splitting of the orbitals under the tetragonal compression of the octahedron. The
planar orbitals zy and z? — y? shift down in energy. (c) Splitting of the orbitals by the crystal field
of a trigonally compressed octahedron. Upper right corner: Relation between the cubic xyz axes and
trigonal XY Z axes with Z being the axis of the compression. The cubic axes and the Z axis point
above the paper plane.

Let us start with the simpler case of the tetragonal distortion. Following Fig. 9(b) we select
the 2z axis. Evaluating the matrix elements of the distorted crystal field in the Tanabe-Sugano
basis, we arrive at the correction to the original matrix shown in Eq. (2.17). To linear order in
the relative compression factor ¢ it reads as

20 iag(1,1,-2,2, 2 diag(—2,—2,4,3, -3 2.20
SRt |7 W1 2222+ T ding(-2, 22,48, -9)) (220
The first contribution stems from the leading quadrupolar correction to the potential which is
proportional to Y5y ~ 322 — 2. In the case of a compression, it supports orbitals lying in the zy
plane, i.e. xy and x? — 2, and lifts up those that are oriented out of the xy plane. This result is
natural when one considers the relative changes of the positions of the negative oxygen ions as
suggested in Fig. 9(b). For completeness, we have presented also a correction to the hexadecapole
which can be neglected. It merely adjusts a bit the splittings obtained from the quadrupolar
term, bringing no qualitative change.

Somewhat more complicated is the case of a trigonal distortion illustrated in Fig. 9(c). We
focus only on the quadrupolar contribution to the crystal field. To the linear order in ¢ the
corresponding matrix in Tanabe-Sugano basis takes the form

25 (rt)

5Vcl<4) _

2 () (A C

SV =) = LA
27T60R R \cr B

(2.21)
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with the matrix blocks A, B, C' given by

01 1 -3 3
6 0 0 2
A=—110 11, B = , and C == _\/g -31. (2.22)
7 0 0 7
110 23 0

As we can see, there is no direct trigonal splitting of the e, orbitals, it only happens indirectly by
tag-€4 mixing via the matrix elements in the C' block. Such an effect is negligible if the relevant
matrix elements are small compared to the t95-e, splitting (2.18). The main effect is the splitting
among the t9, orbitals &, 7, (. To determine it, we have to diagonalize the 3 x 3 matrix of the
block A. A convenient choice of its eigenvectors (the convenience will become clear in the next
paragraph) is as follows:

larg) = 5 (18) +m) +10), (2.23)
leg) =75 (€77218) + e ) +[0)) (2.24)
leg-) = =75 (e72™218) + e n) +¢)) - (2.25)

The eigenvalue of A for the a;, state is —1—72, the ej pair of states is degenerate with the A
eigenvalue g. The value of the splitting is thus a bit different compared to the tetragonal case
but there are again a singlet and a doublet. The a;, singlet has a pronounced elongated shape
with the lobes pointing along the [111] direction in cubic coordinates x, y, z [see Fig. 9(c)]. For
a trigonal compression (e > 0) it goes down in energy since the oxygen ions move away from the
lobes, relieving a bit the Coulomb repulsion. In contrast, the ej doublet has the electron density

localized closer to the plane perpendicular to [111] and gets shifted up in energy.

2.1.5 Quenched angular momentum

The particular combinations of orbitals that got split in energy by the crystal field do not form
anymore the set of eigenstates of the L, operator like it was the case of |d,,). By separating
the to, and e, subspaces, the original angular momentum with [ = 2 got quenched as one can
see by considering for example the e, orbitals. One of them is |d,,) with m = 0, another one
combines m = +2. Since the magnetic quantum numbers differ by 2, all the matrix elements of
L, and L, are zero. L, matrix elements come zero as well so that L projected to the e, subspace
is strictly zero, i.e. the angular momentum is fully quenched. Still, remnants of the original
angular momentum are present in the set of ¢y, orbitals that are combinations of m = 1 and
m = %2, so that it is possible to have nonzero matrix elements of L, ,. In fact, as we explicitly
show below, they host an effective angular momentum with the quantum number [*f = 1. To
this end, we rearrange the basis a bit by combining

la) = H(=iln) —16), ) =10), o) = Z5(=ilm) +15)- (2.26)

In the new basis consisting of a, b, ¢, u, v, the angular momentum operators L,, L,, L, are
represented by the matrices

0 -1 0 | +v3i +i 0 +i 0 |—v3 +1
-1 0 -1 0 0 —i 0 +i 0 0
1 1
L,=— 0 -1 0 |—3i —i |, Ly=— 0 —i 0 |—V/3 +1 |,
CV2 V2
—V3i 0 +V3i 0 0 V3 0 =3 0 0
—q 0 +i 0 0 +1 0 +1 0 0
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-1 0 01]0 0
0 0 0[]0 +2i

L= 0 0 +1[0 0 (2.27)
0 0 01]0 0
0 -2 0 ]0 0

The t5, subspace operators found in the indicated upper left corner show a structure precisely
corresponding to L operator expressed in an [ = 1 basis up to an overall sign change. The
effective angular momentum operator may be thus defined as LT = —L projected to the tag
subspace. The states |a), |b), |c) then correspond to the LT eigenstates with m = +1, 0, and —1,
respectively. At the same time, these states are (L°T)? eigenstates corresponding to the quantum
number [*T = 1. In this basis LT = [Lef Lzﬁ, L] is represented by the proper set of angular
momentum matrices:

010 0 —i 0 +1 0 0
1 1
L= | — c— | i —il, . 2.28
\/5101 7|+ 0 —i 0 0 0 (2.28)
010 0 +i 0 0 0 -1

The effective angular momentum L°T just defined may be used to express the tetragonal
splitting in a compact way. The same shifts of the ¢5, levels as observed in Fig. 9(b) are obtained
using the Hamiltonian Agega[(LST)? — %] with Aetra denoting the splitting value. This is not
surprising, since the splitting Aiera stems from a quadrupolar correction to the crystal field
(proportional to €) and is thus naturally captured by a quadrupolar angular momentum operator.
Based on this symmetry argument, one can generalize the form of the ¢, splitting to other uniaxial
compression/elongation directions by taking

Hopie = A [(n- L) — 2] | (2.29)

where m is a unit vector along the selected direction. For example, the trigonal splitting of
Fig. 9(c) corresponds to n = [1, 1,1]/+/3. This brings us to a connection between the eigenstates
in Egs. (2.23)-(2.25) and L. Namely, the states |a;,) and legy) that split under trigonal
distortion into a singlet and doublet are eigenstates of m - LT with m = 0 and m = =1,
respectively. Even more explicitly, we can rotate the effective angular momentum operators from
the cubic coordinates xyz to the new coordinates XY Z [depicted in Fig. 9(c)] more appropriate
to the trigonal case:

1 1 2
Lx % V6 V3 L,
Ly | =] - % \/% 0 L,| - (2.30)
Ly, 11 1 ;
eff V3 V3 V3 eff

Using the three states |e], ), |aiy), and |e]_) as a basis, we find that the components Lx, Ly,
and Ly are represented by matrices identical to those in Eq. (2.28). These states therefore play
the same role as |a), |b), |c) of the tetragonal case.

Finally, let us comment on the off-diagonal blocks in (2.27) connecting the t,, and e, states.
These are not frequently used as the two subspaces are separated by the largest crystal-field
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splitting. However, in some situations they may become important. For example when consid-
ering a tyy system with large spin orbit coupling, the above matrix elements may bring a sizable
admixture of e, states to the predominantly ?5, ones.

2.2 Local correlations and multiplet structure of transition metal ions

In the previous section we have investigated the valence shell of a d ion from the single-electron
point of view, studying the orbitals and their splitting due to the crystal field. When the valence
shell is occupied by more than one electron, the Coulomb repulsion among them makes their
motion strongly correlated and organizes the electrons into many-body eigenstates that form the
ionic multiplet structure. In the following, we first analyze the structure of the Hamiltonian
capturing the Coulomb repulsion among valence electrons in d orbitals and then discuss some
examples of its diagonalization arriving at the multiplet structure. Apart from the Coulomb in-
teraction, the situation is further complicated by spin-orbit coupling that appears as a relativistic
quantum mechanical effect and tries to contra-align the spins of the individual electrons and their
orbital angular momenta. Such effects are of a crucial importance in iridates and ruthenates to
be discussed in the next parts of the thesis, we therefore devote a substantial part of this section
to a detailed exploration of the relevant ionic states restructured by the spin-orbit coupling.

2.2.1 Coulomb interactions among valence electrons

The starting point for a discussion of the many-body effects of the Coulomb repulsion among
electrons in a d shell is the second-quantized form of the corresponding Hamiltonian:

1
Heo = 5 SN Vags af 8,00, - (2.31)

aByd oo’

Here the indices a, B, 7, § run through the orbitals and the spin summation got restricted
because we are dealing with a spin-conserving charge-charge interaction. The matrix elements
of the Coulomb interaction take the form

d’r [ &' i (r) vs(r ) - Uy(r') s (r) - (2.32)

aﬁ'yé

We will again use the orbitals of the Tanabe-Sugano basis &, 1, (, u, v that are described by
real wavefunctions, making the above matrix elements real. They are also subject to obvious
symmetry relations
Vagys = Vayss = Vopya = Vaasy » (2-33>

reducing the number of the independent values from 5% = 625 to 120. This number will be
further (and drastically) reduced once the symmetry of the orbitals themselves is employed.

While the use of the Cartesian orbitals is convenient to easily incorporate the crystal field
splittings, the evaluation of the matrix elements is simpler when working with the spherical
orbitals d,, of Eq. (2.5). In that case one considers the matrix elements

* * 1
Vinimamams = 47?60 /d3 /dgr/ ( )m iy (77) i, () (2.34)

and constructs V.5 as linear combinations of V,, 1mamam,. The key tool is the multipole expansion
(2.2) of 1/|r — 7’| with the subsequent evaluation of the angular integrals via Eq. (2.7). The
radial integration is reduced to an evaluation of a set of so-called Slater-Condon parameters

2 o] o] l
. € d 2 dr’ 2 T< / 2
—47T€0/0 rr /0 r'r _rl;l flr)frh. (2.35)
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After some manipulations involving also the symmetry property of the spherical harmonics Y,", =
(—1)™Y, _,,, the matrix element (2.34) can be rearranged into

25 FO *
Virmamsms = ) m@zooum2 D7 (1) (92 —mymy|l, —m) (22, —mams|im) .
1=0,2,4

m=—I
(2.36)
An important feature is the Clebsch-Gordan coefficient (2200|/0) entering the above expression.
It limits the necessary Slater-Condon parameters to three numbers F(© F®) F®  These are
most conveniently expressed via Racah parameters [24]
A=FO_1p®  p=1lp@®_2p®H  Cc=232pF® (2.37)
that lead to compact formulas for V3,5 containing round coefficients.

As we found out, all the Coulomb matrix elements V5.5 can be expressed as linear combi-
nations of just three parameters A, B, C given by the radial part of the orbital wavefunctions.
Together with the crystal field splittings, they determine the multiplet structure which there-
fore depends on just very few parameters. Such a huge reduction is a result of the assumed
spherical symmetry i.e. it happens if the orbitals share the radial part of the wavefunction and
their angular dependence is given by spherical harmonics or their combinations. While this is in
general not true, in the case of localized orbitals in transition metal oxides it is still a reasonable
approximation and the corresponding description of the multiplet structure is often sufficient.
Going beyond this approximation, the number of independent parameters necessarily increases.
For example, when assuming the cubic symmetry, we have to deal with ten of them instead of
the Racah A, B, C' [25].

When considering the Coulomb repulsion in a valence shell, the sum in the Hamiltonian (2.31)
is usually systematically truncated. We will now discuss the set of matrix elements to be included
and rearrange the selected subset of terms into the conventional form of intra-ionic interactions.
The dominant matrix elements correspond to a Coulomb repulsion of two electrons sharing the
same orbital. The corresponding matrix element V... is the same for all the orbitals of the
Tanabe-Sugano basis and will be termed as the intra-orbital Hubbard U. In terms of the Racah
parameters, it is expressed as

U=A+4B+3C = Vaaoa - (2.38)

The relevant contributions extracted from Eq. (2.31) may be cast to the familiar form of the
intra-orbital Hubbard interaction

Hi=U> Natnay. (2.39)
(0%
The second kind of contributions to be included are two-orbital interactions with two distinct

pairs of identical indices in a/3yd. The corresponding matrix elements are of two types — Coulomb
integral for two different orbitals

Up =

62 1
47‘(’60 /d3T/d3T/ wi(r) |r —wz(')"/) e Vaﬂﬁa = Vﬁaaﬁ (240)

— |

and the exchange integral

e? 1
Jaﬁ = 47T€0 /dg’l‘/d?”r/ sz(’r)wﬁ(T) m ¢a(r/>¢ﬁ<7‘/) = Vaaﬁﬁ = V,Bﬁaa = Vaﬁaﬂ = Vgaga .
(2.41)

Both can be evaluated via Eq. (2.36) with a subsequent conversion to Tanabe-Sugano orbital
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Jap § n ¢ u v
¢ —  3B+C 3B+C| B+C 3B+C
n |3B+C — 3B+C| B+C 3B+C
¢ |3B+C 3B+C - |4B+C C
w | B+C B+C 4B+C| —  4AB+C
v |3B+C 3B+C C |4B+C -

Table 2: Exchange integrals J,g in terms of Racah parameters

basis. Table 2 gives the values of the exchange integrals in terms of the Racah parameters, the
Coulomb integrals may be obtained via the relation

U= Uag + 2Ja5 (2.42)

valid for our case of orbitals derived from the spherical harmonics. After collecting all the
contributions involving either U, or J,g, we arrive at the following two-orbital Hamiltonian:

Z Z[ Jap) NaoNgo + UapNaons, U] + Z Jop <O4BIO‘¢6T + ab‘]ﬁi&) . (2.43)

alp o o B

To make it more transparent, it is possible to combine the spin-dependent part of the inter-
orbital density-density interaction ) (nacMgs — NacNg,—o) and the second term from the right
(c@ﬁja iBT) into an inter-orbital spin-spin interaction. It is clear that these terms may only be
active between two singly-occupied orbitals. For the singly-occupied orbitals we can introduce
the corresponding spin operator S, (here associated with the orbital «) as

So=[3(S5+57), (S5 =55),82] with SF=ala,, Sy =ala,, S2=3(nar—na) (2.44)

that enables us to bring the intra-ionic Coulomb interaction into the final form

HCoul =U Z Uz + Z af a,B nanpg
a<p
-2 Z Jap Sa - Sp + Z Jap O‘%‘imﬁT ; (+ neglected terms) (2.45)
a<f a#f

where the individual terms represent the intra-orbital Hubbard interaction, inter-orbital Hubbard
interaction, Hund’s exchange, and inter-orbital pair-hopping term, respectively.

By inspecting Table 2 we notice, that the parametrization of the interactions in Hgow sim-
plifies when one considers a strictly fa4-only or eg-only system. In that case all relevant ex-
change integrals J,s are equal to Jy = 3B 4 C or Jy = 4B + C, respectively, and consequently
Uss = U = U — 2Jy. The resulting two-parameter Hamiltonian Hcow (U, Ju) is the Hubbard-
Kanamori Hamiltonian [26].

There are still many non-zero matrix elements in Eq. (2.31) that were omitted when con-
structing (2.45). These are summarized in Table 3. Note that they always involve both 5, and
eq orbitals at the same time so that they only lead to perturbative corrections for purely g,
or e, systems. However, they may become important when dealing with mixed #y,-¢, situation.
An important example — spin-state crossover of d® configuration — will be discussed in the next
paragraph.
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three-orbital four-orbital

[]& v =+2V3B [[&Lyv =+3B

ffe¢ L = —v3B I e = =3
Jf o' = —2V3B I én 75 ¢ = —2v3B
Jfm' o w' =+v3B [fn¢-Eev =+V3B

T12 T12

JI €5 =+V3B

Table 3: Nonzero matrix elements involving three or four different orbitals. The integrals are written in
an abbreviated form with the prime indicating the argument 7’ of the corresponding orbital wavefunction
while the absence of prime indicates the argument r. Further, r1o stands for |r — r/|. Together with
the symmetry property (2.33), the left and right columns of the table generate 24 and 40 V,, 3,5 matrix
elements, respectively.

2.2.2 lonic Hubbard model and multiplet structure

Together with the energy levels of the individual orbitals discussed in the Sec. 2.1, the above
Coulomb interaction Hamiltonian forms the ionic Hubbard model

1on Z Eal¥ a'ao' + HCoul (246>

oo

Before extending it further with the spin-orbit interaction in the next paragraph, we will inspect
the resulting multiplet structure (i.e. the spectrum of eigenstates for a fixed number of electrons)
in a few interesting cases.

Let us first comment on the general tendencies that can be intuitively inferred from the
structure of H;,,. For an isolated ion, all the orbital energies F, are equal and the eigenstates
are decided solely by the Coulomb interaction. The leading role takes the intra-orbital Hubbard
repulsion (given by the dominant parameter U) which tries to place electrons to different orbitals
whenever possible. The unpaired spins in singly-occupied orbitals are then organized by the
ferromagnetic Hund’s coupling to form the largest possible total spin. These observations are in
fact the content of the first Hund’s rule as discussed in standard textbooks [27]. The situation is
changed by the crystal field which splits the orbital energies E,. The primary splitting due to the
octahedral crystal field is the t55-¢4 one. Its value is substantial so that it may be energetically
favorable to keep electrons in the lower ¢y, levels, even though more doubly-occupied orbitals
appear and this scenario thus leads to a larger Hubbard repulsion and an energy loss in Hund’s
coupling. On this occasion, it should be also noted that the crystal values of the model parameters
are strongly affected by screening. This does not significantly modify the Hund’s exchange but
the Hubbard repulsion is quite reduced compared to free ions, increasing the relative importance
of the crystal field splitting.

From the formal point of view, the first three terms in Eq. (2.45) do not change the distribution
of electrons among the orbitals. This type of dynamics comes only due to the last term and is
constrained by the necessity to transfer a complete electron pair from a doubly occupied orbital
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Fig. 10: (a) Schematic representation of the six-electron many-body state corresponding to the tgg
electron configuration. The orbitals &, 0, ¢ are considered to be degenerate; in this and the following
figure they are vertically separated for clarity only. In second quantization, the state depicted in panel
(a) corresponds to ﬂ 51 ?ﬁ 171 Cl CI | ), where | ) is an empty state (no electrons in the valence shell). At
the bottom a visual representation of the six-electron cloud is shown. The angular distribution of the
total electron density (integrated in the radial direction) is captured as a surface plot where the distance
of the surface points to the origin is proportional to the integral density in the corresponding direction.
(b) States of the tgg configuration obtained by removing a single electron from the tgg configuration
shown in the panel (a). The electron clouds at the bottom bear some similarity to the p,, py, and p.
orbitals which is related to the effective angular momentum *f = 1 carried by the tag orbitals.

into an empty one. Thanks to the limited mixing of electron configurations, the identification of
the ionic eigenstates may be relatively simple, in spite of dealing with a correlated many-body
problem. The real troubles only start once we let the ions interact.

Our first illustrative example will be the tgg electron configuration which is relevant for the
physics of Kitaev materials NaslrOs or a-RuCl;. We assume that the crystal field splitting is
large enough so that it practically eliminates the e, orbitals.® For simplicity, we further assume
that the t9, orbitals are not split. The starting point is the tgg configuration with fully populated
to, orbitals shown in Fig. 10(a). The tgg configurations are obtained by removing one electron
from it. There are three possible choices of the corresponding orbital and two options for the
spin projection, leading altogether to six-fold degeneracy. The resulting layout of electrons among
orbitals allows only the Hubbard repulsion to be active so that the Coulomb energy evaluates
simply to 2U +8(U’ — 1.Ju) = 10(U — 2Jy). By observing the angular distribution of the electron
clouds as presented in Fig. 10, we notice that the tgg configuration has a full cubic symmetry
whereas the tgg configurations vaguely resemble the shapes of the Cartesian p,, p,, p. orbitals.
This visual similarity is related to the fact that by extracting a ts, electron as an [°T = 1 object
from the fully symmetric tgg configuration with total L¢f = 0, we created a configuration with
LT = 1 again. A more precise symmetry classification is embedded in the usual notation of the
members of the multiplet structure. Being eigenstates of some symmetric Hamiltonian, each set of
degenerate eigenstates constitutes a basis for a certain representation of the respective symmetry
group. In our case the rotation group O of a cube/octahedron is the relevant one (extending it by
the spatial inversion, we get the group Oy,). It has two one-dimensional representations A, As,
one two-dimensional representation E, and two three-dimensional representations T, T5. The
three eigenstates presented in Fig. 10(b) are a basis for the T5 representation of O [25]. When

6This low-spin situation is the case in the relevant Ir** (5d) and Ru®* (4d) ions; the 3d ions usually prefer to
employ the e, orbitals to form a larger total spin and hence optimize Hund’s exchange.
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Fig. 11: (a), (b) Schematic representation of the many-body states obtained by removing two electrons
from the 5 , configuration, either from two different orbitals (a), or from the same orbital (b). In the case
(a), only one of the four possible spin configurations for each electron distribution is shown. (c¢) Level
splitting due to the Coulomb interaction. The lowest nine states are spin-triplets 377 based on the states
of the type shown in panel (a). The same three orbital populations may form also singlets 7% that
merge with the two 'E spin-singlets to form a five-fold degenerate level. Well above the others is the
fully symmetric !A; singlet.

referring to a multiplet member, the label of the group representation comes together with the
multiplicity in front. By multiplicity one means the number of possible spin projection values
for the total spin of the state. Here we have three spin—% doublets so the full conventional label
for the six-fold degenerate t5, states is *T5.

The case of the t3, configuration discussed so far is fairly trivial. A bit more involved is
the analysis of the t‘ég configuration. Here one can consider two independent classes of states
presented in Fig. 11(a) and (b). The former one consists of two singly-occupied orbitals and one
doubly occupied. Again there are three possibilities how to arrange them. All three configurations
have the same Hubbard repulsion energy U + 5(U’" — $.Ju) = 6(U — 2Ju) — 3Ju. Due to the two
singly-occupied orbitals, the Hund’s coupling comes now into play while the pair hopping term
is clearly inactive. The two unpaired Spins—% can form either a triplet or a singlet state. The
respective full Coulomb energies of the T} triplets and '7), singlets are then 6U — 13.Jy and
6U — 11Jy differing by 2Jy. The corresponding states can be easily expressed in the second
quantization formalism, for example the four states based on |n () of Fig. 11(a) read as:

PTi(n¢, S.=+1)) =&l elnlcl), (2.47)

T ¢, 5.=0) % el i +nieh), (2.48)
PTi(n¢, S.=—1)) =&l ¢l 1), (2.49)

)
1 1
' T5(n¢)) 7 el -nldh). (2.50)

As a consequence of having one ty, orbital populated more than the others, the electron-density
clouds of the twelve eigenstates 3T}, Ty become asymmetric. As shown in Fig. 11(c), they
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resemble those of the d,., d.,, d;, orbitals. The second class of states that do not interact with
the former ones is shown in Fig. 11(b). In each of these states, one of the three t5, orbitals is
empty while the other two are doubly occupied which makes the states singlets in terms of total
spin. This configuration precludes Hund’s coupling but activates the pair hopping proportional

to Jyg as well. The eigenstates are obtained by diagonalizing the pair hopping term expressed in
the basis states |€2), |n?), and |¢?) of Fig. 11(b):

011
Jul1 0 1. (2.51)
110

Doing so, we get a two-fold degenerate eigenvalue —Jy and the associated 'E states

1
6

'E,) = 7 (I*) = 1€%)) (2.53)

and a non-degenerate eigenvalue +2.Jy associated with a fully symmetric ' A; state

| Ez) (1€%) + ") = 2¢%) . (2.52)

-5

1
V3

The Hubbard repulsion energy amounts to 2U + 4(U’ — 1Jy) = 6U — 10Jy, by adding the
eigenvalues of the pair hopping we find that ' E merge with the 175 level while ' A, is singled out
at the top of the multiplet level scheme in Fig. 11(c).

The Cartesian formulation of the multiplet structure as demonstrated above may be conve-
nient when considering e.g. further splitting of the orbitals in a tetragonal crystal field. However,
we need to prepare ground for the inclusion of the spin-orbit coupling in the next paragraph. In
this context the role of L°T is essential so that the multiplet structure of both t5, and t3, should

MAr) = —= (16%) + I7*) +1¢%)) - (2.54)

be reformulated as L°T eigenstates. The Hamiltonian including the Coulomb interaction com-
mutes with L°T and S, the eigenstates will be therefore classified by the corresponding quantum
numbers and denoted by |LT, LT S S.).
To obtain compact expressions in the following, we adopt a hole picture and think about
one-hole or two-hole configurations on top of the tgg “vacuum”. The one-hole states will carry
1

L =1 and S = 3. It is convenient to introduce the hole operators in such a way that they

create states with the selected spin and LT quantum numbers and give them suitable phases.
For our purpose, the best choice of connecting the hole and electron operators is

hjna = (_1)m(_0_) Com,—o (255)

with m denoting the magnetic quantum number associated with LT and o = +1 indicating the
up/down configuration of spin. The logic behind the above construction is as follows: (i) To create
a configuration with mo based on the fully symmetric (LT = 0) and spinless (S = 0) 3, state,
we need to remove an electron with the opposite quantum numbers. (ii) The phase factor (—1)™

is related to a conversion between Y, and Y;* . (iii) The factor (—o) is generated by reordering

the fermionic operators to follow the sequence fi 51 ﬂ 171 d Cj in the final tgg configuration. In

analogy with the notation of the a, b, ¢ electron states in Eq. (2.26), the hole operators a, b, ¢ will
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be associated with m = +1, 0, and —1, respectively. Put explicitly in terms of the annihilation
operators &, 1,5, (,, they read as

af = —L(im+&), bl =+, ¢ = —J5(im — &). (2.56)

Defined this way, al (b], c!) acting on the state with fully occupied 5, orbitals

15,0 = &l elninl cIcl)) (2.57)

creates the 5, state with spin ¢ and the LS quantum number equal to +1 (0, —1). Using the
systematic labeling of the eigenstates by |L°T, L¢T S S.), we have for example

1L d 48 = al 1), 258)

The phases of all the six generated states follow Condon-Shortley convention so that they give
canonical matrix elements of both total spin and total effective orbital momentum operators
S and L. This feature will be useful later when combining them following the rules for the
addition of angular momenta.

The selection of LT quantization axis proceeds in accordance with the potential further
reduction of the octahedral symmetry. Here we have used LT for the tetragonal case, for the
trigonal case one has to implement the a;, and €, states of Eqgs. (2.23)-(2.25) into the definition
of the hole operators to reflect the quantization in the [111] direction. Moreover, when including
the spin-orbit coupling, the spin quantization axis should be consistently changed to [111] as
well. The derivation of an explicit linear relation between the electron operators &,, 1,, (, and
the trigonal hole operators is a useful exercise though the relation itself has a limited use. It may
be formulated as follows:

a$ — Are™sinf — A cos aI — Are™tcosf+ A sinf  with tan20 =2 (2.59)
and similarly for b, c. The operators A, B, C are defined as
Ay = L (e*2mif3e, o723y Y,
By = (& + 1o +Co)

Ca _ _\/Ag(e—QTri/fﬂfo_ + e+27ri/3770 + Co‘) ) (260)

B

The hole operators are labeled according to [111] projections of the effective orbital momentum
and spin, the electron operators use the z spin quantization axis. Equations (2.59) and (2.60)
constitute a trigonal analog of Eq. (2.56). When expressing the matrices for the X, Y, and Z
components of S and L°T operators [c.f. Fig. 9(c)], the result is identical to the matrices for the
x, y, and z components in the basis given by Eq. (2.56).

Now we are going to assemble the eigenstates with two holes that will correspond to the t%g
multiplet structure. This can be achieved simply by forming LT and S eigenstates of the two
holes. The reason for this simplification is that the Coulomb Hamiltonian for a ¢55-only valence
shell can be cast to a transparent form

Hiy, = (U = 3Jg)N(N — 1) + 2JgN — 2J5 8% — LI (L7)?, (2.61)

where N stands for number of electrons and S, LT are the total spin and total effective orbital
momentum as before. For a fixed number of electrons, this form of the Hamiltonian demonstrates
the tendency to maximize total spin in the first place and L% in the second.
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By combining the two L¢® = 1 holes, we can obtain the possible total L*f = 0, 1, 2 states with
the help of the tables of Clebsch-Gordan coefficients. The total spin will automatically follow by
observing the symmetry of the state. Symmetric or antisymmetric states in terms of orbitals have
to be of a complementary symmetry in terms of spins. This means that the symmetric orbital
combinations will be spin singlets while the two holes in an antisymmetric orbital combination
have to form a spin triplet. The nondegenerate topmost energy state 'A; shown in Fig. 11(b) is
a singlet in both orbital and spin sector, i.e. it has L*f = 0 and S = 0:

L%, L2, S, 5.) = 10,0,0,0) = L @M —bl! + c}aj) 115,) (2.62)

The five-fold degeneracy of the level encompassing 'T; and 'F in Fig. 11(b) is also explained, as
it corresponds to L°T = 2 and S = 0 with the five LT eigenstates given explicitly by

12,+2,0,0 —aTa¢|t )
\/ié <aTC¢+QbTbT +CT%> [5,)

ot
%(T%—I—ch) 1£5,) ,
clel [45,) . (2.63)

12,41,0,0

)
)
12,0,0,0)
12,—1,0,0)
12,-2,0,0) =

Finally, the low-energy triplets 3T} have L¢f = 1 and S = 1. We write down the corresponding
states using an abbreviated |L¢T S.) notation:

+1,41) =alol[£5,),  [+1,0) =% (aTbT + aIbT> 65, 1, —1) = alb] |65,

10,+1) = all [£5,) 0,0) = L (aTci + aicT) 1#5,), 10, 1) = alcl [£5,),

[~ 1,+1) = bl 85,y |-1,0) =2 (bT bicT> 15, [=1,—1) =5l [,
(2.64)

The phases of the t3, states given in Eqs. (2.62), (2.63), (2.64) are again compatible with the
Condon-Shortley convention so that they generate canonical matrices of LT and S operators
when used as a basis.

Having explored in detail the t‘zlg and tgg configurations, we will now have a brief look at
a combined ty,-€, situation. As an illustration, we will use a particularly rich case of d° ions
such as Co*" or Fe?T well known for spin-state crossover phenomena [28]. The basic physics
can be understood based on the sketches in Fig. 12(a). These show so-called low-spin (LS),
intermediate-spin (IS), and high-spin (HS) configurations of a d° ion differing in the distribution
of the six electrons among the ¢y, and e, levels. Placing an electron to the e, levels costs the
extra crystal-field energy A but doing so, we can create two unpaired spins that are subject
to Hund’s coupling and may therefore bring an energy gain proportional to Jy. For simplicity,
we first ignore the differences in Jy for t5, and e, orbitals. More precisely, we set the Racah
parameter B to zero leading to J,3 = Jy = C and vanishing matrix elements in Table 3. We
will also not consider the perturbative corrections by pair hopping of ty, electrons into empty e,
levels. By evaluating the Hubbard repulsion in the tgg configuration, we get the reference energy

E(t5,) = Ey = 15(U — 2.Ju) . (2.65)
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Fig. 12: (a) Schematic representation of the low-spin, intermediate-spin, and high-spin states of d° ion
such as Co®T. The relative energies of the states are determined by the balance between the crystal
field splitting A supporting configurations with less e, electrons and Hund’s coupling that gains energy
by forming the maximum total spin. (b) Multiplet structure of the tgge; configuration. The lower two
triplets 3T1,2 correspond to the intermediate-spin states. The electron clouds for 77 and T slightly
differ. Their internal structure can be understood in terms of a hole in tgg configuration combined with
the e, electrons, leading to either a triplet or a singlet total spin state. 17 states involve e, orbital lying

in the plane defined by the to, hole, the out-of-plane e, orbital is employed in the T5 states.

The configuration with one e, electron contains two unpaired spins—% so that the state may be
total singlet or triplet. The respective energies are Ey + A — 3Jg and Fy + A — Jy with the
triplet state (intermediate spin S = 1) being supported by Hund’s coupling. In case of the
configurations with two e, electrons in different e, orbitals, we have to sort out the interaction of
four unpaired spins which leads to the energy E = Ey+ 2A — [S(S + 1) + 2].Ji as function of the
total spin S. The lowest state is here the high-spin S = 2 with the energy 2A — 8Jy above Ej.
Depending on the balance between the crystal field splitting and Hund’s coupling strength, the
LS, IS, and HS states may be close in energy so that the total spin of the ions may be changed
by affecting slightly their crystal/ligand environment, e.g. by pressure. The low-lying excited
states may also be thermally activated or brought into play by inter-ionic interactions. Later in
Section 4 we will be dealing with an analogous situation created by spin-orbit coupling.

We conclude this paragraph by discussing the detailed multiplet structure of the tgge; con-
figuration for nonzero Racah B whose presence further splits the triplet and singlet levels. As
presented in Fig. 12(b), the non-uniform interaction of the ¢y, orbitals with the e, ones (see
Table. 2) makes an energy distinction between the various combinations of the orbitals. When
one interprets the missing electron in ¢y, orbitals as a positively charged hole, it is intuitively
expected that the negatively charged e, electron will be preferably put into the e, orbital better
matching this hole in shape. This is indeed observed in Fig. 12(b), the configurations where the
ey orbital 22 — y* matches the plane defined by the zy hole are lower than those involving the
out-of-plane 3z% — r? orbital. Of course, the hole can be put to the other ¢y, orbitals as well.
In that case one selects other in-plane/out-of-plane combinations of the e, orbitals. Each of the
levels shown in Fig. 12(b) is thus three-fold orbitally degenerate, giving in total 24 states of the

multiplet structure as it has to be for the 3 e; configuration. At this point it is important to
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fully employ the matrix elements from Table 3 that we neglected in Eq. (2.45). By omitting
them, we would artificially split the levels further and break the octahedral symmetry.

2.2.3 Spin-orbit coupling

Apart from the Coulomb interaction discussed in detail in the previous paragraphs, additional
interactions originating in relativistic quantum mechanics come into play. In the hydrogen atom
these just give the fine structure of the energy levels and can be neglected in the first approxi-
mation. This will not be the case in the heavier transition metal ions under our consideration.
As we progress down through the periodic table of elements, one of the relativistic corrections —
the spin-orbit coupling — becomes increasingly important and essentially rearranges the multiplet
structures. Intuitively it may be understood by considering the electron in its rest frame where
it is encircled by the positively charged nucleus. The magnetic field generated by the “current
loop” provided by the nucleus then acts on the spin of the electron. More generally and on a
quantitative level, we may estimate this effect by taking a static electrostatic field E the elec-
tron moves in (e.g. that of the nucleus), performing Lorentz transformation to the rest frame of
the electron which gives the magnetic field B’ &~ —(v x E)/c?, and letting this magnetic field
act on the magnetic moment associated with the electronic spin via the usual 2ug s - B’. This
simple estimate leads to a correct result up to a factor of 2. A proper derivation is based on an
expansion of the solution of the Dirac equation up to the order v?/c? and gives the interaction
of the form [29]
eh

2m2c?
Here the electron spin operator s is again dimensionless (i.e. it does not include k). For the
centrally-symmetric potential of an atom, the electric field is radial and related to the radial
derivative of the potential energy V for the electron via

Hsoc = s-(Exp). (2.66)

E-_vp-_"rd®_1rdh (2.67)

r dr er dr

The use of the above radial field in Eq. (2.66) brings the dimensionless electron angular momen-
tum operator I = (r x p)/h and the interaction Hamiltonian becomes

h? 1dV

2m2c2 r dr

Hsoc = s-1 (2.68)
giving the interaction its name: spin-orbit coupling. Since the binding potential for electrons is an
increasing function of distance, the prefactor in (2.68) is positive so that the spin of an electron
is preferably antiparallel to its orbital momentum. To make Hgoc practical, the prefactor is
approximated by its average with the main contribution apparently coming from the vicinity of
the nucleus. Often it is referred to a result obtained from the scaling of the Schrédinger equation
for hydrogen-like atoms with the potential V' oc —Ze?/r which gives

1dV A 1
(9 (5)- (2
rdr r r hydrogen

suggesting the spin-orbit coupling strength proportional to Z*. However, as argued by Landau
and Lifshitz [30], one has to combine the above scaling of unscreened estimate (o< Z*) with the
scaling of the probability for a valence electron being close to the nucleus (x 1/Z?), leading to
an alternative estimate of the strength proportional to Z2. Even when considering this reduced
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scaling, the spin-orbit coupling quickly increases with Z and becomes well visible in transition
metal ions. We therefore have to extend our H,,, with an extra term

HSOC = CZ S; - ll s (270)

where the sum runs through our valence electrons and ( is a positive constant. In 3d elements,
( takes the values of tens of meV, in the heavier 5d elements it reaches hundreds of meV, for
example ¢ ~ 0.4 eV in Ir*+ [31].

There are two standard schemes how to incorporate the above spin-orbit coupling into the
multiplet structure. Within the framework of so-called j-j coupling scheme one first adds the
spin and orbital momenta of the individual electrons to form the total angular momenta 3 = s+1,
diagonalizing thereby the spin-orbit interaction, and then takes care of the Coulomb interaction.
The multiplet structure is then described in terms of the total angular momentum J = > j,
and its constituting elements j,. This approach is more adequate for the case of a very strong
spin-orbit coupling such as that encountered in lanthanides or actinides. We will use the LS
coupling scheme that is appropriate for 3d, 4d, and with some reservations also for 5d transition
metal ions, where the spin orbit-coupling is weaker and Hund’s coupling is decisive. Here one first
forms the total angular momentum L and total spin S states as we did in the previous paragraph
and later mixes them via spin-orbit coupling. The formal tool to perform this operation is the
Wigner-Eckart theorem. As its consequence, when working in the fixed L and fixed S subspaces,
the spin orbit coupling (2.70) turns out to be equivalent to properly scaled S - L [32]. We will
therefore make a replacement

Hsoc =AS - L (within a subspace with fixed L and S) (2.71)

making the diagonalization of the spin-orbit coupling particularly simple. One can invoke also
an intuitive argument to support this step: Hund’s coupling tends to align the electrons to form
states with the maximum S. In that case we can utilize the relation s; = §/2S with 25 being
the number of electrons, which leads to

~ & <
Hsoc ~ = S Xi:l’_zss L. (2.72)

This way we also obtained a connection between ¢ and A in a form A = (/25 which is correct
for less than half-filled 5, shell. In the case of more than half-filled 5, shell, the sign is opposite,
A = —(/2S. We will make one more sign twist by utilizing the more convenient effective orbital
momentum LT which is —L projected to tog orbitals.

As we have learned from Eq. (2.61), the Jy part of the Coulomb interaction for a ¢y, shell
separates the subspaces with fixed S and L, which is the necessary prerequisite for the above
replacement in Hgoc. Taking all the relevant factors and signs into account, the spin-orbit
coupling term to be diagonalized reads as

Hsoc =~ NS - LT = % (L + S)> — (L*")* — §°] = % [J? — (L") — §7] (2.73)
with A = ( for the tgg configuration and A = (/2 for t‘glg. We have already incorporated the total
angular momentum J = LT 4+ S that enables an elegant solution of the problem by constructing
the eigenstates of J. The Condon-Shortley phase convention that we have consistently kept in
the previous paragraph makes this task straightforward — it is sufficient to combine the LT and
S, eigenstates using standard tables of Clebsch-Gordan coefficients.
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Fig. 13: (a) Energy levels of a tgg ion created by spin-orbit coupling. The “shapes” of the states
corresponding to the upper quartet and lower doublet are depicted in a way similar to the previous orbital
figures. For better clarity, we show only the part corresponding to the hole in the tgg configuration.
The spin polarization of the hole density obtained as normalized py — p; is indicated by color. (b) Spin
and orbital decomposition of the J, = :I:% holes. The spin polarization is again indicated by color as in
panel (a), the states with nonzero effective orbital momentum have a circular arrow attached.

Let us first focus on the simpler case of the t3, configuration. Here we combine LT =1 and
S = % states which results in a multiplet structure consisting of a J = % doublet and a J = %

quartet [see Fig. 13(a)]. The level splitting due to the term %)\J2 in Hsoc amounts to %)\. The
explicit wavefunctions can be written using the |L%, S,) states or the hole operators introduced
e.g. in Eq. (2.56). For the lower doublet we get’

J=3 L=4d) = +/2 [+ 1) /S0 = (+\/§a1 —\/3 bi) 15,) = DI J15,)
I=bd==3) = /500 - 110 = (/5 ol - /3 ) 1) = DLy )

The “shapes” of the holes corresponding to these states depicted in Fig. 13(a) and in a de-
composed form in Fig. 13(b) enable to appreciate one particular aspect of the wavefunctions
influenced by spin-orbit coupling. Whenever in some part of its wavefunction the hole shows an
orbital motion, the spin-orbit coupling gets activated and tries to contra-align the hole spin and
the corresponding orbital momentum. This effect generates a nonuniform spatial distribution of
the spin polarization of the hole (or electron) density indicated by color in Fig. 13. As we will see
in Sec. 3, the resulting entanglement of spin and orbital degrees of freedom may have a crucial im-
pact on the inter-ionic exchange interactions. For completeness, we also give explicit expressions
for the states of the upper quartet, again following the Condon-Shortley phase convention:

/=3, J.=+3) = al |t3,) = Q' ,[£5,) .

r==ih = (Vial+ 30 1) = QL.

"Let us note, that the double degeneracy of the ionic ground state for t‘;’g configuration is guaranteed by
Kramers theorem. Since the ionic Hamiltonian is invariant with respect to time-reversal symmetry, its ground
state manifold for an odd number of electrons will be spanned by two degenerate partners related by the time-
reversal operation which is well visible in Eq. (2.74) and its pictorial representation in Fig. 13(b).
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= (Vi i) =al ),

—§) =l It3,) = Q" [15,) (2.75)

/=3,

l\DIOO

J,=
J.

/=3,

NIOJ

In a similar way, one can include the spin-orbit interaction into the multiplet structure of the
t4g configuration. The L°T = 0 and L°T = 2 spin-singlets of Eqs. (2.62) and (2.63), respectively,
are not affected, the spin-orbit interaction in the LS coupling scheme only reorganizes the L =
1, S =1 states of Eq. (2.64). Three energy levels corresponding to J = 0, 1, and 2 are generated
within this sector as depicted in Fig. 14(a). The lowest state is a nonmagnetic singlet of total
angular momentum J with fully compensated spin and orbital momentum. Written explicitly
using | L%, S,) notation for the constituting parts or using the hole operators, it reads as

1 1
=0, J.=0) = = (1+1,=1) = [0,0) +[~1,+1)) = — [am - %(a}cj + aM) + b}cﬂ #3,).
(2.76)
The three components mutually compensating their spin and orbital momentum are presented
in Fig. 14(b) along with the final shape of the two-hole cloud corresponding to this state. It has
cubic symmetry and shows no spin polarization. The next three states separated by excitation
energy A = %Q form a triplet with total angular momentum J = 1. They carry certain magnetic
moment but as it was mentioned in the introductory Sec. 1.5 and as we will see in detail in the
next paragraph, the magnetism of the tég configuration is primarily of Van Vleck type, residing
“on the transition” between the above J = 0 state and J = 1 triplet states. The states of the
triplet can be written in a standard way using the |L°T S.) eigenstates of Eq. (2.64)

[J=1,J.=+1) = 55 (|+1,0) = [0, +1)) ,
‘J:L JZ:0> = \/Lﬁ (‘—i_la _1> - ‘_1?+1>) )
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Fig. 14: (a) Final energy level scheme of t;"g configuration (LS coupling). Hund’s coupling first separates
the low-energy triplet sector with LT = 1 from the two singlet sectors. Spin-orbit coupling rearranges
the triplet sector into three sets of J eigenstates with total angular momentum J = 0, 1, and 2.
(b) Shapes of the two-hole states corresponding to J = 0, 1, and 2 (from bottom to top). The lowest
state with J = 0 is decomposed into its spin and orbital components.
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[J=1,/.=-1) = 55 (/0,~1) — [-1,0)) . (2.77)

Finally, the topmost states generated within the L% = 1, S = 1 sector are the J = 2 states at
the energy 3\ relative to the J = 0 ionic ground state. They are given by

|J=2,J.=+2) = |+1,+1),
[J=2,J.=+1) = 55 (|+1,0) +10,+1)) ,
[J=2,J.=0) = 5 (|+1,—1) +2[0,0) + [~ 1,+1)) ,
[J=2,J.=~1) = 55 (10, ~1) + |- 1,0)) ,
|J=2,J,==2) =|—1,-1). (2.78)

At this point we are ready to briefly discuss the differences between the LS and j-j coupling
schemes. It should be first noted, that the spin-orbit coupling was not fully diagonalized in the
above procedure. The problem is the separate consideration of each of the L°¥, S sectors. In
fact, the spin-orbit coupling includes contributions beyond AS - LT that bring additional mixing
between the sectors. The conservation of the total angular momentum is respected but this still
allows the mixing of the two J = 0 singlets of Eq. (2.62) (L*f = 0, S = 0) and Eq. (2.76)
(L*" =1, S = 1) or the mixing of J = 2 states with the same .J, projection (the J = 1 triplet
states have no partners to mix with). To put things explicitly, by using | L%, S; J, J.) = |1,1;0,0)
and |0,0;0,0) as the basis of the J = 0 subspace, the ionic Hamiltonian takes the form

6 1305+ | -V (2.79)
—V2¢  5Jy

with the diagonal part coinciding with the J = 0 levels shown in Fig. 14(a). As one can see, the
mixing due to the spin-orbit coupling is not significant provided that ¢ is much smaller than the
separation of the two levels ~ 5.Jy. Now we can address the same subspace using the j-j coupling
scheme. To this end we take the hole operators producing the J = % and J = % eigenstates of
a single hole (i.e. t5, configuration) and combine them to form two-hole states of given total
angular momentum. In Egs. (2.74) and (2.75) we have denoted the respective hole operators as
DY (J, ==+1) and QF (J. = £1,£3). The J = 0 states can be obtained by combining either
two j = % holes

1,23 J, J2) = |3,3:0,0) = DY D*1|t ) (2.80)

or two j = % holes

o 1

Using these two states as the basis, we get for the matrix of the ionic Hamiltonian

27,9 5V2 g
6U — 1oy + 0% ) (2.82)
%ﬁJH T+ ¢

The roles of Hund’s coupling and spin-orbit coupling are interchanged now. Spin-orbit coupling
is diagonalized while Hund’s coupling brings the mixing of the two configurations that would
be neglected in the j-j coupling scheme. Nevertheless, when including the off-diagonal matrix
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Fig. 15: Lowest energy levels for various d" configurations composed of ¢34 electrons only. The single-
electron spin-orbit coupling constant ( is used in all cases to indicate the splitting. The schematics at
the bottom illustrate the addition of the spin and effective orbital momentum in the ground state.

elements both in Eq. (2.79) (going beyond the LS coupling scheme) and Eq. (2.82) (going beyond
the j-j coupling scheme), we arrive at the same exact eigenvalues of the ionic Hamiltonian.

To conclude this paragraph, we show in Fig. 15 the low-energy level structure established
by the spin-orbit coupling for all the non-trivial ¢ electron configurations with degenerate ¢,
orbitals. The figure illustrates the reciprocity of the pairs of complementary configurations d'-d°,
d*>-d* that is caused by the sign change of the spin orbit coupling A as we increase the number of
electrons. While the effective orbital momentum and spin support each other in the case of the
less than half-filled configurations, they try to compensate each other in the more than half-filled
case. The middle configuration with three electrons maximizes the spin but does not carry the
effective orbital momentum.

2.2.4 Magnetic moment

Magnetic materials are most naturally investigated by probes that couple to magnetic moments.
In the short final paragraph of this section, we will study the connection between the ionic
magnetic moment and the various angular momenta used in the previous text. The magnetic
moment is contributed by both the orbital momenta and spins of the individual electrons of the
open valence shell that sum up to total orbital momentum and total spin

M = —pup Y (L + gosi) = —pus(L + g0S) (2.83)

with pup = 0.05788 meV T~! being the Bohr magneton. The prefactors for the orbital part and
spin part differ by the electron g-factor gy = 2.0023... which is well approximated by 2 for our
purposes. The magnetic moments couple to magnetic fields via the Hamiltonian

Hﬁeld =—-B-M= /,LBB : (L + gOS) (284)

analogous to the interaction of a classical magnetic dipole with magnetic field. For convenience,
the magnetic moment is sometimes redefined as M = L + ¢oS removing the minus sign and
measuring in Bohr magnetons. The interaction with the field in the form pugB-M should be
used in such a case.

Magnetic moment is a vector operator and by virtue of the Wigner-Eckart theorem, its matrix
elements between the states within a subspace with fixed L, S, J are proportional to the matrix
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elements of the other vector operators L, S, J. In the case of free ions, the relation between the
magnetic moment and the total angular momentum is given by the well-known Landé g-factor

3 S(S+1)—L(L+1)

oLST) =5+ = (2.85)

In the crystalline environment the above formula does not apply since the orbital part of
the magnetic moment is fully or partially suppressed. As a first example we may start with
the situation of undoped high-T, cuprates where the Cu®** ions have d° electron configuration
with one hole in the e, orbital of 22 — y* symmetry. As evident from Eq. (2.27), the orbital
moment of e, orbitals is fully quenched so that the magnetic moment appears only due to the
spin—% of the hole made in the fully populated and thus fully symmetric d'° shell. A more
complicated situation occurs if the ¢y, orbitals carrying reduced L°T participate in the formation
of the magnetic moment M = 28 — kL°" (expressed within the “positive” convention). The
second contribution comes with a reduction factor x due to covalency effects between transition
metal ion and oxygens, but let us ignore this in the following and set k = 1.

For the tgg configuration, the spin-orbit coupling led to the J = % doublet ground state.
When comparing the corresponding operator matrices, we find, that within the two-dimensional
J = % subspace the following relations hold: S = —%J and L°T = %J . The magnetic moment
thus reads as

M =28 — LT = 27 (2.86)

giving the g factor of —2 for the J = 5 doublet. For the upper J = % quartet of the same
configuration we find § = %J and L°T %J , so that the spin and orbital contributions cancel
in 28 — L™ = 0 and the upper quartet is thus nonmagnetic. The entanglement of spin and
orbital angular momentum generates also nonzero matrix elements of the magnetic moment that
connect the J = % and J = % states, making the quartet visible in magnetic excitation spectra.

Such Van Vleck type of magnetic moment is even more interesting in the case of the t%g
configuration. Having the future applications in Sec. 4 in mind, we will focus on the lowest
energy sector consisting of the nonmagnetic J = 0 singlet serving as the ionic ground state and
the J = 1 triplet. The triplet states themselves carry the magnetic moment M = 28 — L°T = %J
corresponding to a relatively small g-factor % The main part of the magnetic moment is available
in the transitions between the J = 0 and J = 1 states. To capture this Van Vleck moment in
a transparent way we introduce the set of four operators s, T, 1, Ty, T via the creation of the
J =0, 1 states given in Eqgs. (2.76) and (2.77) ®

1
2

sT|ts,) =1J=0,1=0) T} [t5,)=—|J=1,J.=m) (2.87)
and arrange the triplet ones to a Cartesian form T = (7,,T,,T,) with

1 1
e Ty =T4), T,=—(To1+T4), T,=iTy. 2.88
Z\/§( +1 1) y \/5( +1 1) 0 ( )

By observing the nonzero matrix elements of the magnetic moment operator, we find two cate-
gories:

T

(s| (28 — L), |Ts) = —v6id.s  and  (Ts| (28 — L), |Ty) = _% oy . (2.89)

8Note the negative sign in the triplet states in Eq. (2.87), this was introduced to have the notation compatible
with the papers cited later in Sec. 4.
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The magnetic moment operator reproducing these matrix elements in the selected four-dimensional
J =0, 1 subspace can be written down in an elegant way

M =28 - L" = —V6i(s'T — T's) — 3i(T'x T). (2.90)

In this form it is clear that the major potential to generate a magnetic moment have the tran-
sitions between s and T states, the second part is the already mentioned contribution of the J
moment of the triplet that is equivalent to —i(T"" x T') within the J = 0, 1 subspace.

2.3 Electronic hopping and tight-binding approximation

So far we have been dealing with the (rather complex) physics of correlated valence shells of
the individual ions. In this section we are going to activate connections between the ions in the
form of electronic hopping. There will not be any many-body aspects discussed here as our main
goal is just to get the matrix elements enabling a single electron to move from site to site — so-
called tight-binding parameters entering a single-electron hopping Hamiltonian. As a motivating
example we start by considering independent electrons moving in a crystal consisting of identical
atoms arranged in a simple lattice. Their wavefunctions obey the Schrodinger equation

——V2 + Z Vi (r U=FEV, (2.91)

where Vo (r — R) is the atomic potential for an atom placed at site R. Summed through the
lattices sites, the atomic potentials generate a periodic crystal potential. In the tight-binding
approximation to the problem (2.91), one assumes that the relevant states are well localized so
that the electron wavefunctions can be constructed as linear combinations of atomic orbitals.
This concept is illustrated by Fig. 16 where we construct a virtual two-dimensional crystal made
out of potential wells of circular symmetry and study the evolution of its energy levels when
reducing the lattice spacing, i.e. bringing the initially isolated atoms closer to each other. At
very large lattice spacing, the spectrum of energy levels has a discrete structure below the top of
the crystal potential, corresponding to the individual bound states of the isolated wells. Above
that threshold energy, delocalized states forming a continuum are found. As we bring the “atoms”
closer and closer, the localized states start to overlap and their interaction produces energy bands
of increasing bandwidth. The higher-energy bound states are forming bands sooner because they
have a larger spatial extent and overlap more easily. This is an analogy of the atomic orbitals in a
crystal - the valence ones form bands while the deep electron levels retain their atomic character.
It is intuitively clear that in the situation with rather well localized states (the electrons are
“tightly bound” to their atoms), the appropriate model Hamiltonian should be of the form

Hrp = Z €n CILRCnR - Z tuw (AR) CL/,RJFAR CaR| > (2.92)
nR n'AR

where the operators cL g and c, p create/annihilate an electron in the state |¢,g) corresponding

to orbital n at site R. The first part of this tight-binding Hamiltonian Hrg just counts the
energies of the occupied orbitals [c.f. the energies ¢, in (2.46)], the second part captures the
hopping of electrons between the orbitals located at R and R + AR. The amplitudes of the
hopping processes are the matrix elements of the original crystal Hamiltonian such as that of
Eq. (2.91): tuw(AR) = —(¢n riar| H|dnr). The signs are introduced in such a way that the
hopping parameters ¢t will be mostly positive. For the sake of brevity, we ignore spin that is
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Fig. 16: (left) Wavefunctions of the lowest eigenstates in the potential well described by the 2D potential
Var (1) = Voexp(—rr) ro/(r +10) with Vo = 5eV, k = 0.5nm ™!, ryg = 0.5 nm. The indicated levels are
either non-degenerate or two-fold degenerate and they are labeled in analogy with atomic orbitals.
(right) Density of states for a square lattice of the above wells as function of the inverse lattice spacing
1/a. The energy is measured from the lowest eigenstate. For a large spacing (small 1/a) the wells are
practically isolated and the density of states shows discrete peaks at the energies of bound states. Blue
dotted line indicates the average potential level, the red dashed line the top of the potential. The data
to construct this figure were obtained by solving Eq. (2.91) by plane-wave expansion method.

conserved during the hopping and would come as an extra index o together with ) _. While the
values of hopping amplitudes are not known yet, one can expect that the nearest-neighbor and
possibly second nearest-neighbor ones will be most important and — in the case of more orbitals
involved — also anticipate their symmetry structure [see Fig. 17(a) and (b) for two examples].

Owing to the periodicity of the lattice, the Hamiltonian can be easily diagonalized by em-
ploying Bloch waves assembled as linear combinations of the atomic orbitals:

1 ik-R
Ink) = = ;e’ (bur) - (2.93)

Here N denotes the total number of sites in the crystal and normalizes |nk) to unity when the
overlaps of orbitals at different sites are negligible. By inserting the consistently transformed
electron operators c,g = N —1/2 >k e’ Re o into Hrp, it acquires the form with separated con-
tributions of the individual Bloch vectors k

Hre = Z Z EnOnn/ — Z ton (AR) e AR CL,kcnk ) (2.94)
k nn AR

For each k, it remains to diagonalize a matrix whose dimension is equal to the number of orbitals
involved (no diagonalization is thus needed in case of one relevant orbital). For the two examples
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Fig. 17: (a) Hopping processes included in the simplest tight-binding approximation for the bands
derived from s “orbitals” of Fig. 16 in a square lattice. Nearest-neighbor and next nearest-neighbor
hopping amplitudes ¢ and ¢’ are indicated. (b) Hopping processes involving the p orbitals on a square
lattice. The symmetry of these states makes certain hopping amplitudes to vanish, the non-zero ones
depend on the relative orientation of the orbitals (¢, and t;). (c¢) Band structure obtained for the
setup of Fig. 16 and the value a = 2 nm of the lattice parameter. The weakly dispersing bands derived
from the s; and p; levels are shown in detail on the left. The green dashed lines are fits by the
corresponding nearest-neighbor tight-binding dispersion relations. The band structure is plotted along
the conventional path involving I' = (0,0), X = (7/a,0) and M = (7/a,n/a) points in the Brillouin
zone. (d) Band structure for @ = 1nm where even the lowest level already shows a significant dispersion.
Its profile seems to be just a scaled version of that from panel (c), demonstrating the applicability of
the tight-binding scheme.

in Fig. 17(a),(b) we get

Hr = Z [55 — 2t(cos kya + cos kya) — 4t cos k,a cos k:ya] chk (2.95)
k
and
Y = ; ; ep — 2t, cos kya — 2t, cos kya 0 Cpok
TB Coke Cpk
. ' Y 0 £p — 2t cos kya — 2t, cos kya Cpyk
(2.96)

giving directly the dispersion relations of electrons. In the latter case, nonzero off-diagonal
elements would be generated by next nearest-neighbor hopping, nearest-neighbor pairs of p,
and p, orbitals are not connected due to symmetry reasons. The band structures obtained
numerically by solving the full problem (2.91) are presented in Fig. 17 and contrasted to those
resulting in nearest-neighbor tight-binding approximation. A remarkable agreement is obtained
when choosing the proper values of the few parameters (¢, and ¢ or ¢, and t,, t.), in particular
for the s band derived from the most localized bound state.

As we have just seen, the tight-binding approximation is a useful tool well capturing the
dispersion of the bands derived from localized states. Its success relies on a limited range of
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significant overlaps (in the sense of the matrix element of H) of those localized states, reaching
only few nearest neighbors. Our motivational example was based on a collection of weakly coupled
atoms. However, single-electron problems similar to Eq. (2.91) also arise as auxiliary problems
in ab-initio calculations within the framework of density functional theory (DFT). There exist
sophisticated approaches how to construct the local orbital bases such as maximally localized
Wannier orbitals and to extract the values of the corresponding hopping matrix elements making
the tight-binding scheme applicable in a broader context. In a way, by considering the limit
of weakly coupled atoms, we obtain hints about the symmetry/structure of the corresponding
tight-binding model, a realistic DFT calculation then fills in the actual values of the parameters.

After the initial exposition of the tight-binding approach, we will now focus in more detail on
the symmetry properties of the tight-binding matrix elements ., (AR) = —(¢n riar| H |Pnr)-
for transition metal compounds. The relevant ones are those connecting an oxygen ion and
a transition metal ion (i.e. p and d orbitals), and two transition metal ions (only d orbitals
involved). A general approach of their symmetry reduction to as few parameters as possible
under the assumption of spherically symmetric atomic wavefunctions’ was developed by Slater
and Koster [33]. Let us write down the matrix element t,,,,(AR) explicitly

tuw (AR) = /¢ — AR) —h—v2+2vat r—R)| ¢n(r) d*r. (2.97)

We can ignore the on-site elements (AR = 0), these can be incorporated into the local level
structure by renormalizing the energies £,. The basic trick is to use the fact that ¢,(r) and
¢k (r—AR) are eigenstates of the atomic Hamiltonian —%Vz—i-‘/m( ) or ——V2+Vat( —AR),
respectively. This enables a decomposition of the integral in (2.97) into three contributions

fo (AR) = / 65 — AR) [Wa(r) + Va(r — AR)] dn(r) & (2.98)

5n+5n /(/5 (r — AR) ¢ (r r—/gf) (r—AR) Z‘/atr_R,)(bn()

R'£0,AR

We will study just the contribution on the first line and analyze its symmetry for p-d and d-d
orbital pairs and spherically symmetric V,;. The contributions on the second line — orbital
overlaps and a sum of so-called three-center integrals — are usually neglected. In principle, they
can be assumed to renormalize the tight-binding parameters.

To evaluate the two-center integrals 1 [ ¢r,(r — AR) [Voi(r) + Vae(r — AR)] ¢ (r) d®r one
observes that the term in the bracket has a rotational symmetry with AR being the rotational
axis. It is therefore convenient to take the decomposition of the orbitals into spherical harmonics

) D enYim(0, ) (2.99)

m=-—1

and rotate the angular part to the new set of spherical coordinates ¥,o, (rot, Where the polar
angle 1,o is measured from AR. This operation amounts to a linear transformation of the set
of coefficients c,,. After the transformation the expression for the two-center integrals contains
azimuthal integrals of the type [ Y} /(9% gpmt)Ym (Vrot, Prot) dror Where we have to distinguish
the polar angles 9/ . and ¥, since the origin of the spherical coordinate system differs for the

9This means wavefunctions of the form (common radial part) x (linear combinations of spherical harmonics)
such as the case explored in Sec. 2.1.
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Fig. 18: Illustration of the basic Slater-Koster integrals for p-d and d-d situation. The main rotational
axis is z pointing upwards. (a) (pdo) bonding of the in-bond oriented orbitals is the strongest link
between p and d orbitals. (b) (pdr) bonding is weaker and due to the phases of the spherical harmonics,
it comes with an opposite sign to (pdo). A real-orbital example is shown on the right — the integral
between p orbital perpendicular to the bond and a matching d orbital is just equal to Slater-Koster
(pdm), here including the sign. (c) Strongest (ddo) bonding between two d orbitals. (d) Weaker (ddm)
bonding with the same sign issues as (pdm). The integral between the two d,, orbitals shown in the
right example is equal to (ddm). (e) (ddd) bonding and a real-orbital example with the same value of
the integral.

two orbitals. The azimuthal angle ¢, can be chosen as common. The above integrals vanish
for m’ #£ m due to the rotational symmetry of the spherical harmonics. The result can thus be
expressed as a linear combination of Slater-Koster integrals (I1lam) that are defined, following
Eq. (2.98), as the two-center integrals (I1lom) = 1 [a*(r — AR) [Vai(r) + Vae(r — AR)] B(r) d3r
with 8(7) = f(r)Ym(P1rot, Prot) and (1) = f(r)Yim(Parot, Prot). The values of ;5 =0, 1, 2, ...
are specified by the conventional letters for atomic orbitals s, p, d, ...and those of m =0, 1, 2
by o, w, §, following the chemical bonding nomenclature. Note that the values for +m and —m
are identical.

The basic set of Slater-Koster integrals needed for the analysis of hoppings in transition
metal oxides is presented in Fig. 18. The main contribution to the Slater-Koster integrals will be
presumably collected near the central area of the bond. Taking into consideration the angular
distribution of the spherical harmonics, it may be expected that ¢ bonding is in general stronger
than 7 bonding and that is stronger than § bonding. One can also anticipate the signs: Since
V.t is negative, the Slater-Koster integral typically has a negative sign when the closest lobes
of the two orbitals have equal signs (or same complex phase). Accordingly, the indicated o
and o Slater-Koster integrals will be probably negative while the 7m ones positive. Following
our definition, the hopping parameters t,, will be of opposite signs, for example the hopping ¢
between s orbitals is positive which is indeed observed in Fig. 17. The above “rules of thumb”
are useful when inspecting the actual hopping channels between ions as we will do soon. To have
a more intuitive notation, we incorporate the anticipated signs into the newly introduced labels
for hopping parameters:

tpdg = —(de’) y tpdﬂ = —I—(pd?r) y tdda = —(ddO’) y tddﬂ- = +(dd7T) y tddé = —(ddd) (2100)

that will be used below and that are not always following Eq. (2.98). In this convention the
hopping parameter will be taken positively if orbital lobes of the same sign “meet” on the bond.
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Fig. 19: Examples of hopping channels contributing to nearest-neighbor hopping between two transition
metal ions in the case of 180° metal-oxygen-metal bonds (a,b,c) and 90° bonds (d,e,f). The indicated
hopping amplitudes use the quantities defined by Eq. (2.100). The insets show the geometry of the
connected octahedra and label the transition metal ions by Mj 2. The setup of the axes for the 90° case
is identical to Fig. 7(b),(c) (2-bond). There are a few more contributing options that were not shown:
(a) Connection of two d,, orbitals via p,, (b) connection of two ds,2_,2 orbitals via p,, (c) situation
with interchanged d orbitals, (d) hopping between d,, and d,. mediated by p, of the front oxygen of
the metals-oxygeny plaquette.

When dealing with hoppings in transition metal compounds, we most frequently encounter
either 180° metal-oxygen-metal bonds or 90° ones (see e.g. Fig. 1). The various options that we
need to consider when connecting two transition metal ions are summarized in Fig. 19. A crucial
observation is that e, orbitals are even when mirrored by any plane containing the bond so that
they can only couple to oxygen p orbitals via o-bonding, while t5, orbitals have an odd-parity
mirror plane so that only the m-bonding to oxygen orbitals is possible. As a consequence, the
180° bond geometry enables only separate to,-t2, and e,—e, hoppings, t5,-e, mixing is absent.
For the 90° bond geometry, on the other hand, the ¢5,~€, mixing channel is the dominant one and
eqg—e, hopping is forbidden by symmetry. Most of the channels depicted in Fig. 19 correspond
to second-order processes involving two successive p-d hoppings. We will now go through the
individual cases and inspect the resulting d-d hoppings.

We start with the 180° bond and ¢y, hopping channel. According to Fig. 19(a) showing an
x-bond situation, a pair of d,, orbitals becomes connected through the mediating p, orbital. The
same type of connection, now via p, orbital, can be found for two d,, orbitals. The remaining
tog orbital d,. is inactive on an x-bond. To derive the effective d-d hopping, we consider the
M,;~O-M; bond in the initial configuration d™p%-d" corresponding to a completely filled va-
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lence shell of O?~. The process of hopping from the transition metal ion M; to M, needs to start
with a p-d hopping from the oxygen to M,. This creates a virtual configuration d™p°-d"*! with
the excitation energy A,; (to be discussed in detail later in Sec. 2.4) that can be relaxed when
another electron moves from M; to the oxygen and fills the hole in p orbitals. The final configu-
ration is d™~1-p%-d"*! with one electron moved from M; to M,. Thinking within the framework
of the second-order perturbation theory, the amplitude of the whole process can be estimated as
—toat10/Apqe which incorporates the amplitudes of the two successive hoppings. The corre-
sponding term in the effective d-d hopping Hamiltonian then reads as (+to_at10/Apq)che;. The
extra sign originates in reordering the electron operators that appear in the sequence (pfe,)(chp)
when following the partial hoppings in the perturbation term. Here p, p' are electron operators
corresponding to the participating p orbital. A similar process can be constructed when working
out the 2 — 1 direction of the d-d hopping. Taking into account also the opposite signs of the
partial hopping amplitudes observed in Fig. 19(a), we get for the ¢5, hopping Hamiltonian on the
x-bond

HY = () Dpa)(dlydy, + d,d,,), + Hee (2.101)

ij pdr zy 'y zx“zr

Hopping Hamiltonians for the other bond directions can be obtained by cyclic permutation.

The situation is more complex for e, orbitals on a 180° bond, where all possible combinations
of e, orbitals are connected. Shown in Fig. 19(b), (c) are two options, there is in addition a
connection between two ds,2_,2 orbitals. Evaluating the effective d-d hopping in this case, we
arrive at the bond Hamiltonian

2@ tpao (dT t T H (2.102)
Ol () T He .
! Apa 3 MERN N VE R dy_yo

J

For a y-bond the hopping matrix is almost the same, the only change is an opposite sign of the
off-diagonal elements as a consequence of the opposite signs of the d,2_,» orbital lobes pointing
in z and y directions. For a z-bond we have essentially the situation from Fig. 18(a) giving
’HZ(JZ) = —(t245/ Apa) (dgerzd:SZLTQ)ij +H.c. The d,2_,2 orbital is completely disconnected in that
case. The partial hopping amplitude ¢,4, is typically two times stronger than t,;, which makes
the e, hopping more powerful. A well known example of this type of hopping is the motion of
holes in the CuO, planes of high-T, cuprates. Residing in the planar d,2_,» orbital, they can
fully utilize the geometry of the square lattice with Cu-O—-Cu bonds.

Moving on to the 90° bond geometry and ¢y, orbitals, we find that the hopping channel via
oxygen is quite similar to the 180° case, with two orbitals out of three being active. However,
the path is bent now which results in an nterchange of ty, orbitals. Specifically, for the bond
along \/ii(y — ) direction presented in Fig. 19(d) [the geometry coincides with the z-bonds of

Fig. 7(b),(c)], we get

-y

Hij = +(tpan/ Dpa) (dLod,, +d}.d.,);; + He. (2.103)

zx Yz yzzx

with the two contributions being mediated separately by the two oxygen ions in the M;0,
plaquette. In this geometry there might also be a significant direct overlap of d,, orbitals as
shown in Fig. 19(e). For the other two t5, orbitals, a direct hopping is also possible but weak
because its matrix element contains i(ddr) while the d,, orbital uses stronger 2(ddo). The
orbitals active in oxygen-mediated hopping and direct hopping are thus basically complementary.
As before, we can get the to, hoppings for the other bond directions by cyclic permutation.
Finally, let us consider the t5,-€, hopping on a 90° bond. As demonstrated in Fig. 19(f), the
necessary orientation of the p orbitals is only compatible with the d,, orbital. When connecting it
to the e, orbital, an interesting quantum interference effect occurs. For the ds,2_,2 orbital the two
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hopping channels via front and rear oxygen ions come with the same total phases accumulated
from the partial p-d hoppings so that they add up to

Hi; = +(tpdot pin /Apd)(d;ZQ_ﬂdw +di dy,2)i+ He. (2.104)

y
However, for the d,._,» orbital with alternating signs of its lobes, the amplitudes of the two
channels add to zero and d,2_,2 is thus disconnected. The Hamiltonians for the other bond
directions may be obtained by cyclic permutation but in this case a subsequent decomposition
of the resulting ds,2_,» and ds,2_,2 e, orbitals into the conventional d,2_,2 and dg.>_,2 pair is
needed.

-y

2.4 Mott limit and interactions emerging from residual hopping

Having explored both the physics of the individual ions as well as the way how to connect them
via electronic hopping, we are now in position to assemble all together in a form of so-called
multiorbital Hubbard model

H=> Hionli) + > Huopping (i) (2.105)
i (ig)

The first sum goes through the lattice sites and collects the intra-ionic contributions Hi,n, =

Y o Ealtas + Heow + Hsoc that we have thoroughly analyzed in Secs. 2.1 and 2.2. The second

sum runs through the bonds (quite often nearest-neighbor ones but further neighbors can be

included if needed) and activates the various hopping channels as introduced in Sec. 2.3.

At a closer inspection the problem defined by Eq. (2.105) looks intricate and it indeed is.
Without Hcow we would be just facing a band-structure calculation on a single-electron level,
readily performed by an application of the Bloch theorem. However, electron correlations due
to two-body interactions contained in Hcou, that we assume to be strong, make it a genuine
many-body problem.!' We have already successfully handled the electron correlations when
diagonalizing the individual H;,, which was a relatively simple task due to a limited Hilbert space
of an individual ion with given number of electrons. This is no more true for a lattice of connected
ions since the Hilbert space dimension grows in a terrifying way — essentially exponentially with
the number of lattice sites. Moreover, the base for this exponential is not small due to several
orbitals involved and combined with Spin—%. When resorting to a fully numerical diagonalization,
even the huge computational power easily accessible nowadays enables to exactly treat clusters
with a few transition metal ions only.

One way out is to simplify the model by identifying the relevant ionic states — typically the
low-energy multiplet states — and formulate an effective model in terms of those. The actual model
may be obtained, for example, by getting rid of the high-energy states in a perturbative manner.
A proper choice of the elementary objects for the model and processes to be included can make
the physics behind the particular material more transparent and guide further approximations.
Even though the results may be qualitative only, the insights gained are sometimes more valuable
than a quantitative treatment of the original Hubbard model by some complex numerical method.

Our focus is on models with localized degrees of freedom appearing as effective models for
undoped Mott insulators, the canonical example being a spin model. In the introductory sec-
tion 1.2 we took a very simplistic approach to the problem of its emergence. The aim of the
present section is to put it on a bit more solid ground to get ready for a derivation of “realistic”
models in Secs. 3 and 4.

10Tn principle, there are also inter-ionic interactions of two-body character that could be included in the model,
such as Hubbard repulsion of the electrons residing at neighboring ions, but these are only needed in special
situations and we do not need to address them in our cases of interest. Consequently, the only source of correlated
behavior of electrons in our models will be the intra-ionic electron-electron interactions in Hcoul-
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Fig. 20: (a) Hierarchy of energies of charge excitations for a undoped Mott-Hubbard insulator. The
lowest elementary state is the balanced d"-pS-d™ configuration of metal-oxygen-metal bond with a full
p shell of the O?~ ion. Process denoted as 1 is a charge-transfer process leading to a p-d excitation
— a virtual state with the excitation energy A,q. It may get relaxed by a backward process 1 or by
process 2 producing a d-d excitation. (b) Phase diagram of the RNiOs family of compounds as function
of the tolerance factor and temperature (from Torrance et al. [34]) (c¢) Definition of the tolerance factor
quantifying the deformations of the unit cell in ABQOg perovskites. The labels r4, rg, and rg should
bring associations with the respective ionic radii. For an ideal cube f = 1.

2.4.1 Metal-insulator transition

As it was emphasized in Sec. 1.2, a key element in transition metal oxides is the competition
between the tendency of electrons to delocalize and form bands and Coulomb repulsion that
wants to keep the electrons apart. Mott insulating state sketched in Fig. 2(b) and forming a
basis for our model description appears as a consequence of the latter mechanism taking over.
Considering the details, one has to be careful because the role of the oxygen bridges between
the transition metal ions may be more complex than mere mediators of d-d hopping. According
to the scheme developed by Zaanen, Sawatzky, and Allen [35,36], the insulating states may
be classified as Mott-Hubbard insulators or charge-transfer insulators. The idea behind this
classification is that the elementary hopping which moves an electron between p orbital of oxygen
ion and d orbital of the transition metal ion may create a virtual state that is more convenient
than the one generated by full d-d hopping. When “deriving” the effective d-d hopping via oxygen
in Sec. 2.3 we have handled it in a bit handwaving way having the Mott-Hubbard regime in mind.
Let us now analyze this issue in more detail following the scheme in Fig. 20(a) that applies to
the Mott-Hubbard situation. The starting point is the most probable d"p®-d" configuration
of a metal-oxygen-metal bond. Since the valence shell of O%~ is full in this configuration, the
action may only start by moving one of its electrons to a neighboring transition metal ion via
p-d hopping. This creates p-d charge excitation d"—p°~d"™' whose energy A, is defined as the
difference of the energies of the two states [see Fig. 20(a)]. It is contributed by the energy
difference between the d and p orbitals ¢4 — ¢, and the Coulomb energy associated with the
change d® — d"*'.'!' In the next step, we can either restore the initial situation by backward
p-d hopping or continue to reach d-d excitation with the configuration d"~1-p%-d"*! that has an
energy U.g. This is now contributed by the Coulomb energy associated with the simultaneous

' The changes of the Coulomb energy in the p shell of oxygen related to the pb — p® process may be absorbed
into the definition of €4 — €.
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Fig. 21: (a) Two states of a Hubbard chain in a parabolic trap that can be distinguished by observing
the electron density. They appear depending on the ratio between the “bandwidth” W o ¢ and Hubbard
repulsion U. (b) Average site-dependent occupation in the ground state of the chain with 24 sites and
12 fermions (Ny = N = 6) as function of the U/t ratio. The parabolic potential reaches 30t at the
chain ends. Mott transition can be observed around U/t = 8 in this case. (c¢) Density profiles well below
and well above the critical U/t corresponding to the Mott transition.

changes d" — d™*! and d" — d"~'. In our schematics in Fig. 20(a) it is the Hubbard U but often
one encounters Hund’s coupling effects in this virtual state as well. In a charge-transfer insulator,
Apq < Ueq so that the bonds excited by p-d hopping are not eager to continue towards forming
the d-d excitation and prefer to spend more time with a hole on oxygen. The resulting state of
the entire system is still an insulator that looks like in Fig. 2(b) but the picture behind clearly
differs from Fig. 2(c). This is the case of late 3d transition metal oxides like high-T, cuprates. In
a Mott-Hubbard insulator the lower excitation is the d-d one (i.e. Usg < A,q), so that the states
with p° configuration of oxygen are indeed by a larger part just the mediators of the effective
d-d hopping as we have implicitly assumed before. Of course, the distinction is not strict, both
p-d and d-d charge excitations are in the game, but their proportion depends on the A,; to Ueg
ratio and we label the particular system according to the prevailing one.

Both insulating scenarios above require the hopping amplitudes to be substantially smaller
than the the lower of the two charge-excitation gaps A,q and Ueg, otherwise the insulating state
is not kept and we end up in a metallic state. Sometimes we are able to tune the balance
between the competing kinetic energy and strong correlations and drive the system through the
metal-insulator transition. We will now illustrate it in two examples. The first one is a set
of experimental data on RNiOj family of perovskite nickelates that was assembled into a very
instructive phase diagram by Torrance et al. [34]. The phase diagram is reproduced in Fig. 20(b).
Its horizontal axis needs some explanation. The quantity shown there is so-called tolerance factor
which measures how much the unit cell got deformed from an ideal cube. By changing the R
cation, one can significantly influence this deformation. Thinking intuitively, the closer we are
to the cubic situation with straight bonds, the larger is the overlap of the orbitals and hence
the hopping. Going away from the cubic case, we may therefore experience a metal to insulator
transition as indeed visible in the the phase diagram by Torrance et al. who collected data for
various R elements and also mixed solid solutions. At low-enough temperatures the insulator
develops antiferromagnetic order, consistently with our intuitive picture.

Another example that we will analyze more thoroughly is the metal-insulator transition ob-
served in a one-dimensional Hubbard chain that is actually sketched in Fig. 2(b),(c) as a proto-
type system. We have simulated this system numerically using exact diagonalization for short
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chains so that we can freely tune the ratio of the main parameters — hopping ¢ and Hubbard
repulsion U. The first results presented in Fig. 21 concern a Hubbard chain with an extra po-
tential of a parabolic trap.'? This problem was studied in the context of atoms trapped in an
optical lattice [37,38] so we should be talking about fermionic spin—% atoms instead of elec-
trons. Nevertheless, the physics of the Hubbard model works the same way. When looking at
the metal-insulator transition, one should compare the bandwidth W to the Coulomb repulsion
represented by Hubbard U. Here the concept of bandwidth is not well defined but we can still
understand it as “some quantity proportional to the hopping t.” The inhomogeneous situation
due to the parabolic trap brings some specifics. We can distinguish two phases just by observing
the distribution of the density of fermions (n) as sketched in Fig. 21(a) — a bell-shaped fermionic
cloud with notable double occupancy replaces the metallic phase of a homogeneous system, the
insulating phase is represented by a state where a Mott insulating core develops, having a flat
density profile with (n) ~ 1. The transition around U/t =~ 8 is well visible when studying the
evolution of the density profile with U/t [see Fig. 21(b),(c)].

Another way of looking at the Mott transition in 1D Hubbard chain, somewhat less exotic
compared to the above one, is an inspection of the spin excitations as evolving with U/t. In
Fig. 22(a) we perform this inspection for a periodic chain of 16 sites, again simulated numerically
by exact diagonalization. The finite-sized chain has a discrete set of wavevectors ¢ but the shape
and intensity of the spin excitation spectrum is sufficiently densely covered for our purposes.
The bandwidth W = 4t stemming from the dispersion ¢, = —2tcos ka is well defined in this
case and appears in the metallic limit ¢ < U also as the bandwidth of the spin excitations. In

12Here our calculation reproduces the results presented in Ref. [37] that were obtained using Earth Simulator —
the most powerful supercomputer in the world from 2002 to 2004. Not even two decades later, we were able to get
them using a refurbished server which well demonstrates the remarkable steady progress in computer technology.
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Fig. 22: (a) U/t dependence of the spin susceptibility of the one-dimensional Hubbard chain with 16
sites and periodic boundary conditions applied. Plotted is the imaginary part x”(q,w) as function of
one-dimensional momentum ¢ € [0, 27] and energy w. The intensity of the upper part of the spectrum
is magnified in the last two panels to make it better visible. (b) Detailed view on the low-energy part
of the spin susceptibility for U/t = 10 with w scaled by the anticipated exchange constant J = 4¢2/U.
(c) Spin susceptibility obtained for the Heisenberg model on the same chain. The dotted lines indicate
the lower and upper bound of the spin excitations known from the exact solution of an infinite chain by
Bethe Ansatz.
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this regime Fig. 22(a) essentially shows the Lindhard function for a 1D band. With increasing U
there is more and more spectral weight appearing at low energies at the AF wavevector ¢ = 7/a,
this is a sign of incipient AF correlations. The overall shape of the excitation spectrum remains
the same, however. A dramatic change happens around U/t ~ 5 where the spectrum reveals a
clear separation of two energy scales and a birth of an effective model. Tracing the two parts
of the spectra to even higher U/t regime where the Mott insulator is well developed, we can
attribute the low-energy part to an effective Heisenberg model with the excitation bandwidth
proportional to the effective exchange parameter J = 4t?/U. The high-energy excitations start
around the energy U signifying the presence of doubly occupied sites in the participating states.
With increasing U/t, their intensity gradually weakens. A conclusive test of the emergence of the
Heisenberg model is provided by a comparison of the low-energy part of the spin susceptibility
obtained within Hubbard model [Fig. 22(b)] and that of the Heisenberg model on the same chain
[Fig. 22(c)]. Due to its one-dimensionality, the Heisenberg chain does not order magnetically and
the spin excitations form a continuum instead of narrow magnon branch(es) but this difference to
higher-dimensional antiferromagnets does not matter here, since we are only interested in finding
signatures of the emergent model. We scale the energy axis by the exchange constant in both
cases and observe an excellent agreement. There are some tiny shifts visible near the top of the
two spectra in Fig. 22(b) and Fig. 22(c) but otherwise they display no noticeable differences.
Therefore, the description of the Hubbard chain by an effective spin model seems to be perfectly
justified in this large U/t limit with roughly U = 2W.

2.4.2 Superexchange interactions

Having prepared the foundations for the effective model in a form of a Mott insulator, we now
come to the question of the effective interactions. When mediated by oxygen ions or some other
bridging ions, they are commonly called superexchange interactions to make a distinction between
direct exchange interactions of two neighboring ions and the more complex mechanism. The first
theory of superexchange interactions was proposed in 1934 by H. A. Kramers [39], later in 1950’s
it was refined by P. W. Anderson in his seminal works on the topic [40,41]. In this paragraph
we are going to expose the general formalism how to obtain exchange interactions and illustrate
it on a relatively simple but nontrivial example of superexchange interactions in cuprates.

The exchange interactions stem from the short excursions of electrons to the neighboring ions,
the simplest example being sketched in Fig. 2(c). These charge excitations are rather costly. As
we have discussed in the previous paragraph, they are separated by the gap U.z or A,; that
is assumed to be significantly larger than the hopping parameters ¢,;. The problem apparently
calls for a perturbative treatment of the hoppings and we will indeed proceed that way, treating
the ionic part of the Hamiltonian (2.105) as the unperturbed Hamiltonian and the hopping part
as a perturbation. The situation is complicated by two facts: First, we have to perform the
perturbation theory to a relatively high order. Following the scheme in Fig. 20(a) for Mott-
Hubbard case, we need in total four hopping processes to get to the virtual excited state and
back. Second, the states we are perturbing (i.e. products of ionic multiplet states) are degen-
erate/quasidegenerate. The usual Rayleigh-Schrodinger perturbation theory found in textbooks
is not very convenient here since it leads to relatively complex expressions. In the following
derivation, we will employ the more suitable Brillouin-Wigner variant of the perturbation theory
adapted for quasidegenerate levels.

We will first consider a general problem with the full Hamiltonian H = Hy + AV consisting of
the unperturbed one H, and the perturbation ) accompanied by the usual expansion parameter
A to be varied from 0 to 1. The level structure for a quasidegenerate case of our interest is
schematically represented in Fig. 23(a). The key concept, introduced independently by Feshbach
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Fig. 23: (a) Level scheme of the problem to be treated by the perturbation theory. By virtue of the
unperturbed Hamiltonian Hg, the Hilbert space splits into low-energy states contained in the subspace
J€, and high-energy states in 5. The states of these subspaces are separated by the energy gap
A and connected by a weak perturbation AV. (b) Block structure of the corresponding Hamiltonian
matrix. The unperturbed Hamiltonian Hy does not connect the two Hilbert subspaces 4 and #%.
This connection is provided by the off-diagonal blocks of AV which may also contribute to the diagonal
blocks. The matrix elements of the off-diagonal blocks AV are assumed to be significantly smaller than
the energy gap A enabling a perturbative treatment. (c¢) The desired structure of the Hamiltonian.
After performing a proper basis rotation, the off-diagonal blocks connecting low-energy sector to high-
energy virtual states are eliminated and the effective Hamiltonian for the low-energy sector is found in
the corresponding diagonal block.

[42,43] and Lowdin [44,45], is the partitioning of the Hilbert space. Based on unperturbed
energies (i.e. the spectrum of Hy), we single out the low-energy subspace 4 and let its states
interact by a weak perturbation A} with the states of the high-energy subspace .7#%. The ultimate
goal is to find an effective Hamiltonian acting on states in the lower subspace but leading to the
same results as the full one. To be more concrete, we introduce a decomposition of a state from
the full Hilbert space utilizing the projection operators onto 7 and .73 subspaces:

[V) = [Ya) + [B) = Pl) + Q) 0=1-7P. (2.106)

We now want to construct the effective Hamiltonian Heg in such a way, that a projection of the
true eigenstate of H onto 74 is an eigenstate of H.g with the same eigenvalue:

(H—E)|y) =0 — (Het — E)Plyp) =0. (2.107)

Vaguely speaking, the effective Hamiltonian has to take the low-energy component P|¢)), com-
plete it with the corresponding high-energy part, act with the full Hamiltonian, and return a
low-energy component of the result. This “hidden” admixture of the high-energy sector that effec-
tively eliminates AV roughly corresponds to the basis rotation that is suggested in Fig. 23(b),(c).
The above task is quite demanding and may be precisely fulfilled only by an energy-dependent
Hex(E). We are, in an indirect way, facing the inherent problem of the Brillouin-Wigner per-
turbation theory where the final perturbed energies themselves enter the expressions for the
perturbation corrections. It is not a big issue, however, since the target energies E of interest
form a relatively narrow band compared to the intermediate excitation energies so that we can
make approximations easily. An explicit formula for H.gz(F) is obtained by inserting (2.106)
into (H — E)|¢) = 0 and decomposing the results by applying the projectors P and Q. For the
high-energy component we get

1

QMPY) + QHQ) — BQ) =0 = Qv) = z— 5 QHPIY) (2.108)
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with the operator/matrix inversion happening within the #3 subspace. The above expression
can be used in the low-energy component of the original equation to yield (Heg — E)P|Y) = 0
with
1

E—QHQ
This result is still exact and general, though not very useful without the level separation of
Fig. 23(a). By observing the structure of the full Hamiltonian matrix depicted in Fig. 23(b), we
can see the correspondence of its blocks to the individual terms appearing in Eq. (2.109). The
second-order effective Hamiltonian can be obtained very quickly by approximating the denomi-
nator by —A, assuming that the relevant states from .74, 7 form narrow bands as compared
to the gap A. To reach higher orders, we need to systematically expand the resolvent of the
projected Hamiltonian:

Heg(E) = PHP + PHQ QNP . (2.109)

1
E)y=—-— 2.110
9(E) = 5o (2110
entering Eq. (2.109) and operating in 3. To this end we introduce the unperturbed resolvent
Go(F) = N (2.111)
T E— QHQ ‘
that is related to the full one by the operator/matrix relation

Go '(E) — G (E) = A\QVQ. (2.112)

By applying Go(E) from the left and G(F) from the right, we get Dyson’s equation
G(E)=Go(E)+ AGo(FE) QVQ G(F) (2.113)

that can be solved by repeated iteration, adding one order in A in each step. When inserting the
resulting series into Eq. (2.109), we obtain the perturbation series for the effective Hamiltonian
in the form

1
Heg(E) = PHoP + APVP + X2 PVQ ——— QVP+

E— QHyQ
. 1 1

S S .. (2114
+APVQE_QHOQQVQE_QHOQQVP+ . ( )

where we have used the fact that Hy does not connect 774 and 5. This concludes the derivation
of the general Brillouin-Wigner perturbation theory for quasidegenerate levels.

The perturbation expansion (2.114) may look intimidating at the first sight, but in the ex-
amples below we will see that it actually leads to a relatively simple and intuitive scheme for the
derivation of the exchange interactions. A convenient choice of the basis are product states where
each ion is in some multiplet state, which means that the ionic part of Eq. (2.105) (our H,) is al-
ready diagonalized. To get the total energy of the configuration, one just sums up the energies of
the participating multiplet states. This makes the evaluation of (E — QH,Q)™! entering (2.114)
trivial. The perturbation V is represented by the hopping Hamiltonian. When evaluating the
second-order contribution to Heg via (2.114), we start with the initial low-energy configuration,
jump into the high-energy subspace by the first hopping and leave it by the second one, reaching
the final low-energy configuration. The corresponding matrix element of H.g is the product of
the used hopping matrix elements divided by negatively taken excitation energy. To get the
higher-order contributions, we are additionally traveling through the high-energy subspace via
further hoppings, collecting the hopping matrix elements used on the way and dividing by the
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excitation energies of the visited states. Here one often ignores the finer structure of the excited
multiplet levels and counts only U contributions, neglecting the smaller shifts due to Jy, for
example.

Let us now inspect the half-filled one-band Hubbard model as the simplest example. The
second order process from Fig. 2(c) concerns only two sites, we can therefore consider an isolated
bond as well. Due to the spin conservation in the hopping processes, it pays off to start with total
spin eigenstates as the initial configurations. In our case, the two electrons on a bond may form
a singlet and three triplet states. Due to the Pauli principle, we find that only a singlet state

ls) = \%(CJ{TC; L= ) ich)’ ) on the bond is connected to the high-energy sector, here the relevant

state is the doubly occupied combination |d) = \%(CJ{TCJ{ Lt chcg )| ) with the excitation energy

U. The corresponding matrix element is (d](—t) 3_, (¢}, co, + chyc15)|5) = —2t, the second-order
effective Hamiltonian thus reads as
At 4¢?
Hewt(E) = U |s) (s| ~ ~5 s)(s|. (2.115)

The above preference of singlet state of the two electron spins at every bond can be encoded into
the final Heisenberg Hamiltonian

, 4t
H:J;(Si.sj—i) with J = —. (2.116)
]

A bit more involved is the evaluation of the superexchange interaction in cuprates [46] that
serves as a good introductory example of a fourth-order calculation. Additional examples with
more complex orbital structure will be presented in Secs. 3 and Sec. 4. Because the d shell is
almost filled in this case, it is better to work with a hole representation using the configuration
d'? as a “vacuum”. In the undoped CuQO; plane, each Cu?* site with d° configuration is occupied
by a hole that goes to the planar d,»_,2 orbital. The lowest-order superexchange processes appear
in fourth order in the p—d hopping and are depicted in Fig. 24. Again we need to consider one
Cu-O-Cu bond only and this choice determines the active p orbital bridging the d,2_,2 orbitals.
To derive the superexchange, we start with singlet of the two holes |s) = \/Li(h}hg L= hl ihgT)| ).

Here the empty state | ) corresponds to the d'—p®~d'® bond configuration. Triplet configurations

(a) 1 2 3 4
cu”™ o> cu”*

2A+U,

(b) 1 2 3 4
Cu2+ 02— Cu2+ Ud

Fig. 24: (a) Virtual process of charge transfer type on a CuOg bond. Apart from two p-d excitations
(each of the energy cost Apg), the holes meeting in the oxygen p orbital experience Hubbard repulsion
Up. (b) Virtual process involving d-d transition. The energy cost of the intermediate state is the usual
Hubbard repulsion U in the d orbital.
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are again disqualified because the two holes have to meet at some point in a single orbital (either
p or d). As shown in Fig. 24, after two p-d hoppings we can reach two kinds of intermediate
states. In so-called charge-transfer process, the two holes meet at the oxygen ion. This state
can be reached in two ways — the one shown in Fig. 24(a) and by a hopping sequence with
interchanged hoppings 1 and 2. The other possibility is shown in Fig. 24(b) and corresponds to
a d-d charge excitation. Here we can end up with two holes at the right Cu site (as depicted) or
the left one. Collecting the possible hopping routes to get to the middle intermediate states, we
obtain for the corresponding piece of the full fourth order formula

1 2v212, 22,
Q-5 VP = < |prpy)(s| + ﬁ (Ihathay) + |hothay) ) (sl (2.117)

E— QHyQ E— A
The intermediate state |psp;) has energy 2A,; + U, due to two p-d excitations and Hubbard
repulsion of the two holes that meet at the bridging oxygen. The d-d excitations |hithy) and
|hatha)) have energy equal to Hubbard U, for d orbitals. The final expression is obtained by using
those energies in the denominator of the middle resolvent m of the fourth order formula
and applying conjugate operator to that of (2.117) to get back to the initial state. Neglecting F
in the denominators, we get for the two types of processes:

8t 4¢
(0~ — d (D - 21 2.11
Heff Apd<2Apd + U ) | ><S| an Heff A?,dUd |S> <S| ) ( : 8)

which gives the superexchange constant

4t4 1 1
J=_r — . 2.119
A?gd <Apd + %Up " Ud) ( )

Cuprates are charge-transfer insulators with A,; < U (roughly by a factor of two), the first
contribution to J is thus the larger one. As we can see the subdominant d-d contribution has
the same form like the second-order result (2.116) with the effective d-d hopping t = t2,/Apq.
As an illustration of the superexchange mechanism between two d° Cu?* ions in a real ma-
terial, we will discuss the interesting case of copper fluoride KCuF3. Despite having a three-
dimensional perovskite structure, this compound surprisingly hosts quasi one-dimensional mag-
netism. The key to the quasi-1D situation is the particular orbital arrangement due to Jahn-Teller
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Fig. 25: (a) Two types of orbital ordering in KCuF3 and the superexchange constants. The small
balls represent fluorine ions, the larger ones potassium ions. Copper d-type orbitals form quasi one-
dimensional chains (vertical) that are almost decoupled due to the orthogonality of orbitals. (b) Spin
excitations in KCuF3 measured by inelastic neutron scattering [47]. Dashed lines have the same meaning
as in Fig. 22(b),(c).
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effect [48]. The orbital ordering comes in two polytypes presented in Fig. 25(a). From the point
of view of the superexchange mechanism, fluorine ions act similarly to oxygen ions. They have
higher electronegativity and the relative energy levels change, but the physical picture shown
in Fig. 24 is preserved. According to Fig. 25(a), the superexchange mechanism discussed above
works only along one-dimensional chains formed by the properly oriented d orbitals. In the
perpendicular direction the p-d hopping is broken due to orthogonality of the orbitals. As a
consequence, the effective J between the chains is only about 5% of the intrachain one. The
quasi-one-dimensionality is very clearly confirmed by the spin excitation spectrum in Fig. 25(b)
obtained by inelastic neutron scattering [47]. It can be directly compared to the one calculated
for a Heisenberg chain and presented in Fig. 22(c).

As a concluding remark let us note, that even though we tried to develop the perturbation
expansion in a formally clean way, one should keep in mind that it frequently gives only indicative
results. For example it may have problematic convergence due to insufficiently large ratio of the
charge-excitation gap to the hopping amplitudes in the realistic parameter setup, the approach
to the ionic states and hopping matrix elements may be too simplistic etc.
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3 Kitaev materials

This part of the thesis is devoted to a more in-depth discussion of the so-called Kitaev materials
that were briefly introduced in Sec. 1.4. They feature highly anisotropic and bond-selective spin
interactions which result in a very peculiar magnetic behavior. Since these materials have been
intensely studied in the last ten years, there already exists a large volume of literature which is
pointless to review here since this task has been performed many times already and there are
several review papers taking the subject from various perspectives [8-10,49-55]. Instead, we keep
the “pedagogical” character of the text and focus on a few subjectively selected aspects that we
consider essential.

Being armed with the tools developed in Sec. 2, we will first study the origin of the bond-
selective interactions, highlighting the crucial role of the entanglement of spin and orbital degrees
of freedom created by spin-orbit coupling and combined with the bond-selectivity of the hopping
processes. The effective spin model derived for a simplified case will be later further extended
and we will discuss its very rich phase diagram that is not fully explored up to now. In the last
section of this part, we will consider the experimentally observed zigzag phase and illustrate,
in the context of measured data, the specific features that appear in the regime with dominant
Kitaev interaction.

3.1 Microscopic origin of the Kitaev interaction

The most heavily studied Kitaev materials NasIrO3; and a-RuCl;s are essentially a stack of hon-
eycomb lattices made of edge-sharing octahedra as shown in Fig. 1(c) and Fig. 7. This is not
the only option, the transition metal ions may form also three-dimensional structures such as
the hyperhoneycomb [56] or harmonic honeycomb lattice [57] and other types of two-dimensional
lattices, for instance the triangular [58] or kagome lattice [59], are considered theoretically as
well. Two elements are common among the Mott insulating Kitaev magnets: (i) approximately
90° metal-oxygen-metal bonding, (ii) ionic ground state being a doublet generated by spin-orbit
coupling. The latter is realized by the t3, configuration of 5d Ir** (see Refs. [60,61] for an inter-
esting experimental verification of the complex spin-orbit entangled wavefunctions) or 4d Ru®*
ions with relatively large spin-orbit coupling and we will focus on this particular situation in the
following, but even the 3d elements with smaller spin-orbit coupling may be relevant according
to the recent proposals [62-64] for ¢5 e Co*" systems.

The above two elements generate highly anisotropic spin interactions as we will show by
explicitly deriving the corresponding spin model. The local basis for the model is the J = %
doublet of tgg configuration that was thoroughly analyzed in Sec. 2.2.3. Choosing the z axis for
J quantization, the two basis states read as

= (aad -y e b= (Vaol- ad) e (31)

Here we have used tilded arrows to emphasize that our local degree of freedom is J = % pseudospin
instead of a regular spin-;. The states are formulated as in Eq. (2.74) in terms of holes in #§,
configuration created by the operators a, b, ¢ of Eq. (2.56), corresponding to the LT = +1, 0, —1
eigenstates. The superposition of various spin and orbital labels in the pseudospin states leads
to rather complex superexchange processes because the two orbital components have different
fate when considering hopping on the honeycomb lattice as summarized in Fig. 26.

In the honeycomb lattice one encounters three types of bonds, each characterized by a different
orientation of the square M50, plaquette with two 90° nearest-neighbor M—-O-M bonds. The

focus in Fig. 26(a),(b) is on a z-bond that is perpendicular to the cubic axis z. The bond direction

95
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Fig. 26: (a) Oxygen-mediated hopping in the square M09 plaquette perpendicular to the cubic axis z.
The two elementary bonding routes connecting & and 7 orbitals combine into imaginary hopping between
a and c orbitals which changes LT by the maximum ALST = 42, (b) Direct hopping connects primarily
only b orbitals (i.e. ¢) and preserves therefore their LT = 0. There is in addition a weaker ddr and
ddé coupling between the other orbitals that we neglect. (c) Orientation of the two relevant octahedra
for the z-bond used in panels (a) and (b) and cyclic exchange rules in the honeycomb lattice. When
switching between the three bond directions, the definitions of a, b, ¢ hole operators shown in the middle
change by permuting the Cartesian orbitals &, n, . This is a consequence of the corresponding rotation
among the cubic axes z, y, z that can be used when the C3 symmetry of the system is not broken.
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selects the two orbitals active in the effective hopping mediated by oxygen ions, in this case they
are £ ~ yz and n ~ zz [see Fig. 26(a)]. The 90° bond geometry also allows for a significant direct
overlap of the orbitals. Considering just the strongest ddo bonding, the direct hopping concerns
only the orbital complementary to the above two [Fig. 26(b)]. In total, the electron hopping
Hamiltonian on a z-bond takes the form

Hyp = tz & 0l 60) t/z ¢ ¢, +He (3.2)

where t = t;dw /A, and H.c. adds the opposite hopping direction ¢ — j. With the pseudospin
basis being expressed using hole operators a, b, ¢, it is more convenient to switch to the hole
picture and convert the above H; to

M = —it y_(al,c;p —cl,a;,) +1 wa o +He. (3.3)

For the other two bond directions, we can construct H;y based on Eq. (3.2) by a cyclic permuta-
tion as suggested in Fig. 26(c) or we can keep Eq. (3.3) and modify the a, b, ¢ operators following
the change of the LT quantization axis from z to = or .

Having clarified the hopping geometry, we can now proceed with the derivation of the effective
pseudospin Hamiltonian following the scheme of the second-order perturbation theory as outlined
in Sec. 2.4.2. Doing so we will adopt j-j coupling scheme to describe the virtual states and extend
it with off-diagonal Hund’s coupling. This approach is not the most practical one for the actual
calculation but best exposes the internal structure of the superexchange processes. We start by
considering the action of the perturbation Hy on a z-bond (ij) with two pseudospins up. When
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including only the ¢ contribution to the hole hopping in the direction j — i, we generate d*-d°
intermediate state

~ e hole hopping j —1i via t channel .
1)@ 1), = DL, %) @ DI 1), S ~ity[2Q" D1, 119, ® %), (3.4)
+3 +3 7 13

that we have written down using the doublet and quartet hole operators introduced in Eqgs. (2.74)
and (2.75) [see also Fig. 27(a) for a schematic picture]. The 3, state with two holes at site i
can be decomposed into |j1,jo; J, J,) states of j-j coupling scheme discussed near the end of
Sec. 2.2.3. Explicitly they read as

g1 = (30,00, — ¢ QDL )17,
5321y =(Le 0l +10T, 1) 1), (3.5)

We can adopt a shorthand notation QDj ;. for d*-d® bond configurations where the d* site
is in the |2, ;, J,J.) state. The state at the right-hand side of Eq. (3.4) then decomposes as
\Z/—%QDL_l 6QD27_1. Considering now all four possible initial pseudospin configurations and
including both ¢ and ¢’ hoppings in H;y in the direction j — i, we arrive at the following set of
d*-d° intermediate states
L ; : / ’
1) ® [1); ST RN +% QD1 — 27156 QDy 1 — 315% QD; 41+ \j— QDs 41,

~ ~ H,pr (i) it it t

t/
)i®ll); ———— _E QD 41 — % QD3 1 — ﬁ QDy 1 — % QDy 1,
~ ~ Htt’(’ Z) i 2 t/ t/
1) ® [1); s —“5\/j QDy 9+ = QDLO + 3 (DDy — QDsy),
~ ~ Hypr (1) t/ t/
i j — 2,-2 10— o 0— 2,0) - .
D ) ity 2 QDo+ £ QD1 £ (DDy - QDuy) (3.6)

Here DD is a shorthand notation for d*-d® configuration with the site ¢ populated by ];, ;, 0,0)
of Eq. (2.80). These relations represent one key element of the derivation of the effective Hamil-
tonian using Eq. (2.114), the other being the excitation energies entering through the (E — H)
operator that acts in the subspace of high-energy virtual states. Before analyzing the latter ones,
let us inspect the implications of Egs. (3.6) themselves. In the case of purely ¢ hopping, the virtual
states are completely disconnected so that when leaving the virtual state by the second hopping,
the initial pseudospin configuration will be restored. In such a case, the exchange interaction

can only be of Ising-like form. This way we already arrive at the Kitaev interaction KS7S7 that

is enabled only by differing excitation energies for ff, ll and %l, lf conﬁgurations because the
integral matrix elements for the second order processes are equal: (t/v/2)?+ (t/1/6)? \/_
The direct hopping ¢’ opens new possibilities and enables a cross-talk of the pseudospln configu-
rations. The shared virtual states for the parallel pseudospin configurations %% and ll activate
the effective process flipping both pseudospins at the same time: %% — ii In the case of
the antiparallel configurations 1] and |1, we now have the possibility of the effective process
T i <> {;1; which is just a part of the usual Heisenberg exchange among the pseudospins. The
parallel and antiparallel configurations remain mutually disconnected even with ¢ included.
When dealing with the excitation energies, we will include only U and Jy interactions, ne-
glecting the effects of spin-orbit coupling in the virtual states. The situation is simple for the
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Fig. 27: (a) Virtual processes starting with a nearest-neighbor pair of J = % pseudospins on a z-bond.
The ¢’ hopping operating on the b component of the pseudospins can generate usual Heisenberg exchange.
The hopping ¢ mediated by oxygens takes the a component of the pseudospin up and flips its Lgﬁ,
producing a fully polarized quartet hole. To get back to two J = % pseudospins this hole needs to be
removed in the next step. If this happens via a backward ¢ hopping, the initial pseudospin configuration
is restored, enabling only Ising-type of exchange. The exchange is FM due to the Hund’s coupling in the
virtual state. (b) Multiplet structure of a tég ion constructed by combining two j = %, % holes into total
J eigenstates |j1, jo, J, J.) and handling off-diagonal Hund’s coupling afterwards. The lowest state is a
threefold degenerate level QD1,, (m = 0, £1) made of a quartet hole and a doublet hole that combine
into total J = 1 state. The pair of a quartet hole and a doublet hole may form also the total J = 2
state QDay, (m =0, £1, £2). Further possibilities include a pair of quartet holes combining into total
J = 2 state QQon, or total J = 0 pairs DDy and Q. Hund’s coupling couples pairwise the @ Ds,, and
QQ2m states with the same m, as well as the pair of DDy and QQ states (both options are marked
by shading) and produces the energy levels of LS coupling scheme shown on the right. The indicated
energies are excitation energies of the particular d*-d® bond configuration with respect to the initial
d®-d® configuration of two J = % pseudospins.

Q D1, excited states that are already composed of eigenstates of the respective ionic Hamiltoni-
ans. To evaluate the excitation energy, we need to consider the energy 6U — 13.Jy of the t%g state
and the energy 15(U — 2.Ju) of 5, configuration and compare them with the initial energy which
is twice the energy 10(U — 2.Ju) of 3, configuration. We thus obtain

By =U —3Jy (3.7)

as the excitation energy to the QDy,, d*-d® state. The case of QDs,, and DD, excitations is more
complicated since these states are coupled via Jy to the combinations QQ)s,, and QQ)y, respec-
tively, that are not accessible by the hopping directly. As indicated in Fig. 27(b), this coupling
restores the proper energy levels that would be simply described in LS coupling scheme. To get
the effective excitation energies, we need to consider the two-dimensional subspaces spanned by
the pairs QDay,, QQ2y and DDy [Eq. (2.80)], QQo [Eq. (2.81)]. The latter case was already
studied in Sec. 2.2.3 as an example. The corresponding Hamiltonians shifted by the energy of
the d°-d® configuration to give the excitation energies read as

Ju [ 4 2V2 Ju [ 5 52
Heo = B + 22 and  Heye = By + 2 . (3.8)

3 \2v3 2 3 \5v2 10
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Since only the first member of the pair is accessed by the hopping, the matrix element (H_');; of
the inverse matrix to Hey serves as the inverse excitation energy in the perturbation expansion
(2.114). This gives us the effective excitation energies Ey for Q) Dy, and Ey for DDy state that
can be inserted into the second-order perturbation term in a straightforward way. Consistently
with Fig. 27(b), they are higher than E; and are explicitly given by E;' = E;' — Ay and

E;t = E;' — Ay with the reduction factors

B2 = ST a0 —d M AT ST U T 2 (3:9)

We are now ready to utilize Egs. (3.6) and combine them together with the three excitation
energies to obtain the effective Hamiltonian. It will have a form of a 4 x 4 matrix that is
constructed by considering all the possible virtual connections of the four bond-basis states %f,
11, 11, 1. When doing so, we additionally multiply by two to include df-d* virtual states as
well. In the final matrix, one can remove a constant shift

Hy= - — o (3.10)

found on the diagonal, since this overall kinetic energy gain is irrelevant for the pseudospin
interactions. The resulting matrix contains the following nonzero matrix elements:

2 2 4? 2 tt!
11 22 +9E1 + 3 2, 21 12 3 2 ( )
2 42 2172 2t (1
Hss = Hyy = — —A A A Hsyy = Hys = — — Ay — Ay .
33 44 0F, + 3 2 + 9 ( 2 + 0) , 34 43 9 <E1 2 0)

To create a spin model, the effective interaction should be formulated using the pseudospin—%

operators S acting on the 1, ] basis states in the usual way. The structure of the effective
Hamiltonian obtained perturbatively is reproduced if we consider the pseudospin—% model

JS;- 8;+ KS:S: +T(SrSY + S¢ST). (3.12)

Expressing this Hamiltonian in the same bond basis 71, 1|, 1], {1 as used above, we find

J+K ;T
4 2
- J+K
+iL LK
Hg = 2 14 (3.13)
_JHK
4 2
J K
2 4

which enables to quantify the values of the exchange parameters J, K, I by a comparison with
the matrix elements in Eq. (3.11):

472 /1 2 4tt!
= — — Ay — A K=|(-2+2¢?)| A = A, . 14
J 9 (E1 2 o) , < + 3 ) 2, 3 o2 (3.14)

Let us note that the derivation was performed for the particular case of the z-bond. Using
the C3 symmetry of the problem as illustrated in Fig. 26(c), the effective interaction for the
other bond directions is obtained simply by cyclic permutation, for example on the level of the
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pseudospin Hamiltonian (3.12) by replacing the z, y, z components of the pseudospin operators
by the cyclically permuted ones.

The structure of the final expressions for the three exchange parameters highlights several
aspects. First of all, the usual isotropic exchange of Heisenberg type originated only from the
supposedly smaller ¢ hopping'® and compared to the canonical cases (2.116) or (2.119) it is
further reduced by factor of % due to the relatively small participation of the relevant orbital
in the pseudospin wavefunctions. There is no other contribution of the usual type ¢*/U, the
remaining terms are solely due to the Hund’s coupling in the virtual states which brings a
smallness factor of roughly Ji/U. This is an important observation, suggesting that the overall
energy scale of the interactions will be rather low. Among all those “small” interactions, the FM
Kitaev interaction can be expected to be the dominant one, since it is generated by the larger
t hopping. The off-diagonal exchange I' resulting from a combined action of oxygen-mediated
and direct hopping could be the second most important one, following our naive estimates. The
interactions are thus expected to be highly anisotropic as it is indeed found experimentally.

Of course, our analysis considered only one class of virtual processes, namely the d-d transi-
tions within the ¢5, sector. There is a number of other contributing channels — one can additionally
consider charge transfer processes and cyclic exchange (see [62] for a thorough discussion of those
in the d” case), and involve also the e, orbitals that are higher in energy than the ¢, ones but
are coupled by stronger hopping amplitudes [c.f. the discussion related to Fig. 19(f)]. Moreover,
the pseudospin wavefunctions become modified when including the trigonal splitting among ¢,
orbitals that is present in the actual materials. Nevertheless, even our limited approach provided
a number of insights concerning the emergence of strongly anisotropic and bond-selective spin
interactions characteristic for Kitaev materials.

3.2 Extended Kitaev—Heisenberg model and its phase diagram
3.2.1 Effects of the trigonal splitting

In the previous section, we have considered an ideal case of two connected octahedra of undis-
torted shape and arrived at the JKT model of Eq. (3.12) describing the effective interaction of
J = % pseudospins. A more realistic model should include also trigonal splitting of the ¢y, orbitals
that significantly modifies the pseudospin wavefunctions and brings a new interaction term that
was not symmetry-allowed in the previous example. Below we will incorporate the effects of the
trigonal distortion and later include also selected further-neighbor coupling to arrive at the final
interaction Hamiltonian that is often used as a basic model for the magnetism of honeycomb
Kitaev materials.

The trigonal splitting of orbitals arises in a twofold way. First, the structure of edge shared
octahedra may be compressed (or elongated) in the direction perpendicular to the honeycomb
plane, i.e. in the [111] direction in the cubic coordinate system associated with the octahedral
axes. There are of course other types of possible distortion, breaking the C3 symmetry of the
lattice, but the trigonal one may be expected to have the largest impact. Second, the hopping of
electrons supports the extension of their wavefunctions in the direction of the honeycomb plane,
this effect thus acts similarly to the trigonal distortion. Formally, we need to amend the ionic
Hamiltonian with the trigonal field that splits the a;, orbital of Eq. (2.23) from the €] pair of
Eqs. (2.24) and (2.25). Following Eq. (2.29), this is achieved by the term A[(Lg)? — 2] where
Z is the out-of-plane direction as introduced in Fig. 9(c). On the level of point-charge model,
the a4 orbital should sink down under a trigonal compression which corresponds to positive A.

13As an example, Winter et al. [65] give ab-initio values t ~ 0.25eV and about ten times smaller #' for NagIrOsg,
while for a-RuCl3 the estimated ¢, t’ are approximately the same 0.15 eV.
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Fig. 28: (a) Pseudospin wavefunctions in the limit of large negative trigonal field A, cubic case with
A = 0, and the limit of large positive trigonal field A. The graphical representation shows the hole
distribution in the same way as in Fig. 13. The shapes in the A = 0 limit are again cubic but the spin
polarization distribution is modified because of the Z quantization axis that applies to both L and
S. (b) Mixing angle ¥ entering Eq. (3.15) as it depends on the trigonal field. (c¢) Exchange parameters
resulting from second order perturbation theory with U = 1.7eV, Jy =0.3eV, A =0.4eV, t =0.26€V,
t' = 0.03 eV. Solid lines are calculated neglecting spin-orbit coupling in the virtual states, dotted lines
include this effect. (d) The same for the values U = 3.0eV, Jgy = 0.6eV, A = 0.15eV, t = 0.15 €V,
t' = 0.15eV. The parameter sets are inspired by Ref. [65] and are supposed to imitate the situation in
NaglrO3z and a-RuCls, respectively. To have continuous evolution of the exchange parameters, we had
to change the relative phase of the two pseudospin wavefunctions below A = —2.25\.

When adopting the hole picture to get the t3 , bseudospin states, we need to revert the sign and

diagonalize H = AS - L — A(Lg)%2. The new Hamiltonian still conserves one component of

J, namely Jz, but does not conserve J? as it did before. The extra term mixes members of the
J = % doublet and J = % quartet with matching J;. The wavefunctions of the lower doublet are
then modified to

1) = ((30519 aI —sin? bD 1%, 1) = (sim? bj — cosv CD 1t ,  tan29 = 12—\/_22_A :

A

(3.15)

The shapes and spin polarization of the hole densities corresponding to the above pseudospin
wavefunctions are presented in Fig. 28(a) and the orbital mixing angle ) in Fig. 28(b), covering the
whole range of ratios of the trigonal field A to the spin-orbit coupling . For the cubic case with
A = 0, the mixing angle takes the “magic” value of ¥ = %arctan(%/ﬁ) = arctan(1/v/2) ~ 35.26°
that is at the same time the angle of the cubic axes to the honeycomb plane. With this value,
the cubic pseudospin wavefunctions of Eq. (3.1) are reproduced. In contrast to the J; = j:%
quartet state, the J; = j:% ones are unaffected by the mixing so that the quartet splits into two
doublets. Such a splitting may be accessible experimentally e.g. by a resonant inelastic x-ray
scattering, enabling a quantification of the trigonal field A [66].

Performing the same kind of perturbation calculation as in the previous section, but starting
with the low-energy doublet (3.15), we can derive the effective pseudospin Hamiltonian including



62 3.2 Extended Kitaev—Heisenberg model and its phase diagram

now an extra anisotropic interaction I that scales linearly with the trigonal splitting near the
cubic limit. At a nearest-neighbor z-bond, the pseudospin interaction reads as

Hipl = JSi - Sj + KS:S7 + T(S7SY + SYST) + T(SFS7 + ;ST + SYS7 + 8:5Y). (3.16)

To get the interactions at other bond directions, we again apply the cyclic permutation as shown
in Fig. 26(c). This form of the Hamiltonian already includes all the symmetry-allowed nearest-
neighbor terms compatible with the C5 symmetry of the lattice and is often called as the extended
Kitaev-Heisenberg model. Further often employed extension consists in including further neigh-
bor couplings that are likely to be significant due to the extended nature of 4d and 5d orbitals.
Among these, Heisenberg third-neighbor coupling J3 seems to be most important.

Before inspecting the phase diagram of the model, it is instructive to have a look at the
interaction parameters as functions of the trigonal splitting presented in Fig. 28(c),(d). We use
two sets of microscopic parameters that roughly correspond to the values suggested by Winter
et al. [65] for NayIrO3 and a-RuCls, respectively. Being 5d and 4d materials, they differ in the
relative strength of the spin-orbit coupling and Hund’s coupling. In the case of Fig. 28(c), these
two energy scales are comparable, Jg < A. This cast some doubts at the approximation made
in the previous section, i.e. neglecting spin-orbit coupling in the virtual states. Indeed, if both
spin-orbit coupling and Hund’s coupling are incorporated in the virtual states and excitation
energies, some of the newly obtained interaction parameters show a significant reduction. Most
importantly, this concerns the Kitaev interaction K, which still remains dominant, however. The
situation is much different in Fig. 28(d) that illustrates the Jg > A regime relevant for 4d Ru"
ions. Here the difference caused by the neglection of spin-orbit coupling in the virtual states is
rather minor. The set of parameters used in this case also assumes equal hopping amplitudes
t =t'. As can be expected based on Eq. (3.14), this choice makes the anisotropic interactions K
and I" of the same order of magnitude.

Regarding the dependence on the trigonal field, we note that the interaction is most anisotropic
near the cubic limit. The reason is that the trigonal field, either positive or negative, quenches
further the orbital angular momentum and makes the interactions more Heisenberg-like. For a
large trigonal compression, the pseudospin is reduced to the ey doublet states having entangled
spin and the only unquenched L$! orbital component. This leaves space for Ising-like anisotropy
with differing interactions of the in-plane and out-of-plane components. When worked out, such a
constraint implies K = 0 and I' = I'" as can be indeed observed in Fig. 28(c),(d). In the opposite
limit — large negative trigonal splitting — the orbital component is completely suppressed and
we are left with spin—% residing in the a;, orbital. The interaction is then necessarily isotropic
and only the parameter J takes a nonzero value. Note, that in this limit the wavefunctions as
introduced in Eq. (3.15) bring an extra minus sign to the relative phase of [1) and |]), so that
at some point we have to redefine the pseudospin to match the Spin—% carried by the a;, orbital.

3.2.2 Phase diagram of the extended Kitaev-Heisenberg model

The main attraction of the Kitaev materials is of course the connection to the Kitaev honeycomb
model for spins—% [18] that appears as a special case of the pseudospin model in Eq. (3.16) when
J, I and I are zero. In this limit the model is exactly solvable and at the same time it features
an exotic ground state — quantum spin liquid touched upon in the introductory Sec. 1.4. An
essential element of the exact solution [18] is the exploitation of an extensive set of conserved
quantities. These are associated with the individual hexagonal plaquettes of the honeycomb
lattice and are constructed as a product W, of six spin operators indicated in Fig. 29(a). The
conserved quantities have eigenvalues +1 and by considering all the possible distributions of +1’s
and —1’s at the plaquettes of the honeycomb lattice we exhaust the Hilbert space of the model
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Fig. 29: (a) Conserved plaquette quantity W), of the Kitaev model. (b) Origin of the local nature of spin
correlations <Sf‘5’f ) that are limited to nearest-neighbor bonds. When acting by a spin operator on the
flux-free ground state of the Kitaev model, two fluxes are generated at the adjacent plaquettes and need
to be removed again when applying the second spin operator. Moreover, there is a link between the spin
component and the orientation of the pair of the concerned plaquettes, making the correlations highly
anisotropic — only the component (S{*S¥) is nonzero at a-bond. (c) Temperature-dependent specific
heat Cy, entropy S, and thermal average of the plaquette quantities W), for the Kitaev honeycomb
model. The upper panel shows results for the isotropic version with equal Kitaev interaction strength
for all bond directions, K, = K, = K, [c.f. Eq. (1.4)], the lower panel is for the anisotropic situation
K, = K, = n/3, K, = 1—2n/3 with n = 0.5. Shading indicates the two crossover temperature
ranges. At lowest temperatures the ground-state sector without fluxes dominates, hence (W,) ~ 1. In
the middle regime, the plaquette quantities W), fluctuate and (W) ~ 0. The entropy per site staying
flat around %an in certain interval of temperatures suggests the fractionalization of spins—% into two
parts (these are the localized and running Majorana fermions) that breaks down at higher temperatures
where S & In2 corresponding to spin-1. Panel (c) is adapted from Ref. [67].

by disconnected subspaces. When utilizing the Majorana spin representation (here for Pauli spin
operators o, = 25,)

0, = ibge, o, = ibyc, o, = ib,c (3.17)

that employs the “gauge” Majorana fermions b, and “matter” fermions ¢, we find that the
b, fermions are static and become constituents of W, quantities while ¢ fermions are freely
running on the lattice. In this representation the diagonalization of the spin Hamiltonian is thus
equivalent to a problem of noninteracting Majorana fermions hopping in a magnetic background
which can be easily solved. The magnetic background differs in each of the symmetry sectors,
i.e. subspaces of states with different configurations of W,’s. The spin liquid ground state is
found in the homogeneous sector with W, = +1 at every plaquette. The above diagonalization
procedure applied to this sector shows that the spectrum of excitations that inherit unusual
fermionic character is gapless. However, this does not imply that we are dealing here with
gapless magnetic excitations. In fact, by applying the spin operator at a selected site, we flip
two plaquette quantities W), from +1 to —1 as shown in Fig. 29(b). From the viewpoint of the
Majorana fermion representation, we have introduced two magnetic fluxes at those plaquettes.
This brings us out of the ground-state W, = +1 sector and costs certain energy that appears
as a spin gap in the magnetic excitation spectra [68,69]. This feature also leads to short-range
spin correlations limited to nearest neighbors. When evaluating the static correlator (S?Sjﬁ )
the first application of the Sjﬂ flips W), at two hexagons attached to site j (the particular pair
is decided by () and this defect has to be restored by the application of S®* which requires i
to be either equal to j (trivial) or forming a nearest-neighbor bond. As a consequence, there
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cannot be nonzero spin correlations beyond nearest neighbors. Despite the relatively simple exact
solution, the evaluation of thermodynamic quantities for the Kitaev model is challenging. As a
reward we can observe an interesting hierarchy of regimes that appear due to the combination of
fermionic excitations and fluxes with finite cost [67,70]. There are two characteristic temperature
scales, that can be clearly identified in the temperature-dependent specific heat or entropy as
illustrated by Fig. 29(c). Below the lower one the thermodynamics is given by Majorana fermionic
excitations within the flux-free ground-state sector (all W, = +1). Above this temperature scale,
thermally excited fluxes start to appear and disturb running Majorana fermions. These can
still maintain their coherent motion, however. Finally, above the higher temperature scale the
fractionalization of spins into Majorana fermions is lost and the system behaves as a thermally
excited paramagnet.

While the fancy features such as spin liquid with short-range correlations or fermionic charac-
ter of excitations are appealing theoretically, the actual materials do not realize the pure Kitaev
limit and are less frustrated anisotropic magnets that support long-range order. Their magnetic
behavior can be explained by invoking the other terms of the extended Kitaev-Heisenberg model
(3.16) that “spoil” the Kitaev limit but on the other hand make the systems more approachable
by methods developed for conventional spin systems.

A central issue related to the Kitaev materials, for instance NayIrO3 or a-RuCls, is the iden-
tification of the relevant parameter regime. To estimate it from first principles is not a simple
task since, as we have learned in Sec. 3.1, the typical leading superexchange contribution o ¢?/U
is missing and the balance of the existing subleading interactions largely depends on microscopic
details. Accepting the form of the extended Kitaev-Heisenberg model, we can get to the values
of the model parameters by evaluating various measurable quantities within the model and com-
paring them to experimental data. The first experimental constraint is the presence of long-range
magnetic order of zigzag type [71-74] in both abovementioned compounds.'* This observation
calls for a determination of the phase diagram of the model. Due to the high anisotropy and
several participating interactions, it is quite complex in its entirety and some of its parts are still
being debated. In general this concerns the more frustrated regions with potential spin liquid
ground states [76,77], in most of its parameter space the extended Kitaev-Heisenberg model shows
long-range orderings that are well understood. In Fig. 30 we try to give an idea of the above
complexity, presenting selected sections through the phase diagram obtained by two methods.

In the first one we stay on the classical level, treating spins as regular vectors of fixed length
s in Eq. (3.16) and trying to optimize their orientations to minimize the resulting classical
energy. One of the possible approaches, that is also used in Fig. 30(a)-(c), is the Luttinger-
Tisza method first introduced in Ref. [78] when studying crystals with dipolar interactions and
later conveniently reformulated to the Fourier domain [79]. Here one represents the spins on the
two sublattices A, B of the honeycomb lattice by Fourier expansions Sag = > a ¢1’S 4, and
Spr=">. a ¢4’ S p, with R denoting the unit cell position. Due to the translational symmetry,
the spin Hamiltonian then assumes the form

S4
H = Z \IILHQ\Ilq, where U, = . (3.18)

q SBq

The explicit forms of the 6 x 6 matrices H, can be found e.g. in Ref. [80]. Treating spins classically
in Eq. (3.18), we would have to minimize the energy under the constraint |Sag|* = [Spr|* = 1
that should be valid for each R. This is complicated to achieve in the Fourier representation

40One can also find spiral orders such as that observed in a-LisIrO3 [75], these can be still captured on the
level of highly anisotropic models of extended Kitaev-Heisenberg type.
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but in Luttinger-Tisza method one makes an approximation that the above constraints should
be satisfied on average only, i.e. Y z(|Sar|* +|Spr|?) = N with N being the total number of
spins. Minimization under this relaxed constraint which translates to the requirement of constant
> a \Iffl\llq is simple, one just evaluates the eigenvalues of the matrices H, and finds the lowest
one among them. The solution found this way has to satisfy the original spin-length constraints
otherwise the Luttinger-Tisza methods is said to fail for that parameter point. In such cases an
alternative method is needed, for example Monte Carlo minimization of the classical energy for
a large piece of the honeycomb lattice.

The second method is fully quantum and consists in finding the ground state of a small
honeycomb cluster via exact diagonalization. For this clearly finite-size system, the symmetry
cannot be spontaneously broken and instead of a single ordered state, we find a fluctuating
superposition of all the degenerate possibilities. To disentangle the information about potential
orderings, the ground state can be analyzed by the method of spin coherent states introduced in
Ref. [81]. Here one works with the coherent spin—% states that “point” in certain directions and
based on them assembles a product state for the cluster that best fits its exact ground state. To
put things explicitly, let us capture the direction by a unit vector n and denote by |n) spin—%
state that is an eigenstate of m - S operator (i.e. the component of S in the direction of n) with
the eigenvalue —i—%. Using spherical coordinates, we get m = (cos¢sinf,sin¢sinf,cosf) and
In) = e/ cos 4| 1) + e /?sin | ]). Based on a set of spin coherent states for the individual
sites we define a product state of the N-site cluster as |¥) = |n;) ® |ny) ®...®|ny) and measure
its overlap with the ground state |GS). The ordering pattern is then detected by varying the
directions n; and trying to maximize the probability P(n,...ny) = [(¥|GS)|?. This approach
provides a relatively good overview of the phase diagram including details of the ordered phases
and is consistent, apart from a few problematic regions, with more advanced but less transparent
numerical approaches such as DMRG [82] or tensor networks [83,84] used to investigate certain
parameter regions of the model.

The rich phase diagram of the extended Kitaev-Heisenberg model that is partially revealed
by Fig. 30 contains a few phases that can be anticipated in the various limits of the model. These
include the ferromagnetic (FM) and antiferromagnetic (AF) phases linked to J < 0 and J > 0
Heisenberg limit, respectively, which are very extended in contrast to the Kitaev spin liquid
phases found in the Kitaev-limit areas of FM or AF character [see Fig. 30(d)]. The Kitaev spin
liquid state is able to withstand only a rather limited amount of non-Kitaev perturbations and
gives up soon enabling a development of a long-range order. Apart from the expected FM and
AF order, there is in addition a stripy one, two types of zigzag order differing in the direction of
the ordered moments, and two non-collinear orders of vortex type (only one of them appears in
the sections shown in Fig. 30). The respective ordering patterns are presented in Fig. 30(g)-(k).
In fact, by using nontrivial sublattice-dependent spin rotations, the model can be shown [80]
to be equivalent to Heisenberg model for certain parameter combinations — points of hidden
SU(2) symmetry. These hidden relations give somewhat deeper insight into the location and
characteristics of the individual phases [80,85]. The stripy and zigzag phases were found to be
related to the FM and AF Heisenberg points by a four-sublattice transformation and the vortex
phase seen in Fig. 30 was linked to the FM Heisenberg point by a six-sublattice transformation.
A problematic part of the phase diagram for the exact diagonalization method limited to small
clusters is the area indicated by the IC label. It is partially covered by incommensurate spiral
phase but it may also host further spin liquid phases not directly linked to the closest Kitaev
point [76,77].

We are not going to discuss the details of the phase diagram and the (hidden) symmetry
properties of the model that were thoroughly analyzed e.g. in Ref. [85]. Instead, we briefly
inspect the experimentally relevant zigzag phases. As already mentioned, there are two distinct
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Fig. 30: (a) Classical phase diagram of the extended Kitaev-Heisenberg model as obtained by the
Luttinger-Tisza method. The interactions are parametrized as J = sin 6 cos ¢, K = sinfsin ¢, I' = cos 0
with 6 being the radial coordinate in the circle (distance from the center varying from 0 up to 7/2
at the outer rim) and ¢ being the conventional polar angle measured from the horizontal axis. Four
points of purely Heisenberg or Kitaev character at the outer rim are indicated by dots. In the black
region the Luttinger-Tisza method suggests an incommensurate order. (b) The same with fixed nonzero
IY = —0.1. (c) The same as in (a) with fixed nonzero third-neighbor Heisenberg exchange J3 = 0.1.
(d) Phase diagram obtained by coherent-state analysis of the exact ground states for 24-site cluster.
Shown are the added probabilities of coherent states with zigzag (unscaled), ferromagnetic (unscaled),
antiferromagnetic (reduced 10 times), stripy (reduced 5 times), and vortex (reduced 10 times) patterns.
The values above 3.2% are shown using the topmost color of the scale. The AF phase extends up to
the outer rim, its probability gets reduced there due to increased quantum fluctuations compared to
the inner part of the circle. Tiny patches of Kitaev spin liquid (KSL) phase are encircled. The large
area showing almost zero probability hosts an incommensurate (IC) or large-unit-cell order. (e) Zigzag
region in the phase diagram with fixed I" = —0.1 obtained by the same method as in panel (d). The
area with P(zigzag) > 0.5% is highlighted. The color indicates the angle of the ordered moments to the
honeycomb plane. (f) The same as in panel (e) for fixed J3 = 0.1. (g-k) Pseudospin patterns of the
commensurate ordered phases.

zigzag phases. They are not completely unrelated, however, according to Ref. [80] one can
actually find a dual transformation of the model that converts one into another. The ordered
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moments in the upper phase zz1 of Fig. 30(d) prefer one of the cubic axes z, y, z, depending
on the direction of the zigzag chains. For the pattern shown in Fig. 30(j) with zigzag chains
running along the = and y bonds, the ordered moments are close to (or coinciding with) the z
axis. This spin arrangement is stabilized in the regime of large AF K > 0 that profits from the
AF correlations of z pseudospin components at the vertical bonds and FM J < 0 interaction
that, being component-insensitive, gains energy due to FM correlations at the majority of bonds
(FM z and y bonds versus AF z bonds). The lower zigzag phase zz2 has the ordered moments
pointing along an almost orthogonal direction, for the pattern in Fig. 30(j) they are found roughly
inbetween the cubic  and y axes. In this case, the zigzag order is supported by large FM K < 0
that exploits the FM correlated x and y pseudospin components on the zigzag chains formed by
x- and y-bonds, and large I' > 0 interaction that contributes on the interchain z-bonds where it
simultaneously utilizes the conveniently oriented x and y components of the pseudospins. The
latter situation is observed experimentally, in agreement with the microscopic expectations of
the ferromagnetic Kitaev interaction and positive I' interaction (see [53] and references therein)
that we have found also in Sec. 3.1 based on a simplified calculation. As illustrated in Fig. 30(e),
the zigzag phase zz2 is supported by negative I" interaction (i.e. positive crystal field A). The
phase zz1 does not feature the properly correlated pseudospin components compatible with the
negative I'” interaction and is supported by small positive I instead. Both zigzag phases benefit
from the anticipated third-nearest-neighbor Heisenberg interaction J3 that accepts any moment
direction in the zigzag arrangement [see Fig. 30(f)]. The precise ordered moment direction is
decided by the balance of the anisotropic interactions K, I, [V and can be used as a guide to
narrow down the relevant parameter region [81]. It is automatically resolved by the method of
coherent states and indicated in Figs. 30(e),(f) to give an example of this effect.

Finally, let us note that while the qualitative appearance of the phase diagrams obtained
classically [Fig. 30(a)-(c)] and by exact diagonalization of a cluster Hamiltonian [Fig. 30(d)-(f)]
is quite similar, the precise positions of the phase boundaries may differ significantly. Generally
speaking, the phases involving stronger quantum fluctuations (AF, zigzag) become more extended
when going from the classical to the quantum calculation since the properly included quantum
fluctuations bring them an energy advantage in the competition with the less fluctuating phases
(FM, stripy, vortex). These trends are clearly visible in Fig. 30.

3.3 Specific features of the zigzag phase in the regime of the dominant
Kitaev interaction

Focusing now on the zigzag phase, we will study a few signatures of the highly anisotropic and
bond-selective pseudospin interactions that appear in static and dynamic pseudospin correlations.
The component- and bond-selective Kitaev interaction induces anisotropic and bond-dependent
correlations of the pseudospins. This is true not only for the ordered states, as it has been
discussed in the previous section, but can be observed also in the short-range correlated state
above the ordering temperature.

In the case when the model supports zigzag ordering, the state above Ty contains — in a short-
range correlated form — all three possible zigzag patterns depicted in Fig. 31(a). Each of them is
characterized by different preferred direction of the pseudospin moments and at the same time
corresponds to different pair of characteristic wavevectors [Bragg spots shown in Fig. 31(a)]. This
link enables a direct experimental proof of anisotropic bond-selective interactions in a real Kitaev
material by measuring momentum-dependent correlations of the pseudospins resolved into the
individual components. For example, assuming the above FM K < 0 situation, the zigzag pattern
with FM chains along z and y bonds places pseudospins into the direction roughly inbetween the
x and y cubic axes. Considering only the diagonal components of the pseudospin correlations,
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Fig. 31: (a) Three possible zigzag patterns differing in the direction of the FM zigzag chains and the
corresponding Bragg spots in the reciprocal space. The inner dashed hexagons in the bottom part
are Brillouin zones of the honeycomb lattice, the blue filled hexagons mark the Brillouin zone of the
triangular lattice generated by filling the voids in the honeycomb lattice. (b) Component-resolved
pseudospin correlations measured by diffuse magnetic x-ray scattering on NagIrOgs [86]. The experiment
was performed at 7' = 17K, i.e. above Ty ~ 12 — 15K (sample dependent). The dashed hexagons have
the same meaning as in panel (a). (c) Simulated pseudospin correlations (SZ,S7) obtained by exact
diagonalization on 24-site cluster when interpolating between Heisenberg and Kitaev limits of the model.
With the selected parametrization J = Jo = J3 = 1 — ¢ and K = —¢ for £ € [0,1], the ground state
is of zigzag type up to £ very close to 1 where it switches to the Kitaev spin liquid. (d) Temperature
dependent pseudospin correlations uncovering the hierarchy of the energy scales. The upper row shows
(8% ,S5) correlations, the bottom row (quSg). Model parameters J = —0.5, K = —5.0, ' = 2.5,
J3 = 0.5 in units of meV were adopted from Refs. [87,88]. The correlations are calculated for 24-cluster
using finite-temperature Lanczos method [89,90] in LTLM variant [91].

the characteristic momenta of the above zigzag pattern should be thus visible mainly in (§fq§§)

and (§3q§g> correlations. Alternatively, the <§fq§2) correlations should display characteristic

momenta of zigzag patterns 2 and 3, but a negligible contribution from zigzag 1. Such a corre-
spondence is indeed observed in the diffuse magnetic x-ray maps presented in Fig. 31(b). When
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added together, the maps of the three components (§2q§3) (v =z, y, ) reveal a very symmetric
picture with all the zigzag momenta showing similar intensities.

To simulate these effects and estimate the amount of interaction anisotropy needed to explain
the experimental observations, in Fig. 31(c) we perform exact diagonalization on a small 24-site
cluster interpolating between Heisenberg and Kitaev limits of a model that supports zigzag
ordering most of the time. This is achieved by using AF Heisenberg interactions of the same
strength up to third nearest neighbors and complementing them by FM Kitaev interaction.
Although our calculation is in principle for 7" = 0 only, the inability of the cluster ground state
to spontaneously break symmetry comes as an advantage here and we get all three zigzag patterns
mixed in, imitating therefore the situation just above Tx. As seen in Fig. 31(c), the Heisenberg
limit of the model retains fully isotropic correlations so that all the zigzag points in a selected
correlation component (S S¢) are equally intense. With a relatively modest relative strength
of the Kitaev interaction as compared to the Heisenberg ones, the symmetry is lost and two
of the characteristic momenta start to vanish. However, to make the “unwanted” Bragg spots
completely invisible (in the given color scale), a relatively large Kitaev interaction is needed,
suggesting its dominance in the NagIrO3 compound [86].

Another interesting fictitious experiment is performed in Fig. 31(d). Here we take a parameter
set with dominant FM K and substantial I' > 0, accompanied by small J < 0 and J3 > 0 to

spectral weight (a.u.)

0
r Mmr- Xk r Yk r’ r M1’ XKk r Yk r’

wavevector ¢ wavevector q wavevector g

Fig. 32: (a) RIXS response calculated by exact diagonalization of the extended Kitaev-Heisenberg
model on 24-site and various 32-site clusters (see Ref. [92] for details). The model parameters used are:
J~10meV, K ~ —15meV, I' ® 16 meV, I' = —2.4meV, J, = 1.2 meV, J3 = 2.4 meV. (b) The
same dynamic response function evaluated within linear spin-wave approximation (LSW), averaging
over all three zigzag directions. (c¢) Brillouin zone of the honeycomb lattice (dashed hexagon), extended
Brillouin zone (solid hexagon) and positions of the high-symmetry points used in panels (a) and (b).
(d) Spectral weight of the response function from panels (a), (b) as obtained by exact diagonalization
for the various clusters (points), within LSW approximation (dashed line), and compared to (arbitrarily
scaled) experimental data. (e) Measured RIXS response on NaglrOs at 7' = 7 K [92] compared to
(f) the broadened data from panel (a).
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stabilize the zigzag order, and calculate the pseudospin correlations by a finite-temperature exact
diagonalization approach. By elevating the temperature, the correlations gradually reveal the
hierarchy of energy scales. Requiring the support of the smallest J and J3 interactions, the sharp
zigzag correlations give up first, their degradation is clearly visible in the 10 K ~ 1 meV map.
The T' interaction correlating the S* and SY components is defeated by the thermal fluctuations
in the interval T" ~ 20 — 50 K where the corresponding correlations almost vanish. The largest
energy scale K is able to withstand higher temperatures and gives the correlations a wave-like
profile in momentum space, characteristic for the nearest-neighbor Kitaev correlations.

As a final illustration of the features brought about by the dominance of the Kitaev interac-
tion, in Fig. 32 we present dynamical correlations in a form of resonant-inelastic x-ray scattering
(RIXS) spectrum that was supposed to simulate the experimental data on NayIrOs based on
the extended Kitaev-Heisenberg model [92]. In contrast to gapless magnons observed for the
isotropic Heisenberg model that conserves total spin, here we get a gapped spin excitation spec-
trum, though the gap can be quite small as it happens to be in our example. The violation
of total pseudospin conservation is also manifested by large ¢ = 0 intensity at finite energies,
that could not be present if S,—( — which is proportional to the total pseudospin — commuted
with the Hamiltonian. A comparison of exact diagonalization, here rather limited by momentum
resolution, and linear spin-wave approximation reveals large decay rates due to highly anisotropic
interactions. The dynamics is characterized by two energy scales with the smaller Heisenberg
interactions influencing the low-energy magnons that keep to be well defined, while the large
anisotropic interactions determine the overall shape of the spectrum up to the high energies that
correspond to the fast dynamics of the pseudospins. This is subject to strong decay processes
leading to a large broadening of the high-energy spectral features. On the other hand, being gen-
erated by the large K and I interactions, the high-energy spectral features survive even above Ty
where the low-energy magnon features are lost [92]. As discussed before, in this regime one can
imagine short-range correlated zigzag fragments, still showing their specific high-energy dynamics
due to K and I'. This effect is a dynamic analog of the gradual suppression of characteristic static
correlations by elevated temperature that is captured in Fig. 31(d). Finally, the bond-selectivity
of the interactions that creates links between the momentum space and pseudospin components
as observed on the correlations in Fig. 31(a),(b), also enters the game here. For example, even
though all the three zigzag directions are equally employed in both Fig. 32(a),(b), the particular
selection of the pseudospin components entering the RIXS response makes a distinction between
otherwise symmetry-equivalent points M and Y — the former hosts an intense magnon cone while
the latter does not.



4 Soft-spin systems

In this part of the thesis, we will move beyond the concept of rigid spin systems, where the
local moments are represented by spins or pseudospins of a given spin length, and consider
soft-spin systems that were briefly introduced in Sec. 1.5. Here the magnetic ions may host
several quasidegenerate spin states that are dynamically mixed by superexchange interactions.
This dynamic mixing makes the magnetic moments soft, which brings specific features to e.g.
spin excitation spectra. On the material side, our motivation is the ruthenate CasRuO,4 that
is Mott insulating below approximately 360 K [93] and shows antiferromagnetic order below
Tn ~ 110 K [94-96]. Its crystal structure depicted in Fig. 33(a) is similar to that of high-
T, cuprates and consists of stacked RuO, planes where the Ru ions connected by O ions are
arranged into a square lattice. The ordered magnetic moments lie within the RuO, planes and
are oriented diagonally with respect to the square lattice.

Below we will formulate the magnetic model for this compound based on the low-energy
multiplet states of Ru** ions with t%g configuration. As observed in Ref. [97], the orbital angular
momentum of £y, orbitals is largely unquenched, supporting the low-energy structure as in Fig. 14
that is formed by spin-orbit coupling. It features nonmagnetic J = 0 singlet ionic ground state
and J = 1 triplet states that are separated by the energy A. Based on this local basis, we will first
formulate a singlet-triplet superexchange model serving as an introductory example. The model
will be later refined to account for the tetragonal and small orthorhombic splitting in CasRuOy4
and become in fact a singlet-doublet model. Finally, we will solve the model, demonstrate the
peculiar antiferromagnetic order due to a condensation of J = 1 triplet levels and obtain spin
response and Raman response that can be successfully compared to experiments on CasRuQy,.

In the following, we will limit our discussion to the square lattice case applicable to CasRuQy,.
However, another interesting situation occurs when applying the same ideas to the honeycomb
lattice case where Kitaev-like frustration of interactions may appear [98-100]. The details of the
resulting frustrated singlet-triplet model are discussed in Ref. [100] attached in Sec. 6.

4.1 Singlet-triplet model

As a first step toward a microscopic model for the magnetism of CasRuQOy4, we will consider
the multiplet structure of tgg configuration discussed in Sec. 2.2.3. The moderate spin-orbit
coupling constant A ~ 70 — 80 meV for Ru'™ ions [31,97] leads to the hierarchy of energy scales
U > Jy > ) that fits the successive level splitting suggested by Fig. 14. A natural selection of
basis states for the minimal model includes the nonmagnetic J = 0 ionic ground state and — to
have some magnetic moment available — low-lying excited J = 1 states. As we will see below,
these states are easily accessible by second-order superexchange processes on a bond. The J = 2
states at three times higher excitation energy will be ignored. It was already noted in Sec. 2.2.4
that we encounter here a special situation of predominantly Van Vleck type of magnetic moment
— the largest part of the magnetic moment contained within the J = 0,1 subspace is obtained
from the transition between J = 0 and J = 1 states.

The local part of the singlet-triplet model embodies the energy cost of the triplet state as
compared to a singlet. This is captured by the simple Hamiltonian A ), np; = Ep >, np; counting
the number of triplet excitations with the excitation energy Er = A. The derivation of the bond
part will follow the general scheme utilized in the previous sections. With the singlet-triplet basis
selected, we could proceed similarly to Sec. 3.1 by forming all possible combinations of singlets
and triplets on a bond and obtain their energy gains and mutual connections by considering
the virtual processes within second-order perturbation theory. However, here we will illustrate
another route to arrive at the same result. We will first obtain more general model of Kugel-
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Fig. 33: (a) Crystal structure and magnetic ordering of CagRuO4. Ru** ions are depicted as gray
balls surrounded by oxygen octahedra. Magnetic moments lying in the RuOs planes and pointing along
crystallographic b axis are indicated by yellow arrows. In-plane bond directions are labeled as x and y.
Adapted from Ref. [101]. (b) Schematic representation of singlet-triplet processes corresponding to the
Hamiltonian terms in Eq. (4.5). Each site may host a singlet tég configuration s or a triplon excitation
Ty (o = z,y, z) of the cost Ep = A. The upper exchange process is a triplon hopping (exchange of s
and T'), the lower process is a creation/annihilation of a singlet pair of triplons.

Khomskii type'® operating in the subspace involving all nine L¢f = 1, S = 1 ionic states selected
by Hund’s coupling. This model will be later projected on the J = 0, 1 states to get the singlet-
triplet model. The most natural basis for the Kugel-Khomskii model are the states of the type
(2.64) that enable to easily capture the action of the two hoppings involved in the second-order
virtual process by properly assembling the spin operators S;, §; and orbital operators LSH, L‘;H
associated with the two sites of the bond (ij). Due to the spin conservation during the hopping,
the spin operators may only appear in a form of the isotropic product S; - S;. The orbital part
of the interaction is not limited this way and may take various forms depending on the hopping
geometry and the particular bond direction. In the case of 180° metal-oxygen—metal bonding,
we have a bond-selected pair of active orbitals that are subject to oxygen-mediated hopping
preserving the orbital label (i.e. it is diagonal in orbitals). For concreteness, we will consider a
z-bond'® where the hopping Hamiltonian reads as [c.f. Eq. (2.101) for an z-bond]

Hy=—tY (&, +nlm,) +He, (4.1)

with t = 12, /Ape. In contrast to Eqs. (3.2) and (3.3) for the 90° bond geometry encountered
in Sec. 3.1, here we only get diagonal hopping of a and ¢ holes associated with LT eigenstates.
Combining this information with the a, b, ¢ composition of the basis states (2.64), we can infer
that their individual LT will be mostly preserved in the superexchange process, but there is also
a possibility to exchange LT = +1 and LT = —1 on the bond. All these observations are indeed

consistent with the actual form of the effective Hamiltonian derived for the z-bond:

2 LI (L) + (L )*(L))? t*

( ? 2\2 2\2 2T 2 z\2 z\2
ﬁ(si.sﬂ_l){ 5 + [(L)?—2] [(L%)*—2] +LZ.L]}+E [(L7)? + (L3)?] .
(4.2)

I5This type of spin-orbital models has been introduced by K. I. Kugel and D. I. Khomskii in Ref. [102].
16Note, that in the planar structure of CagRuOy4 only the 2- and y-bonds of M~O-M type are present, as seen
in Figs. 33(a) and 34(a). The z-bond is considered here just to have a familiar notation used before.
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For brevity, we denoted LT by L in the above equation. Now we need to project the Hamiltonian
(4.2) onto the singlet-triplet basis. This is achieved by considering the site operators such as
S?(L?)? contained in the fragments of (4.2) and expressing them in the multiplet basis with spin-
orbit coupling included. By throwing away the terms involving the J = 2 quintuplet and keeping
only s and 7}, operators associated with J = 0, 1 states, we arrive at the required projection. For
example, the above site operator can be written as

3 7
2
When converted into the singlet-triplet basis, the bond Hamiltonian (4.2) generates a large
number of terms. The diagonal ones can be written as a renormalization of the triplet energy and
mutual density-density interactions of triplets. To this end we first make a constant energy shift so
that the energy gain of |ss) bond configuration becomes zero. The other energy gains can be then
distributed among the local Ep shifts AEp, = AEp, = —%%, AFEr, = —%% and the repulsion
terms Voo nrainra with Voo =V, =V, = %%, Vay = g%, and V,, =V, =V,.=V,, = %% Note
that the z-bond naturally makes a distinction between the 7T, excitation and the T, T}, pair. For
the other bond directions, all the Hamiltonian terms are obtained by a cyclic permutation. The
above diagonal contributions will be later ignored, we may imagine them as being partly absorbed
into renormalized E7 and partly neglected under an assumption of low density of triplet states.
More interesting are the off-diagonal terms of the effective Hamiltonian that can be visualized
as bond processes involving triplet excitations. These are of hardcore boson nature and will be
called triplons in the following. To make the notation compact, we introduce Hubbard operators
switching between s and T, states of the tég configuration:

Td=1T(sl, Ta=Is)(Tu]. (4.4)

The off-diagonal contributions quadratic in triplon operators may be summarized as (again for
a z-bond)

oy (T3 + TiT ) + TAT, = by (AT + TATS) = o TATS 4 Hee (45)

They can be understood as hopping of triplons and their pairwise creation and annihilation
depicted in Fig. 33(b). There are also terms involving three or four triplon operators — conversion
of a single triplon on a bond to a pair of complementary ones, exchange of triplons on the bond,
and pair-conversion terms o |T,;T,;) (TwiTwj|. All these may be ignored when focusing on the
cases with small enough density of triplons. Including first order corrections in n = Jy/U, the
interaction parameters in Eq. (4.5) read as

t2 5 2 t? 5t 8 2 t?
toy~—=1—=n], tox=-—=, Kpy~-—=|[(1—=n], L R = 4.6
v U( 6") sy GU( 5") Y (4.6)

When assuming the typical 7 ~ 0.2 [see e.g. the Ru parameters used in Fig. 28(d)], the values
of the above parameters are relatively close to each other, so it is reasonable to simplify the
singlet-triplet Hamiltonian to the isotropic form

H=Er ZnTi + JZ (7';[7; - Tz’T'TJT - H‘C‘> (4.7)
i (i)

S*(L*)* = —%(STT;E—TJS)— (TJTZ —TgTy) + neglected terms involving J = 2 states. (4.3)

with J ~ 2¢?/3U and the vector operator T~ = (T, T,, T.). Based on Eq. (4.7) applied to a square
lattice as appropriate for CasRuQO,, we could already study the competition of the triplon cost Er
and the superexchange .J, the emergence of the magnetic order due to triplon condensation, and
the implications for magnetic excitation spectra. However, to make the model more realistic, we
will still include tetragonal splitting of the orbitals that essentially eliminates one of the triplon
flavors, a small splitting due to orthorhombicity, and also consider some of the higher-order terms.
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4.2 Revisions of the model to reflect tetragonal splitting

Apart from the major t94-¢, splitting, the orbitals in CagRuQOy are subject to further splittings
due to tetragonal and small orthorhombic components of crystal field illustrated by Fig. 34(a),(b).
The main effect is due to the tetragonal crystal field A(n,,+n., —2n,,)/3 that brings down the
planar zy orbital for positive A as shown Fig. 9(b). As we will see below, the tetragonal splitting
pushes the magnetic moment to the RuO, plane by essentially deactivating one member of the
triplet states. The small orthorhombic crystal field A’ generates in-plane anisotropy selecting
the b crystallographic axis as preferential for the ordered moments.

The tetragonal splitting acts on the two-hole states |L°T, S,) of Eq. (2.64) via an extra term
A[(LeT)? — %], changing the proportions of these states in the multiplet eigenstates. This leads to
wavefunction modifications similar to what we already encountered in Eq. (3.15) for pseudospin—%
states of the tgg configuration. The wavefunction of the singlet ground state gets adjusted to the
tetragonal splitting as

2v/2

Y (4.8)

|s) = cos vy \%(H—l, —1) +|—1,+1)) —sindy |0,0), tan 20 =

with the crystal field being quantified by § = A/2X\ = A/¢. For nonzero A, the orbital-mixing
angle ¥y deviates from its cubic-limit value arctan(1/v/2) ~ 35.26° that reproduces the original
J = 0 singlet of Eq. (2.76). The triplet states split into a degenerate pair

1
VI+62-4§

that is linked to |T,) = \%(\TH> —|7T_4)) and |T,) = \%(|T+1> + |T_1)) used in Sec. 2.2.4 to
handle the magnetic moment of the tég configuration, and the non-degenerate state

Ti1) = Feosdy [£1,0) £sin |0, +1),  tandy = (4.9)

To) = =75 (1+1,=1) = |- 1,+1)) (4.10)

that is linked to the remaining |7,) = —i|Ty) and only shifts in energy. The above states are
still eigenstates of J, but J is not a good quantum number anymore due to the mixing of the
original J = 0,1 states with the J = 2 quintuplet states caused by the tetragonal crystal field.
The energy level splitting is plotted in full in Fig. 34(c) and the two angles entering Eqs. (4.8)
and (4.9) in Fig. 34(d).

The newly introduced splitting among the triplet levels should be reflected in the singlet-
triplet model. As seen in Fig. 34(e) showing the ionic excitation spectrum, for positive A case that
applies to CagRuQy, the T} level goes quickly up and can be omitted in the model basis, leading
to a singlet-doublet model. In contrast, the excitation energy of the doublet T, levels becomes
significantly reduced compared to the original A = /2, making them even better accessible by
the superexchange processes. Ref. [101] estimates 0 ~ 1.5 and the corresponding reduction of the
Ty excitation energy from A ~ 70 — 80 meV to about 25 meV. When leaving out the Ty ~ T,
state, the three active basis states are conveniently described by pseudospin-1. Using the above
states, we can form the basis of pseudospin-1 according to

FL) = L6IT) — L) = —[Ta), ) =1ls),  |71) = ZGID) +1T,) = [T) (4.11)

defining the eigenstates of the z-projection of the pseudospin-1. The corresponding pseudospin
operators that fulfill the spin-1 algebra are then expressed as

S. = —i(s'T, = Tfs),  S,=—i(s'T, ~T}s), S.=—i(T]T, - TiT,). (4.12)
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Fig. 34: (a) Coordinate systems for the RuOy plane. The crystallographic axes are labeled by a and b.
(b) Splitting of triplet levels under crystal field of distorted octahedra. Tetragonal deformation giving
rise to the A field lifts up the T, triplet state, small additional orthorhombic distortion represented by

the field A’ further splits the T, and T, states into the combinations T,; = %(Tz FT,). (c) Energy

levels within the L°® = 1 and S = 1 sector depending on the ratio of the tetragonal crystal field A and
spin-orbit coupling strength ¢. (d) Auxiliary angles 9 and ¥; entering the eigenstates in Egs. (4.8) and
(4.9). (e) Excitation energies measured from the singlet ionic ground-state level. The insets illustrate
the tetragonal deformation of the octahedron as connected to the sign of A within point-charge model.
(f) Electron densities of low-energy tég states including their spin polarization. The low-energy states
form a basis of a singlet-triplet model (cubic limit A = 0), effective spin-1 model (large positive A), or
effective spin-1 model (large negative A).

Pseudospin-1 introduced this way also perfectly captures the surviving components of the mag-
netic moment. The x and y components of S are proportional to the in-plane Van Vleck moment
[see Eq. (2.90)] while the z component describes the magnetic moment hosted by the triplons
themselves. The g-factors that connect magnetic moment 28 — LT and pseudospin-1 operators
within the pseudospin-1 subspace are plotted in Fig. 35(a). For the cubic limit, we notice the
coincidence with the factors entering Eq. (2.90). At large tetragonal compression, the orbital
component is suppressed as evident from Egs. (4.8) and (4.9) and the usual spin g-factor 2 is
recovered.

Adopting the pseudospin-1 notation, we will first implement the level splitting depicted in
Fig. 34(b) into the local part of the new singlet-doublet model. Combining both the reduced Ty,
excitation cost Ep and the in-plane anisotropy attracting the moments to the b axis, we have

Hloc = ETTLT + %A’(nTa — 7’LT5> = ET§ZQ + %A/(gz — gg) = Eng — A/(gxgy —+ §y§x) s (413)

where Er is now much smaller than A. Still, when the experimental data on CasRuQOy are fit by
the pseudospin-1 model, E7 turns out to be the dominant parameter, constraining the magnetic
moments to the RuO, plane.
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Fig. 35: (a) In-plane (g,5) and out-of-plane (g.) g-factors connecting the magnetic moment and
pseudospin-1 S. The scaling of the in-plane and out-of-plane components is highly anisotropic near
the cubic limit but the pseudospin-1 picture only starts to apply around A = ¢ where the g-factors are
already rather close to their A — oo value of 2. (b),(c) Exchange parameters of the effective spin-1
model depending on the crystal field and Hund’s coupling strength n = Ji/U. Panel (b) concerns the
dominant bilinear part of the interaction showing the parameters J, A, a defined by Eq. (4.14), the
smaller biquadratic part is addressed in panel (c). Here we have singled out three quadrupolar inter-
action channels Q2;Q2 j, Qzy,iQzy,j, and Qz;;Qs- j, the other nonzero ones are indicated by thin gray
lines only (shown for all three n values).

Much more demanding task is the recalculation of the superexchange part of the singlet-triplet
model with the modified basis wavefunctions and its subsequent conversion to the pseudospin-1
operators. The resulting contribution of the z-bonds in RuO, plane can be written as

Ho= > |(J+A)SEST+(J — A)SISY + J(1 - a)S:5 + 3 ¢QeQf | . (4.14)
(ig) ||z aB

A similar form with interchanged x and y components is obtained for the y-bonds. Together
with Hjo. we get the full Hamiltonian of the pseudospin-1 model, H = Hioc + H, + H,. Let
us now analyze the superexchange interaction in Eq. (4.14) in detail. The first part contains
diagonal spin-spin interactions §M§aj, each component coming with its own interaction constant.
By inserting the definitions of S, = —i(7, — T.) and gy = —i(7, — 7,}) in terms of Hubbard
operators, one finds, that the J (§f§f —|—§Zy §§’) part of the pseudospin-1 interaction just reproduces
the 7., part of the quadratic interactions in the singlet-triplet model of Eq. (4.7). On top of
this, we also get a bond-selective contribution associated with the parameter A [this effect was
already neglected at the level of Eq. (4.7)] and S75 * interaction parametrized using J, = J(1—a)
that was among the ignored four-triplon terms in Sec. 4.1. The respective interaction constants
in units of t?/U and with ¢y ; = cos 291, So1 = sin 20 1, and 5 = Jy /U are given explicitly by

J— 7—00+C1—70001—2\/§S()81 + 13-60-501—}-2900614-13\/58081 4 9-00-014-500014-3\/58081

48(1 — 3n) 96 32(1 + 2n) ’
A= 5—3CO+361—5C()01+2\/58081 4 —10—601+40001—7\/§S()81 . 260—}-26001—{—\/58081
B 48(1 — 3n) 96 32(1 + 2n) ’
J = 1 —cos4y; 17— 24c; +Tcosdd; 7 — 8¢y + cosdd, (4.15)

—24(1 - 3n) * 96 * 32(1 + 2n)



4.3 Magnetic order due to triplon condensation 77

Ignoring the corrections due to Hund’s coupling in virtual states, they reduce to

J

B 9—co—cl+5cocl+3\/§sosl e 200+20001+\/§sosl 7 7—8cy+cos 4%

4.1
16 ’ 16 ’ 16 (4.16)

As can be seen in Fig. 35(b) where we plot J, A, « as functions of the tetragonal field A, the
anisotropy is quickly getting marginal with increasing A and in the large A limit we approach
the isotropic Heisenberg situation with J, = J, = J, = t*/U. This effect is a consequence of
the quenched orbital component of the pseudospin-1 which then coincides with the original spin
S =1 of tég configurations and hence may only be subject to isotropic interactions. Vanishing
anisotropy can be also readily verified (for any Jy /U ratio) using the above explicit expressions
when ¥y = ¥ = /2 giving ¢ = ¢; = —1, sg = s1 = 0, and cos4; = 1.

Since we deal with an effective spin-1 situation, the bilinear terms of the general form S,;S3;
may not be sufficient to fully describe the spin-spin interactions, in contrast to spin—% models,
and this is indeed the case here. In Eq. (4.14), we have included also biquadratic terms that are
expressed using products of the five components of spin-1 quadrupolar moments:

Qo=F50252-5-5)), Qu=5-5, Quy=255+5,5%, Q Q. (analogous). (4.17)

They can be in general arbitrarily combined for the two sites of the bond leading to the super-
position Za,a qsﬁﬂ Q?Qf but in our case the coefficients qsg are diagonal with the exception of
Qo to Qo coupling. All the nonzero biquadratic interactions are presented in Fig. 35(c) which
demonstrates that they are minor in the A/ interval of interest. In the following section we will

thus consider just the bilinear part of the superexchange.

4.3 Magnetic order due to triplon condensation

Before attempting a detailed comparison of the magnetic model introduced in the previous sec-
tions and the experimental data on CasRuO,4, we will demonstrate the basic features of the
model phase diagram. In particular, we will focus on the long-range magnetic order supported
by the model, that can be interpreted as resulting from triplon condensation. The introductory
singlet-triplet model (4.7) and the refined pseudospin-1 model of Sec. 4.2 show similar overall
behavior in this respect. Here we will consider the main part of the pseudospin-1 model that is
contained also in Eq. (4.7) and can be written explicitly as

H=ErY nri+JY Y [(Ths)i(s'Tn); — (T1s)i(T]s); + Hel] . (4.18)

(ij) a=zy

The model can be easily handled in the limit E7 > J where the intuitive picture of its ground
state is a dilute gas of triplons moving on the square lattice. To obtain the dispersion of moving
triplons we treat the local constraint ng + ng, + npry, = 1 by adopting dynamical Gutzwiller
approximation. Namely, we replace both s and s' operators in Eq. (4.18) by \/ 1 —nry —npy
and expand the square root assuming small density of triplons. We keep terms up to quadratic
order in the triplon operators T}, T, and regard T as regular bosonic operators afterwards. In
momentum space, we get the Hamiltonian of the canonical form

Hharm = Z Z AngqTaq o %B4<TaqTa7—q + TrquoTz,—q) (4.19)
q a=zy
with
Ag=FEr+4Jvq, Bg=4Jvq, 7q= 3(cosq, + cosqy) (4.20)
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that is readily solved by Bogoliubov transformation giving elementary excitations with the dis-
persion

wq = \[ A — B} = VEr (Br +8.77,). (4.21)

According to this result, the triplon excitations that start at the energy Er in the J — 0 limit
gradually soften around the ¢ = (7, ) point when J is increased [see also Fig. 36(d)]. We can
continue with this solution up to a relatively modest J.i; = %ET. At this point the excitation
dispersion touches zero energy, signaling a quantum phase transition to a phase with condensed
triplons as it has been briefly introduced in Sec. 1.5. Let us note here, that the position of the
quantum critical point is approximate only and J.;; is revised to a higher value when going beyond
the harmonic approximation, i.e. including interaction effects between triplons (the density of
which is no longer negligible near the critical point).

To cover the entire parameter range of the model at the same level of approximation, we
utilize a trial wavefunction that allows for the condensation of triplons (as hardcore bosons) by
locally mixing the s and T states:

W) = H <cos€ sk +sin @ Z dZRTc]:R> |vac) . (4.22)

R o=,y

Having a condensate of vector bosons, we need to deal with its internal structure which is rep-
resented here by a position-dependent complex vector dr. The local constraint ng +ny = 1
is maintained when |d| = 1. By minimizing the Hamiltonian average (V|H|V) with respect to
the variational parameter 6 and optimizing simultaneously the dg structure, we get the phase
diagram shown in Fig. 36(a). The average can be conveniently expressed by introducing con-
densate density p = (¥|np|¥) = sin?# and separating the real and imaginary parts of the d
vectors as dr = upr + (v with the constraint u? +v? = 1. With this notation we obtain for the
Hamiltonian average, termed also the “classical” energy of the condensate

Eouss = (VH|T) = Er Y _p+J > 4p(1—p)v;-v;. (4.23)
i (i)

Up to J = %ET the minimization gives # = 0 and hence zero condensate density, recovering the
above result of the harmonic approximation. Above this critical J/Ep strength, nonzero p appears
and the structure of Eq. (4.23) forces us to maximize the v component and make it antiparallel
at nearest-neighbor sites to gain energy. To uncover the magnetic nature of this type of triplon
condensate, we evaluate (W|My|¥) = g.,(¥|(—i)(sTT, — Tis )|¥) = —2guvary/p(1 —p) (o =
z,y) and (U|M,|¥) = g(V|(—i)(TiT, — T)T,)|¥) = 0, finding that the staggered vg of the
condensate translates to in-plane ordering of magnetic moments with the ordering vector Q =
(m,m) [see Fig. 36(b)]. Any direction of v and therefore any normalized combination of T, and T,
is equally good in terms of energy, this corresponds to the freedom to choose the magnetization
direction in the lattice plane. For later convenience, we set v,p = —e'@F, vy = 0 giving M, =
29ap/p(1 — p)e’@ M, = 0 and bringing Eq. (4.22) to its final form

|U) = H <\/1 —psh+/p ieiQ'RTiR) |vac) (4.24)

R

with the optimum condensate density and 6 parameter given by

. 1 Er
p = sin’ @ = 5 <1 — g) (J > Joip = %ET) . (425)
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Fig. 36: (a) Condensate density and ordered moment obtained from the variational Ansatz (4.22) as
functions of the J to Ep ratio. Quantum critical point at J/Ep = % separating the triplon gas phase and
condensed phase is indicated by the black square and the dashed line. (b) Magnetic ordering pattern
in the square lattice having Q = (m, ) ordering vector. (c) Brillouin zone of the square lattice with
highlighted conventional path around the irreducible Brillouin zone. (d) Dispersions of the elementary
excitations at selected J/Ep points plotted along the conventional path of panel (c). Initially, we
observe twofold degenerate branch of triplon excitations. After the condensation occurs, the excitation
dispersion splits giving rise to a gapless magnon mode and gapful mode that can be interpreted as an
amplitude mode of the triplon condensate.

Let us now inspect the evolution of the elementary excitations. To calculate their spectra
we need to perform a harmonic expansion around |¥) of Eq. (4.24), similar to that used to
arrive at Eqs. (4.19)-(4.21). The situation is complicated by the more complex structure of |¥)
for the condensed case with nonzero p. This can be gauged away by performing the bosonic
transformation into new bosons a, b, ¢ according to'”

s cosf e QRging 0 c
T,| =|ieQ@RBsing cos 0] |a (4.26)
T, 0 0 AV
R R

which converts |¥) into a suitable form |¥) =[] cly|vac). Now we are in a position to employ
the dynamical Gutzwiller approximation for the condensed boson ¢ via ¢, ¢! — /1 —n, — np
followed by harmonic expansion in a and b operators. On the harmonic level, both a and b
bosons obey the Hamiltonian of the form (4.19) with

Ay = Ercos20 4+ 8Jsin®20 + 4J cos®20 v,, By =4Jcos’20v,,  (a-bosons)  (4.27)
Ay = Epcos® 0 + 4J sin® 20 + 4.J cos® § 7, , By =4Jcos® 0 v,, (b-bosons)  (4.28)

I"The form of the transformation matrix is chosen based on two requirements - to preserve bosonic commutation
relations in general and to maintain continuity with Eqgs. (4.19)-(4.21) in particular.
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which leads to elementary excitations independently carried by the a and b bosons and having
the dispersions wy = /A7 — B3 shown in Fig. 36(d). For the uncondensed case § = 0, the
dispersions are degenerate and coincide with Eq. (4.21) for the moving triplons, in the condensed
case they split and the corresponding excitations become two distinct species. The excitation
carried by b bosons is always gapless at the wavevector @ [symmetry point M in Fig. 36(c),(d)]
and corresponds to a magnon. Not surprisingly, it is linked to the boson T, associated with
the direction perpendicular to the ordered moment. At ¢ = @, the mode merely rotates the
ordered moment among energetically equivalent positions, hence its gapless nature. A rather
specific feature of the magnon dispersion is that it reaches its maximum at g = 0, making it very
distinct from the conventional magnon dispersion obtained within antiferromagnetic Heisenberg
model. The excitation carried by a bosons can be interpreted as an amplitude fluctuation of
the condensate (sometimes dubbed as the condensed-matter Higgs mode [103]). Through the
oscillations in the angle 6, it effectively shakes the ratio of s and 7, in the local superposition and
hence modulates the condensate density. Such a mode necessarily costs some energy and is thus
gapful as seen in Fig. 36(d). Close to the quantum critical point the amplitude fluctuations are
still cheap and the gap is relatively small but when increasing J in the J > J.; interval, making
the condensate more and more robust, the amplitude mode gradually shifts to higher energies.
Fig. 36(e) schematically represents the two distinct modes as oscillations in a “Mexican hat”
depiction of the condensate potential. Both of them enter various dynamic response functions
and can be probed experimentally as we will discuss in the next paragraph.

4.4 Excitation spectra probed by neutron and Raman scattering

The peculiar magnetic state formed by the condensation of triplon excitations should most nat-
urally manifest itself in the dynamical magnetic susceptibility. The traditional experimental way
to access this quantity is the inelastic neutron scattering whose results will be discussed in the
following. Apart from the unusual magnon dispersion having a maximum at g = 0, we will be
mainly interested in the signatures of the amplitude mode detected in the experiments.

To be able to appreciate the inelastic neutron scattering data presented in Fig. 37, we first
inspect the corresponding susceptibilities on a simplified level of the previous Sec. 4.3. We start
by transforming the pseudospin S or magnetic moment operators via Eq. (4.26) followed by the
replacement of the condensed ¢ boson operator. This gives us the connection of the magnetic
moment components and the elementary excitations carried by a, b bosons with already known
dispersions. Keeping only terms up to the quadratic order as before, we have

Sy = My/gay ~ €9 B in 20 + cos 20 (a — a'), (4.29)
§y = M,/ gap = cos (b—b), (4.30)
S, =M./g. ~—c9Rgsing (b+bh). (4.31)

Equations (4.29)-(4.31) enable us to separately assess three distinct polarizations of the magnetic
modes as depicted in Fig. 37(a): the longitudinal polarization parallel to the ordered moment di-
rection (represented here by gx) is complemented by in-plane and out-of-plane transverse options
(§y and S., respectively). Note that Fig. 37(a) shows the actual situation in CayRuO4 where the
ordered moments point along the b axis while we are assuming the x direction. For the moment
we can ignore this inconsistency as it is irrelevant in the initial inspection of the in-plane isotropic
model. What matters here is just the relative orientation of the particular magnetic component
with respect to the ordered moment direction and lattice plane.

Based on Eq. (4.29) it is clear that the oscillating part of longitudinal component of the
magnetic moment is directly connected to the a bosons. The corresponding excitations — the
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Fig. 37: (a) Polarization of the magnetic modes with respect to the ordered moment direction. Apart
from the two transverse modes, in-plane T' and out-of-plane 7", the longitudinal mode L is visible
in the experimental data. (b) Renormalization of the longitudinal mode via decay into two-magnon
continuum. (c¢) Dynamical susceptibility as measured by unpolarized inelastic neutron scattering on
CagRuOy4. The lines show the theoretical dispersions of the magnetic modes including anharmonic
effects. Model parameters used to fit the data: Ep = 25 meV, J = 5.8 meV, a = 0.15, A = 2.3 meV,
and A’ = 4meV. The insets provide an intuitive picture of the nature of the longitudinal (top) and
transverse modes (bottom). (d) Results of polarized neutron measurements (squares and dots) for
two wavevectors ¢ = (0,0) (upper panel) and ¢ = (m,7) (lower panel) compared to the theoretical
spectral profiles (shaded areas) of the modes calculated including anharmonic effects. The experimental
conditions enabled to distinguish the in-plane (ab plane) response containing 7" and L modes and the
out-of-plane (¢ axis) response containing the low-intensity 7" mode. Details on the experiments and
theoretical fits can be found in Ref. [101].

amplitude oscillations of the condensate — should therefore get imprinted into the susceptibility in
a form of a longitudinal mode (L). In the harmonic approximation it will share the dispersion with
the a bosons corresponding to the amplitude mode in Fig. 36(d). Similarly, the transverse in-plane
component of the magnetic moment in Eq. (4.30) is linked to the b bosons that were interpreted
as magnons. Finally, the transverse out-of-plane component in Eq. (4.31) is again linked to the b
bosons, but it includes an extra factor €@ which translates to a shift in momentum space. Both
transverse components of the dynamic susceptibility will therefore contain magnon-like modes
T, T' but the dispersion of the out-of-plane 7" mode will be shifted by @ = (m,7) compared to
the original magnons.

This rough picture inferred from Eqs. (4.29)-(4.31) is consistent with the experimental obser-
vations represented by the map of unpolarized neutron scattering intensity shown in Fig. 37(c)
and complemented by polarized neutron scattering spectra in Fig. 37(d). While the overall in-
terpretation of the data in terms of the L, T, T" modes discussed above seems acceptable, the
simplified approach of Sec. 4.3 apparently does not capture certain features of the experimental
data. The deficiencies that are easily addressed on the theory side is the lack of the opening
of the magnon gap and discrepancies in the details of the dispersions. These are remedied by
the inclusion of the terms of the full pseudospin-1 model that were missing in Eq. (4.18). The
low-energy magnon gap opens due to the orthorhombic field represented by A’ term in the local
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part (4.13) of the full model. It prefers the b-axis direction in the RuOy plane so that in-plane
rotations of the ordered moments are not for free anymore.!® The dispersions are “cured” by
considering the bond-selective interaction A and the interaction of the out-of-plane pseudospin-1
components S,. Much more challenging is the proper treatment of the longitudinal response.
The longitudinal mode is somewhat poorly visible in the unpolarized data but the polarized ones
clearly suggest that its effective lifetime drastically changes through the Brillouin zone. The
mode is observed as quite sharp at ¢ = (0,0), however, in the region around the ordering vector
Q = (m,m) it is subject to a strong decay. The explanation of this observation lies in the simul-
taneous excitation of two-magnon continuum in the longitudinal channel and its interplay with
the amplitude mode. While being minor in three-dimensional cases [104,105], the interplay with
Goldstone modes is of a crucial importance in our two-dimensional setting. Without going into
details that can be found in the Supplementary Information to Ref. [101], we just note that the
most important correction when analyzing the spin excitations beyond harmonic approximation
is the coupling of the form

> Thqagbrb_—qq with Tigoc Jsin20 |cos20vq + 3(e + w_k_q_Q)] (4.32)
kq

which generates a selfenergy for the bare L mode obtained within harmonic approximation. In
the above equation, a and b should be understood as a shorthand notation for the imaginary
parts of the corresponding fields associated with the operators such as a — a' entering Eq. (4.29).
The coupling activates a decay of the L mode into two-magnon continuum composed of pairs of
T modes, the simplest example of such process being illustrated in Fig. 37(b). The selfenergy
turns out to be indeed strongest for g around Q = (7, 7) due to the common action of a large
matrix element combined with the employment of low-energy magnons with momentum ~ Q.
The magnon gap due to A’ is actually an advantage here and enables us to stay with RPA-
like approximation for the two-magnon decay. Having gapless magnons, we would have to face
delicate issues of infrared divergences. When renormalizing the L mode (and to a much smaller
extent also the T' mode) by incorporating the anharmonic corrections, we obtain a nice detailed
agreement with the experimental data, including the extreme broadening of the L mode near
g = Q as demonstrated by the spectra in Fig. 37(d).

With the amplitude mode being obscured by the two-magnon continuum in the longitudinal
magnetic susceptibility, we would like to find another probe allowing for a more direct access.
Perhaps a bit surprising answer to this request is that the amplitude mode can be found in
the typically magnetically silent channel of Raman scattering. As it has been shown in several
theoretical studies, the appearance of the amplitude mode strongly depends on the symmetry of
the probe used [103,106]. We have observed its large decay in the longitudinal response (that was
still reduced thanks to the magnon gap) while in so-called scalar susceptibility it can maintain
its coherence [107-109]. The latter situation is the case of the Raman scattering.

In formal terms, the Raman scattering on a superexchange-driven magnetic system probes
dynamic correlation function of the Raman operator that is expressed within Fleury-Loudon
approximation [110] as

R o< > (in - 7i)(€out - Tij) Hij - (4.33)

(ig)
Here H;; is the superexchange Hamiltonian for the bond (ij) connecting two sites with the
relative position r;; and €, (€ut) is the polarization vector of the incoming (outgoing) photon.

18Lifting the degeneracy in the subspace spanned by T, T, as shown in Fig. 34(b), this field also selects a
particular triplon combination T}, = (T} + T},)/v/2 to condense. The calculation in Sec. 4.3 where we have used
T, condensation for simplicity has to be revised accordingly.
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Fig. 38: (a) Temperature dependent Raman spectra of CagRuO4 sample obtained using the By, and A,
polarization setups [111]. The insets indicate the relative orientation of the in-plane polarization vectors
€in, €out With respect to the lattice. The magnetic part of the signal developing below Ty ~ 110 K is
highlighted for the lowest T = 10K by gray shading. Sharp peaks corresponding to the phonons that are
present at all temperatures were subtracted. (b) Schematic representation of the Raman excitation of
the magnetic condensate via modulation of the bond energy given by Eq. (4.33). In the B;, channel, the
A-term deforms the bottom of the potential driving a magnon rotation. In the A, channel, modulations
via np lead to an isotropic oscillation of the condensate amplitude — a direct excitation of the amplitude
mode occurs in this channel. (c) Raman spectra obtained by exact diagonalization on clusters with
N = 16, 18, and 20 sites compared to experimental data. The numerical spectra for Bi, and A,
channels are presented in identical scales and overlayed by the magnetic signal from panel (a) (dashed
lines). The calculation was performed using Ep = 31 meV, J = 7.5 meV, a = 0.15, A = 2.3 meV, and
A" = 4 meV.

By playing around with various combinations of the polarizations, we can test the system in
rather different ways.

For Heisenberg-like magnets the usual channel of interest is the By, one that is probed when
using cross-polarized setup as shown in the inset of Fig. 38(a). It corresponds to the Raman
operator of the form R o H, — H,, where H, and H, are sums of H;; over z- and y-bonds,
respectively. In the Heisenberg case this term excites a two-magnon continuum. The same
happens in our case with mostly Heisenberg-like bond interactions of pseudospins-1 as given for
the z-bonds by H, in Eq. (4. 14) However, thanks to the bond-selective anisotropic component
of the interaction A}, (+ )(SmS”" SySy) we get an additional feature that is unusual in the
magnetic Raman scatterlng a direct excitation of a single magnon. To see this we consider the A
part of the Raman operator in more convenient axes, A3~ (S“S Sty SbSa) and approximate S°
which is the component along the ordered moment direction by Sb = (S)) '@, This way the A
part of the B, Raman operator becomes oc A(S”):S% and probes therefore the magnon at g = Q.
Looking at the experimental data in Fig. 38(a), we can see the magnetic signal developing below
Tx. Consistently with the above expectations, it is composed of the two contributions — two-
magnon continuum (feature B’) encompassing energies around two times the magnon bandwidth
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~ 40meV observed in Fig. 37(c) and a very sharp peak (feature B) at the energy coinciding with
the bottom of the magnon dispersion at @ = (w, 7).

Let us now focus on the A, channel that is normally not very interesting in magnetic Raman
scattering. In this case the Raman operator can be expressed as R o< H, + H, and is typically
proportional to the magnetic Hamiltonian of the system itself, making this channel silent at
finite frequencies. However, our Hamiltonian is equipped with a large local term Ernp that is
a source of highly interesting spectra. Finite-energy dynamics is equally well described by the
Raman operator equal to the difference of scaled R and the Hamiltonian, R' = H, + H, — H =
—Erny o< np, which means that in the A;, channel we are in fact probing the ny susceptibility
and hence the amplitude mode. To have a more precise connection, we can take the ny operator
approximated in the same way as the longitudinal S, in Eq. (4.29). It reads as

ny~p—1ie'?Fsin20 (a — al) (4.34)

which implies that the magnetic signal in A;, Raman channel (essentially the ny susceptibility
for ¢ — 0) will contain the ¢ — @ amplitude mode of Fig. 36(d) that failed to show up clearly
in the longitudinal magnetic response. The experimental data for the A, channel in Fig. 38(a)
indeed show a spectral profile consisting of a peak (feature A) followed by a long tail (feature
A’) that resembles the unspoiled “Higgs” spectral functions found in the literature [107-109]. To
have a one-to-one comparison for our particular model, Fig. 38(c) presents the theoretical Raman
spectra obtained numerically for small clusters and contrasts them to the magnetic part of the
signal plotted in Fig. 38(a). Overall, the magnetic Raman features in both channels are well
reproduced by the model calculations including their relative intensities, successfully concluding
our discussion on the singlet-triplet magnetism of CagRuQ,, where the magnetic order is due to
Bose-Einstein condensation of initially gapped magnetic excitations.



5 Papers addressing the Kitaev—Heisenberg model

e Kitaev-Heisenberg Model on a Honeycomb Lattice:
Possible Exotic Phases in Iridium Ouxides AyIrOs

J. Chaloupka, G. Jackeli, and G. Khaliullin
Physical Review Letters 105, 027204 (2010) DOI: 10.1103/PhysRevLett.105.027204

In this paper we made an initial exploration of the phase diagram of the Kitaev-Heisenberg
model for honeycomb iridates that was proposed in Ref. [20]. Assuming FM Kitaev interaction
and AF Heisenberg interaction, we have demonstrated that the FM Kitaev spin liquid survives
the perturbation by the Heisenberg interaction up to a sizable strength, leading to a finite
window of the liquid phase in the phase diagram.

e Zigzag Magnetic Order in the Iridium Oxide NapIrOs
J. Chaloupka, G. Jackeli, and G. Khaliullin
Physical Review Letters 110, 097204 (2013) DOI: 10.1103/PhysRevLett.110.097204

This paper is a continuation of the study of the Kitaev-Heisenberg model reflecting the ex-
perimental data that appeared since the publication of the first paper in 2010. Providing
microscopic arguments, we have extended the parameter regime to include further combina-
tions of signs of the Kitaev and Heisenberg interactions and determined the parameter values
that were consistent with the experimental data on NayIrOs available that time — zigzag type
of the magnetic ordering, temperature-dependent static magnetic susceptibility, and powder
inelastic neutron scattering.

e Direct evidence for dominant bond-directional interactions
in a honeycomb lattice iridate NaglrOs

S. H. Chun, J. W. Kim, J. Kim, H. Zheng, C. C. Stoumpos, C. D. Malliakas, J. F. Mitchell,
K. Mehlawat, Y. Singh, Y. Choi, T. Gog, A. Al-Zein, M. M. Sala, M. Krisch, J. Chaloupka,
G. Jackeli, G. Khaliullin, and B. J. Kim

Nature Physics 11, 462 (2015) DOI: 10.1038/NPHYS3322

By studying spin correlations above the Néel temperature using magnetic diffuse x-ray scat-
tering, this paper brought an experimental evidence, that the spin interactions in NayIrO3 are
highly anisotropic and this anisotropy is bond selective. Based on a comparison to numerical
simulations, we have quantified the dominance of the anisotropic interactions. Another im-
portant result of this paper is the determination of the ordered moment direction by resonant
x-ray diffraction that fixed the FM sign of the Kitaev interaction in NaylrOs.
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Hidden symmetries of the extended Kitaev-Heisenberg model:
Implications for the honeycomb-lattice iridates AsIrOs

J. Chaloupka and G. Khaliullin
Physical Review B 92, 024413 (2015) DOI: 10.1103/PhysRevB.92.024413

This paper explored the rich hidden symmetries of the extended Kitaev-Heisenberg model
(including I" and I" interactions) through the method of dual transformations that map the
model to an equivalent form but with different parameters. We have identified several points
of hidden SU(2) symmetry where the model reduces (in a nontrivial way) to either FM or AF
Heisenberg model. The complete exploration of these symmetries provided deeper insights
into the global phase diagram of the model. The results were also used in the discussion of
the relevant parameter regime of honeycomb iridates NasIrO3 and LisIrOs.

Magnetic anisotropy in the Kitaev model systems NaoIrOs and RuCls
J. Chaloupka and G. Khaliullin
Physical Review B 94, 064435 (2016) DOI: 10.1103/PhysRevB.94.064435

This paper is devoted to a detailed study of the ordered moment direction as a very sensitive
probe of the anisotropic interactions. We have developed a method based on spin-coherent
states that enabled to analyze cluster ground states obtained by exact diagonalization and
precisely determine the moment direction. Utilizing the above methodology we have attempted
to narrow down the parameter regime in NasIrO3 and the newly discovered (at that time)
a-RuCls. Doing so, we have emphasized the role of the trigonal field that brings a distinction
between the pseudospin direction and those of the magnetic moment and a special vector
entering the polarization dependence of the resonant x-ray scattering.

Phase diagram and spin correlations of the Kitaev-Heisenberg model:
Importance of quantum effects

D. Gotfryd, J. Rusnacko, K. Wohlfeld, G. Jackeli, J. Chaloupka, and A. M. Oles
Physical Review B 95, 024426 (2017) DOI: 10.1103/PhysRevB.95.024426

In this paper we tried to quantify the role of quantum fluctuations through the phase diagram
of the (non-extended) Kitaev-Heisenberg model by contrasting several methods that handle
quantum fluctuations in different ways. We have illustrated and provided insights into several
interesting effects, such as the striking difference of the robustness of the FM and AF Kitaev
spin liquid phases against Heisenberg perturbations.
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e Kitaev-like honeycomb magnets: Global phase behavior and emergent effective models
J. Rusnacko, D. Gotfryd, and J. Chaloupka
Physical Review B 99, 064425 (2019) DOI: 10.1103/PhysRevB.99.064425

This paper presents a comprehensive discussion of the global phase diagram of the extended
Kitaev-Heisenberg model. By combining numerical simulations on small clusters and analyti-
cal techniques based on symmetry analysis of this spin Hamiltonian, we were able to thoroughly
interpret the global trends in the phase diagram and uncover peculiar links to well-known sim-
pler models on the honeycomb lattice. The paper can also serve as a methodological example
how to deal with a complex spin model with bond-selective anisotropic interactions based on
symmetry grounds.

e Dynamic Spin Correlations in the Honeycomb Lattice NagIrOs Measured
by Resonant Inelastic x-Ray Scattering

J. Kim, J. Chaloupka, Y. Singh, J. W. Kim, B. J. Kim, D. Casa,
A. Said, X. Huang, and T. Gog

Physical Review X 10, 021034 (2020) DOI: 10.1103 /PhysRevX.10.021034

In this paper we present results of resonant inelastic x-ray (RIXS) measurements on NaylrOg
utilizing a state-of-the-art setup at APS Argonne that are interpreted through an extensive set
of numerical simulations. The experiment provided unique momentum and energy resolved
spectra of spin excitations in this compound. These are compared to exact diagonalization
calculations of the RIXS response based on the extended Kitaev-Heisenberg model. This way,
important conclusions about the interactions in NasIrOs were obtained.

e Kitaev Spin Liquid in 3d Transition Metal Compounds
H. Liu, J. Chaloupka, and G. Khaliullin
Physical Review Letters 125, 047201 (2020) DOI: 10.1103/PhysRevLett.125.047201

This paper extends the idea of Ref. [62] that suggested a potential realization of the Kitaev
honeycomb model in cobalt compounds with 3d” valence configuration. Via a microscopic
derivation of the exchange interactions when including the effects of the trigonal crystal field,
we found that the trigonal distortion should be an efficient tool to drive the material toward
the Kitaev spin liquid phase. Apart from a general discussion we tried to apply our theory
to the candidate compound NazCosSbOg and estimated the parameters of the corresponding
model.
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Kitaev-Heisenberg Model on a Honeycomb Lattice:
Possible Exotic Phases in Iridium Oxides A,IrO;

Jiff Chaloupka,'* George Jackeli,”* and Giniyat Khaliullin®

'Department of Condensed Matter Physics, Masaryk University, Kotldrskd 2, 61137 Brno, Czech Republic
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir** ions in a family of layered iridates A,IrO; (A = Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable Kitaev
models. Exact diagonalization and a complementary spin-wave analysis reveal the presence of an
extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the Heisenberg
limit. The two phases are separated by an unusual stripy antiferromagnetic state, which is the exact ground
state of the model at the midpoint between two limits.

DOI: 10.1103/PhysRevLett.105.027204

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An excep-
tion are frustrated magnets, in which the topology of the
underlying lattice and/or competing interactions lead to an
extensively degenerate manifold of classical states. In such
systems, exotic quantum phases of Mott insulators (spin
liquids, valence bond solids, etc.) can emerge as the true
ground states (for reviews, see Refs. [1,2]). In quantum
spin liquids, strong zero-point fluctuations of correlated
spins prevent them to “freeze’ into magnetic or statically
dimerized patterns, and conventional phase transitions that
break time-reversal and lattice symmetries are avoided.
Spin liquids have attracted particular attention since
Anderson proposed their possible connection to supercon-
ductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but,
because different bonds use different spin components
[see Fig. 1(a)], the model is highly frustrated. Its ground
state is spin-disordered and supports the emergent gapless
excitations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5,6]. This may suggest the robustness of the
disordered state to spin perturbations. Indeed, Tsvelik has
shown [7] that there is a window of stability for the spin-
liquid state in the Kitaev model perturbed by isotropic
Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key element
of the model is a bond-selective spin anisotropy, one
possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
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translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A,IrO;
from this perspective. In these compounds, the Ir** ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an inter-

(a) (b)
»
(Ci Néel AF ‘ stripy AF ‘ spin liquid
£ty ol 2
E *%$* {?%* ‘ +*$* +$%* \ .
3ol b ;H:* ﬁ 1 g
'13 ** i ** i N
oc:.O | oc::l/Z | oc:ll
FIG. 1. (a) Three types of bonds in the honeycomb lattice and

Kitaev part of the interaction. (b) The supercell of the four-
sublattice system enabling the transformation of the model (1)
into the Hamiltonian of a simple ferromagnet at o = % This
supercell with periodic boundary conditions applied was used as
a cluster for the exact diagonalization. (c) Schematic phase
diagram: With increasing «, the ground state changes from the
Néel AF order to the stripy AF state (being a fluctuation-free
exact solution at « = 7) and to the Kitaev spin liquid. See the
text for the critical values of a.

© 2010 The American Physical Society



90

PRL 105, 027204 (2010)

PHYSICAL REVIEW LETTERS

week ending
9 JULY 2010

esting phase behavior and hosts, in addition to the spin-
liquid state, an unusual AF order that is also an exact
solution at a certain point in phase space.

Experimental studies of iridium compounds are rather
scarce, and the nature of their insulating behavior is not yet
fully understood. In fact, Na,IrO; was suggested as an
interesting candidate for a topological band insulator [9].
Given that high temperature magnetic susceptibilities of
Na,IrO; and Li,IrO; obey the Curie-Weiss law with an
effective moment corresponding S = 1/2 per Ir ion [10-
13], we start here with the Mott insulator picture.

The Hamiltonian.—We recall that the Ir** ion in the
octahedral field has a single hole in the threefold degener-
ate 1,, level hosting an orbital angular momentum / = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “‘spin”
hereafter. In fact, it is predominantly of orbital origin, and
this is what makes the magnetic interactions highly aniso-
tropic due to the spin-orbit entanglement of magnetic and
real spaces. In A,IrO; compounds, the IrOq octahedra
share the edges, and Ir ions can communicate through
two 90° Ir-O-Ir exchange paths [8] or via direct overlap
of their orbitals. Collecting the possible exchange pro-
cesses (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN i; bond:

Here spin quantization axes are taken along the cubic axes
of IrOg octahedra. In a honeycomb lattice formed by Ir
ions, there are three distinct types of NN bonds referred
to as ¥ (=ux,y, z) bonds because they host the Ising-like
J; coupling between the y components of spins [see
Fig. 1(a)]. The first part of Eq. (1) is thus nothing but the
FM Kitaev model, and the J, term is a conventional AF
Heisenberg model. The exchange constants J; and J, are
derived from a multiorbital Hubbard Hamiltonian consist-
ing of the local interactions and the hopping term. The
latter describes 7,;, hopping between Ir 5d and O 2p
orbitals via the charge-transfer gap A ,;, and a direct dd
overlap ¢’ between NN Ir 1,, orbitals [15]. We find J; =
(n, +2m,) and J, = (1, + 73). Hereafter, we use
41%/9U, as our energy unit, where 1 = 15, /A 4, and Uy
stands for the Coulomb repulsion on the same d orbitals.
There are three physically distinct virtual processes that
determine the set of 17 parameters and thus the ratio J,/J;.
The n, = % UdU—dJH term appears due to the multiplet
structure of the excited levels induced by Hund’s coupling
Jg [8]. The processes when two holes meet at the same
oxygen site (and experience U, repulsion) and when they
are cyclically exchanged around a Ir,O, square plaquette

. _ U,
bring together a 7, = A,nﬁ—/U,,/Z A_,,Id
direct dd-hopping ' between NN Ir #,, orbitals contributes
to the Heisenberg term with exchange coupling 75 =

contribution. Further, a

(#/1)>. Tt is difficult to estimate the values of all the
parameters involved; however, we expect n; to be the
largest, of the order of 1, and 7,5 < 1.

We parametrize the exchange couplings as J; = 2« and
J, = 1 — «a and study the properties of Kitaev-Heisenberg
model (1) in the whole parameter space 0 = o = 1.

Phase diagram.—At o =0, we are left with the
Heisenberg model exhibiting the Néel order with a stag-
gered moment reduced to (S%) =~ 0.24 [16]. The opposite
limit, @« = 1, corresponds to the exactly solvable Kitaev
model with a short-range spin-liquid state [4], where spin
correlation functions are identically zero beyond the NN
distance and, on a given NN bond, only the components of
spins matching the bond type are correlated [5].

Interestingly, the model is exactly solvable at o = %
too. At this point Eq. (1) reads, e.g., on a z-type bond,
as .’]—[S) = 3(S§7S7 + S8 — §78%).  This anisotropic
Hamiltonian can be mapped to that of a simple
Heisenberg model on all bonds simultaneously [17].
Specifically, we divide the honeycomb lattice into four
sublattices [see Fig. 1(b)] and introduce the rotated opera-
tors S: While § = S in one of the sublattices, S on the
remaining three sublattices differs from the original S by
the sign of two appropriate components, depending on the
sublattice they belong to. In the new basis, Eq. (1) takes the
form

g_[ij) = —2Qa — 1)5‘2’5‘}" ~(1-a)S;-8. @

At a = % the first term vanishes and we obtain the iso-
tropic, both in spin and real spaces, Heisenberg model
5'-[57) = —%S‘i . Sj with FM coupling. Thus, at o =1,
i.e., at J| = 2J,, the exact ground state of model (1) is a
fully polarized FM state in the rotated basis. Now consider
the FM array of spins with, e.g., (§%) = 1/2, and map it
back to the original spin basis. The resulting order corre-
sponds to a stripy AF pattern of the original magnetic
moments depicted in Fig. 1(c). Note that such a stripy
order, despite being of AF type, is fluctuation-free at
o =% and would thus show a fully saturated AF order
parameter.

The above discussion suggests three possible ground
state phases of the model (1) as shown in Fig. 1(c):
(i) Néel order near & = 0, (ii) stripy AF order around o =
%, and (iii) a spin-liquid phase close to a = 1.

We first consider the ordered phases. Except special
casesof a = 0 and o = % just discussed, the Hamiltonian
(1) does not have any spin-rotational symmetry. However,
a spurious SU(2) continuous symmetry and associated
pseudo-Goldstone mode appear in a linear spin-wave
(SW) description. As in the case of a similar model on a
cubic lattice [18], we find that quantum fluctuations restore
the underlying discrete (hexagonal) symmetry of the
model, selecting thereby the direction of ordered moments
along one of the cubic axes (of IrOg4 octahedra), and also
open a gap in SW spectra. Considering the quantum energy
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cost for rotating the order parameter by a small angle
away from a cubic axis, we find a quantum SW gap A =
2(a — 3)* for a ~ 5.

The classical phase boundary between Néel and stripy
AF orderings is at &« = %, where linear SW spectra of both
states develop zero-energy lines [19], reflecting the infinite

degeneracy of classical states. At a = %, Eq. (1) reads,
e.g., on z-type bonds, as .7-[55) = %(S;‘ij + S;-VSj’); i.e., only
two spin components are coupled on a given bond.
Considering Néel or stripy AF with ordered spins parallel
to the z axis, one finds that flipping all the spins along a
zigzag chain, formed by x- and y-type bonds, does not
change classical energy. This degeneracy is again acciden-
tal (an artifact of classical treatment) and can thus be lifted
by quantum fluctuations. They favor the Néel state and
shift the classical phase boundary to a larger value « = 0.4.
This estimate is obtained by comparing the energies
of the Néel [e; = —%(3 — 5a)] and the stripy [e, =
—3(5a — 3 + 1)] states including quantum corrections
via second-order perturbation theory and matches well
the numerical result found below.

Now we discuss the phase behavior at% <a<l,ie.,in
between two exact solutions (stripy AF at « =% and a
Kitaev spin liquid at & = 1). In terms of rotated spins, all
the couplings are of FM nature in this region [see Eq. (2)].
Thus, the FM order (read stripy AF of the original spins)
is the only possible magnetic phase here to compete
with the spin-liquid state. Since the latter is stable against
a weak Heisenberg-type perturbation [7], a critical value
of «a for the spin order/disorder transition must be located
at some point less than 1. We give its naive estimate based
on the energetics of these two phases. The energy of the
stripy AF state is given above. The upper boundary for the
energy of spin-liquid state is given by the expectation value
of Eq. (2) using the exact result (S7S7) = 0.13 at @ = 1
[5]. As a result, we find the transition from stripy AF order
to a spin liquid at « = 0.86 (close to the numerical result
below).

Single-magnon excitations fail to detect this transition
(since, as said above, there is not any other competing
magnetic state). As « increases, the lower branch of the
linear SW spectrum just gradually softens, to become
completely flat in the limit of @ = 1 where the classical
ground state is extensively degenerate [20]. We therefore
suspect that the instability responsible for the collapse of
magnetic order resides in the two-magnon sector [21].
Leaving this subtle issue for a future work, we now turn
to our numerical results, which describe the evolution of
spin correlations across the entire phase diagram.

Numerical study.—We use the Lanczos exact diagonal-
ization method to study a 24-site cluster [see Fig. 1(b)]
with periodic boundary conditions. The cluster is compat-
ible with the above discussed four-sublattice transforma-
tion of Eq. (1) into Eq. (2). This provides an exact reference
point @ = 1/2, which is useful for the interpretation of

numerical data shown in Figs. 2 and 3 in terms of the
original as well as transformed spins.

Figure 2 clearly locates the two phase transitions. In
particular, a pronounced maximum in the second derivative
of the ground state energy [Fig. 2(c)] indicates a first-order
transition from Néel to stripy AF phase at « =~ 0.4. The
much weaker (note the log scale) and wider second peak at
a = (0.8 suggests a second- (or a weakly first-) order tran-
sition from stripy AF to a spin-liquid state.

Figure 2(a) shows the squared total spins §2, and S2,
normalized to S(S + 1) with § = N/2 that can be reached
in the FM state. Although these are not conserved quanti-
ties in the model, they characterize the phase map quite
well. In particular, a long tail of S2, above a = 0.8 in-
dicates a ‘“‘leakage” of stripy AF correlations into a
spin-liquid phase. This is also evidenced by the behavior
of longer range, beyond NN, spin correlations that are
still visible in a spin-liquid regime, except close to the
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FIG. 2. (a) Squared total spin of the 24-site cluster, normalized
to its value in the fully polarized FM state, as a function of «.
The solid (dot-dashed) line corresponds to the rotated (original)
spin basis. (b) The NN spin correlations: The solid (dot-dashed)
line corresponds to a scalar product of the rotated (original)
spins. The component of the correlation function matching the
bond direction is indicated by a dotted line. This quantity is the
same in both bases. The inset compares NN spin correlations
(solid line) above a@ = 0.5 with longer range spin correlations up
to third-nearest neighbors (dotted lines). (c) Negatively taken
second derivative of the ground state energy with respect to «. Its
maxima indicate the phase transitions at a = 0.4 and 0.8.
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FIG. 3. Magnetic moment 2(S%)/N induced by field B,
(Zeeman coupled to the rotated spins). The circles at o > 0.8
show the inverse spin susceptibility to this field.

Kitaev limit where they vanish completely [see the inset in
Fig. 2(b)].

Figure 2(b) highlights how the NN spin correlations
evolve as their interactions change from one type to an-
other. In the Néel state, where the model is more
Heisenberg-like for the original spins, we reproduce (S; -
S;) = —0.37 [16]. At the “hidden” FM Heisenberg point
a = 1/2, one finds (S, - S )= }U equally contributed by
all three components of the rotated spin S. Things change
dramatically in the spin-liquid phase: Here, a particular
component of spin correlations (§7S7), dictated by the
Kitaev model, dominates. Its value of 0.132 that we find
at o = 1 agrees well with the exact result 0.131 for an
infinite lattice [5].

Finally, we discuss the response to a weak magnetic field
B which, in terms of original spins, linearly couples to the
stripy AF order parameter. Figure 3 shows that even a very
weak field induces a nearly saturated moment in the entire
region of the stripy AF phase. As the system switches to the
Néel phase, a response to the “stripy field” B* drops
abruptly to zero, as expected. The induced moment sharply
reduces near a = 0.8, too, but remains finite in a spin-
liquid phase. Here the magnetization curve shows a linear
dependence on B?, and we may extract from its slope the
susceptibility y = (S%,)/NB.. Shown in Fig. 3 is the in-
verse value of y as a function of «. This quantity scales
with the energy gap between the ground state and the
excited states that are accessible by the magnetic field.
According to Kitaev’s solution [4], these states must be-
long to the flux sectors located at energies of the order of 1.
The observed y ™' o (a — 0.8) behavior shows that this
characteristic (spin) gap gradually softens towards the a =
0.8 critical point, as the spin correlations beyond the NN
distances start to grow [see Fig. 2(b), inset].

Experimental data [10-13] are rather insufficient to
conclusively locate the position of A,IrO; compounds in
our phase diagram. Also, Na/Ir site disorder [13] has to be
kept in mind: Often, nonmagnetic impurities induce local
moments [22], and this has been shown to happen in the
Kitaev model as well [23].

In conclusion, we have examined the interactions and
possible magnetic states in iridates A,IrO5. The obtained
Kitaev-Heisenberg model shows rich behavior including a
spin liquid and unusual stripy AF phases. We hope that
these results will motivate experimental studies of layered
iridates and similar compounds of late transition metal
ions, where the physics of the Kitaev model might be
within reach.

We thank B. Keimer, A. Schnyder, S. Trebst, and M.
Zhitomirsky for discussions. We are grateful to H. Takagi
and A.M. Tsvelik for valuable discussions and for com-
municating the unpublished results. Support from
MSMO0021622410 (J.C.) and GNSF/ST09-447 (G.J.) is
acknowledged.

*Also at Andronikashvili Institute of Physics, 0177 Tbilisi,

Georgia.

[1] L. Balents, Nature (London) 464, 199 (2010).

[2] G. Misguich and C. Lhuillier, in Frustrated Spin Systems,
edited by H. T. Diep (World Scientific, Singapore, 2005).

[3] P.W. Anderson, Science 235, 1196 (1987).

[4] A. Kitaev, Ann. Phys. (N.Y.) 321, 2 (2006).

[5] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett.
98, 247201 (2007).

[6] H.-D. Chen and Z. Nussinov, J. Phys. A 41, 075001
(2008).

[7] A.M. Tsvelik (unpublished).

[8] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[91 A. Shitade ef al., Phys. Rev. Lett. 102, 256403 (2009).

[10] I. Felner and I. M. Bradari¢, Physica (Amsterdam) 311B,
195 (2002).

[11] H. Kobayashi et al., J. Mater. Chem. 13, 957 (2003).

[12] H. Takagi (private communication).

[13] Y. Singh and P. Gegenwart, arXiv:1003.0973.

[14] B.J. Kim et al., Science 323, 1329 (2009).

[15] On a Ir,O, plaquette, e.g., in the xy plane, the hop-
ping term reads as —f,4, pl(2),z(d,»,xz(yz) +djy00) —
d},d;, + Hc., where p() . refers to a 2p, orbital of
oxygen 1(2) shared by NN Ir ions i and ;.

[16] J.B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B
20, 241 (2001).

[17] G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005).

[18] G. Khaliullin, Phys. Rev. B 64, 212405 (2001).

[19] The details of SW analysis will be given elsewhere.

[20] G. Baskaran, D. Sen, and R. Shankar, Phys. Rev. B 78,
115116 (2008).

[21] Preliminary calculations indicate that two-magnon bound
states form at large «. In case of the Kitaev toric code
model, the relevance of multimagnon bound states to a
quantum phase transition has been discussed by J. Vidal,
R. Thomale, K.P. Schmidt, and S. Dusuel, Phys. Rev. B
80, 081104(R) (2009).

[22] G. Khaliullin, R. Kilian, S. Krivenko, and P. Fulde, Phys.
Rev. B 56, 11882 (1997).

[23] A.J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev.
Lett. 104, 237203 (2010).

027204-4



93

PRL 110, 097204 (2013)

PHYSICAL REVIEW LETTERS

week ending
1 MARCH 2013

Zigzag Magnetic Order in the Iridium Oxide Na,IrO;

Jiff Chaloupka,'* George Jackeli,"* and Giniyat Khaliullin'

'"Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
2Central European Institute of Technology, Masaryk University, KotldFskd 2, 61137 Brno, Czech Republic
(Received 23 September 2012; published 28 February 2013)

We explore the phase diagram of spin-orbit Mott insulators on a honeycomb lattice, within the Kitaev-
Heisenberg model extended to its full parameter space. Zigzag-type magnetic order is found to occupy a
large part of the phase diagram of the model, and its physical origin is explained as due to interorbital
t), — e, hopping. The magnetic susceptibility, spin wave spectra, and zigzag order parameter are
calculated and compared to the experimental data, obtaining thereby the spin coupling constants in

Na,IrO; and Li,[rO;.

DOI: 10.1103/PhysRevLett.110.097204

In the quest for materials with novel electronic phases,
iridium oxide Na,IrO; came into focus recently [1-7] due
to theoretical predictions [8,9] that this system may host
Kitaev model physics and the quantum spin Hall effect.

Na,IrO; is an insulator with a sizable and temperature
independent optical gap =0.35eV [7], and shows
Curie-Weiss type susceptibility [1,6] with moments corre-
sponding to an effective spin one-half Ir** ion with a tgg
configuration [10]. These facts imply that Na,IrO; is a
Mott insulator with well-localized Ir moments.

Collective behavior of local moments in Mott insulators
is governed by three distinct and often competing forces:
(i) orbital-lattice [Jahn-Teller (JT)] coupling, (ii) virtual
hopping of electrons across the Mott gap resulting in
exchange interactions, and (iii) relativistic spin-orbit
coupling (see Ref. [11] for extensive discussions). The
corresponding energy scales Ejp, J, and A vary broadly
depending on the type of magnetic ions and chemical
bonding [12]. When A > (Ejy,J), as often realized for
Co, Rh, and Ir ions in an octahedral environment, local
moments acquire a large orbital component which may
result in a strong departure from spin-only Heisenberg
models [8,11]. The direct observation of large spin-orbit
splitting 3A/2 ~ 0.6-0.7 eV in insulating iridates Sr,IrO,4
[13], Sr3Ir,O5 [14], and Na,IrO; [15] made it certain that
A > (Eyr, J). Thus, the low-energy physics of Na,IrO; is
governed by interactions among the spin-orbit entangled
Kramers doublets of Ir ions.

It is also established now [3-5] that Ir moments in
Na,IrO; undergo antiferromagnetic (AF) order at Ty =
15 K. The fact that Ty is much smaller than the paramag-
netic Curie temperature (— 125 K) [6] and spin-wave
energies [4] implies that the underlying interactions are
strongly frustrated. This is natural in the so-called Kitaev-
Heisenberg (KH) model [16] where long range order is
suppressed by the proximity to the Kitaev spin-liquid (SL)
state. However, the observed ‘‘zigzag” magnetic pattern
[ferromagnetic (FM) zigzag chains, AF coupled to each
other] came as a surprising challenge to this simple and
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attractive model. To resolve the ‘“‘zigzag puzzle’, a number
of proposals, ranging from various modifications of the KH
model [4,6,17-19] to a complete denial [20] of a local
moment picture in Na,IrOs, have been put forward.

In this Letter, we show that the zigzag order is in fact a
natural ground state (GS) of the KH model, in a previously
overlooked parameter range. Next, we identify the ex-
change process that supports a zigzag-phase regime.
Further, we calculate spin-wave spectra, the ordered
moment, and magnetic susceptibility of the model in the
zigzag phase, and find a nice agreement with experiment.
This lends strong support to the KH model as a dominant
interaction in Na,IrO; and related oxides.

The model.—Nearest-neighbor  (NN) interaction
between isospin one-half Kramers doublets of Ir** ions,
coupled via 90°-exchange bonds, reads as follows (the
exchange processes are described later):

H Y =2KS]ST +IS; - S, (1)

Here, y(= x, y, z) labels 3 distinct types of NN bonds of a
honeycomb lattice [16] of Ir ions in Na,IrO;, and spin axes
oriented along the Ir-O bonds of IrOg octahedron. The
bond-dependent Ising coupling between the y components
of spins is nothing but the Kitaev model [21], and the
second term stands for the Heisenberg exchange.

Let us introduce the energy scale A = vK? + J? and the
angle ¢ via K = Asing and J = A cos¢; the model (1)
takes then the following form:

( ) _ . .
j—[i;.y = A2 smgoS;ijy + cospS; - S)). @)

We let the “phase’ angle ¢ vary from O to 277, uncovering,
thereby, additional phases of the model that escaped atten-
tion previously [16], including its zigzag ordered state
which is of a particular interest here.

It is instructive to introduce, following Refs. [11,16], 4
sublattices with the fictitious spins S, which are obtained
from S by changing the sign of its two appropriate

© 2013 American Physical Society
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components depending on the sublattice index. This trans-
formation results in the § Hamiltonian of the same form as
(1), but with effective couplings K = K + J and J = —J,
revealing a hidden SU(2) symmetry of the model at
K = —J (where the Kitaev term K vanishes). For the
angles, the mapping reads as tang = — tang — 1.

Phase diagram.—In its full parameter space, the KH
model accommodates 6 different phases, best visualized
using the phase-angle ¢ as in Fig. 1(a). In addition to the
previously discussed [16,22,23] Néel-AF, stripy-AF, and
SL states near ¢ =0, —7, and — 7, respectively, we
observe 3 more states. First one is “AF” (K > 0) Kitaev
spin-liquid near ¢ = 7. Second, the FM phase broadly
extending over the third quadrant of the ¢ circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ¢ = %77', the most wanted
phase, zigzag AF, appears occupying almost a quarter of
the phase space. Thanks to the above mapping, it is under-
stood that the zigzag and Néel states are isomorphic, too.

(b) Néel qululid zigzagI FM

IilquidI stripy Néel

500

Egs/A

i
0 /2 T 3n/2 2n

FIG. 1 (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on the ¢ circle) are
obtained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see text).
Open and solid circles in the insets indicate up and down spins.
The rectangular box in the zigzag pattern (top-left) shows the
magnetic unit cell. (b) Ground-state energy Egg and its second
derivative —d?Egs/d@? revealing the phase transitions.

In particular, the ¢ = 37 zigzag state is identical to the
Heisenberg-AF state of the fictitious spins [24].

To obtain the phase boundaries, we have diagonalized
the model numerically, using a hexagonal 24-site cluster
with periodic boundary conditions. The cluster is compat-
ible with the above 4-sublattice transformation and ¢ < &
mapping. As seen in Fig. 1(b), the second derivative of the
GS energy Egs with respect to the ¢ well detects the phase
transitions. Three pairs of linked transition points are
found: = (88°,92°) and (— 76°, —108°) for the spin
liquid-order transitions around *= g and (162°, —34°) or
the transitions between ordered phases.

The transitions from zigzag-AF to FM, and from stripy-
AF to Néel-AF are expected to be of first order by sym-
metry; the corresponding peaks in Fig. 1(b) are indeed very
sharp. The spin liquid-order transitions near ¢ = — 7 lead
to wider and much less pronounced peaks, suggesting a
second- (or weakly first-) order transition [16]. On the
contrary, liquid-order transitions around ¢ = 7 show up
as very narrow peaks; on the finite cluster studied, they
correspond to real level crossings. The nature of these
phase transitions remains to be clarified [25].

While atJ = 0 (i.e., ¢ = = 7) the sign of K is irrelevant
[21], the stability of the AF- and FM-type Kitaev spin
liquids against J perturbation is very different: the SL
phase near 7 (— 7) is less (more) robust. This phase
behavior is related to a different nature of the competing
ordered phases: for the 7 SL, these are highly quantum
zigzag and Néel states, while the SL near — 7 is sand-
wiched by more classical (FM and ““fluctuation free”” stripy
[16]) states which are energetically less favorable than the
quantum SL state.

Exchange interactions in Na,IrO;.—Having fixed the
parameter space (K >0, J <0) for the zigzag phase, we
turn now to the physical processes behind the model (1).
Exchange interactions in Mott insulators arise due to vir-
tual hoppings of electrons. This may happen in many
different ways, depending sensitively on chemical bond-
ing, intra-ionic electron structure, etc. The case of present
interest (i.e., strong spin-orbit coupling, tgg configuration,
and 90°-bonding geometry) has been addressed in several
papers [8,11,16,26]. There are the following four physical
processes that contribute to K and J couplings.

Process 1: Direct hopping ¢’ between NN t,, orbitals.
Since no oxygen orbital is involved, 90° bonding is irrele-
vant; the resulting Hamiltonian is H; = I, S; - §; with [, =
(% ')2/U [16]. Here, U is the Coulomb repulsion between
1, electrons. Typically, one has '/t <1, when compared
to the indirect hopping 7 of 7,, orbitals via oxygen ions.

Process 2: Interorbital NN 1,, — e, hopping 7. This is
the dominant pathway in 90° bonding geometry since
it involves strong t,,, overlap between oxygen-2p
and e, orbitals; typically, 7/t~ 2. The corresponding
Hamiltonian is [11]
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HY = 1,(25]SY = 8, S)). 3)
This is nothing but the model (1) with K=-J=1,>0,
i.e., atits SU(2) symmetric point ¢ = 77' inside the zigzag
phase see Fig. 2. For the Mott- 1nsu1at1ng iridates (as
opposed to charge-transfer cobaltates [11]), we estimate
I, = g(f/ U)?Jy, where U is the (optically active) excita-
tion energy associated with 7,, — e, hopping, and Jy is
Hund’s interaction between the 7,, and e, orbitals. The
physics behind this expression is clear: (7/U)* measures
the amount of #,, spin which is transferred to the NN e,
orbital; once arrived, it encounters the ‘“‘host” lhg spin and
has to obey the Hund’s rule.

For its remarkable properties, the Hamiltonian H, (3)
deserves a few more words. On a triangular lattice, it shows
a nontrivial spin vortex ground state [11,27]; however, the
elementary excitations are simple SU(2) magnons of a
conventional Heisenberg-AF state. When regarded as the
“J” part of a doped ¢t — J model, it leads to an exotic
pairing [11,28].

Process 3: Indirect hopping ¢ between NN 17,, orbitals
via oxygen ions. This gives rise to the Kitaev model H; W —
—1;S7S7, with I3 = S5(2/U)Ju/U) (8], where Jy is
Hund’s coupling between 1,, electrons. This process sup-
ports ¢ = — 7 SL state; see Fig. 2.

Process 4: Mechanisms involving pd charge-transfer
excitations with energy A ,;. Two holes may meet at an
oxygen and experience Coulomb U, and Hund’s J » inter-
actions, or cycle around a Ir,O, plaquette (Fig. 2). The
resulting Hamiltonian H, has the form of H, (3). The
coupling constant I, = 3> (;x— — ALM) is negative

patU, =T
Q 32 ER- o L w
[ N t’ R
O Hz E H O

,l

FM Heisenberg --- AF Heisenberg

>

H4
NG 0\2 O
..TQD E ..3 4,«‘% yz § Xz
vz O Xz yz O Xz :\O 2

FIG. 2 (color online). Schematics of four different exchange
processes (see text for details), arranged around the ¢ phase
diagram of Fig. 1(a). Taken separately, the Hamiltonians H,, H,
H;, and H, would favor “pure” Néel-AF, zigzag-AF, Kitaev-SL,
and stripy-AF states, respectively, as indicated by arrows con-
necting H; with the dots on the ¢ circle. The circle is divided
into the phase sectors by gray lines; SL phases are shaded.

[29], supporting the stripy-AF state not observed in
NazIrO3.

Putting things together, we observe that it is the inter-
orbital #,, — e, hopping H, process that uniquely supports
zigzag order in Na,IrO5. This implies in general that multi-
orbital Hubbard-type models, when applied to iridates with
90°-bonding geometry, must include e, states as well, even
though the moments reside predominantly in the #,, shell.

Up to this point, we neglected trigonal field splitting A
of the 1,, level due to the ¢ axis compression present in
Na,IrO;. This approximation is valid as long as A is much
smaller than the spin-orbit coupling A = 0.4 eV [13,15,30]
and seems to be justified, since the recent ab initio calcu-
lations [20] suggest that A =75 meV only [31].

We have also examined the longer-range couplings,
using the hopping matrix of Ref. [20], and found that the
second-NN interaction has the form of (3) (as previously
noticed Refs. [32,33]), while the third-NN coupling is of
the AF-Heisenberg type [the corresponding coupling con-
stants are 4(t 53/U)]. The second (third)-NN interaction
would oppose (support) zigzag order; however, we believe
that these couplings are not significant in Na,IrO; because
the hoppings #, and t; are small [34].

We do not attempt here to evaluate the parameters
involved in H; — H,; ab-initio calculations as in
Ref. [35] might be more useful in this regard. Instead,
having obtained a zigzag order in our model (1) and
identified the physical process driving this order, we turn
now to the experimental data. The J and K values in
Na,IrO; and Li,IrO; will be extracted below from analysis
of the neutron scattering and magnetic susceptibility data.

Spin waves in the zigzag phase.—Consider a single
domain zigzag state, e.g., with FM chains running perpen-
dicular to z-type bonds. Following Ref. [4], we introduce a
rectangular @ X b magnetic unit cell [3ao X 3ag in terms
of hexagon-edge a; see Fig. 1(a)], and define the ab-plane
wave vector q in units of (&, k) asq = (27” h, 27 k). Standard
spin-wave theory gives four dispersive branches:
w%yz(h, k)

=[K? + (K + J)*]c? — KJ(1 — s3,5%)

= |(K + J)eylyf 2K — 1) — (2K, — Jsp)%
4

and w3 4(h, k) = wi,(—h k), with ¢, = coswh, s, =
sinwmh, and s, = sinwk. If K = —/J, i.e., at the ¢ = %77
point of hidden SU(2) symmetry, two branches are degen-
erate (w; = w,) and become true Goldstone modes. Away
from this special point, the small magnon gap is expected
to open by quantum effects not considered here. For q
with h = k, the dispersions (4) simplify to w;(h, h) =
V2KQ2K + J)|c,| and w,(h, h) = \2|Jc}], revealing two
different energy scales in the magnon spectra set by K and
J couplings.
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g [meV]
S

(-1,0) (0,0) (0,1) (1,1)

(5,%)  (0,0)

FIG. 3. Magnon spectra in the zigzag phase calculated using
Eq. (4) with (J, K) = (—4.0,10.5) meV. The inset shows the
path along the symmetry directions in the reciprocal space; the
notation of Ref. [4] is used.

While the bandwidth of the lowest dispersive mode (set
by J) is already known to be about 5-6 meV [4], we are not
aware of the high energy magnon data to estimate K in
Na,IrO;. We have therefore examined (see below) the
magnetic susceptibility data [1,6], and obtained (J, K) =
(—4.0, 10.5) meV that well fit the susceptibility as well as
the neutron scattering data [4]. With this, we predict the
magnon spectra for Na,IrO; shown in Fig. 3. The lowest
dispersive (J) mode is as observed [4], indeed. However,
mapping out entire magnon spectra is highly desirable to
quantify the Kitaev term K directly.

Magnetic susceptibility.—We have calculated the uni-
form magnetic susceptibility y(7T) of the model (1) on
8- and 14-site clusters by exact diagonalization, and on
24-site cluster using the finite-temperature Lanczos
method [36,37]. The parameters are varied such that J =
A cosg is consistent with the neutron data [4] while ¢ stays
within the zigzag sector of Fig. 1(a); this strongly narrows
the possible K window. For the data fits, we let the g factor
of the Ir** ion deviate from 2 (due to the covalency effects
[10]), and include the T-independent Van Vleck term y.
The result for J = —4.0 meV, K = 10.5 meV, g = 1.78,
Xo = 0.16 X 1073 cm?/mol fits the Na,IrO; data nicely
(Fig. 4); deviations occur at low temperatures only, when
correlation length exceeds the size of the cluster used. The
fit is quite robust: similar results can be found for small
only variations, locating Na,IrO; near ¢ = 111 * 2° of
the model phase diagram Fig. 1(a). The spin couplings
obtained are reasonable for the 90°-exchange bonds (as
expected [8,11], they are much smaller than in 180°-bond
perovskites [13,14]). The magnitude of the Van Vleck
term also agrees with our estimate y, = % UEN, = 0.2 X
1073 cm?/mol for the Ir** ion, considering spin-orbit
coupling A = 0.4 eV [13,15,30].

Dominance of the Kitaev term (2K/J ~ 5 in Na,IrO3)
implies strong frustration hence enhanced quantum
fluctuations; this explains the reduced ordered moment

5-0 T T T T T T T T T
45} % 7
40F X .
[¢)
o
— 35} & 1
] R
£ 30F ,
“ .
g 2.5 I o 1 1 1 1 1 T
D e, N 100 200 300 400
,O_ 20} S
=150 = S
1or Naro, ~  TSsesss
05F o LirOg 1
0-0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
TK]
FIG. 4. Experimental magnetic susceptibilities x(7) for

Na,IrO; [1,6] (squares) and Li,IrO;3 [6] (circles) fitted by the
theoretical calculations. Exact y of the 8-site (14-site) cluster
is shown as solid (dashed) lines. Lanczos results for the
24-site cluster are indicated by shading [37]. Their comparison
suggests that the calculated y gives the thermodynamic
limit down to 7 = 100 K where the finite-size effects become
significant.

m = 0.22ug [5]. With the J, K, and g values above, we
calculated the leading order spin-wave correction to m and
obtained m = 0.33 up [38].

For the sake of curiosity, we have also fitted the y(7)
data of Li,IrO; [6], a sister compound of Na,IrO;.
Acceptable results have been found for the angle window
¢ = 124 = 6°; a representative plot for J/ = —5.3 meV,
K =179 meV, g =194, yo,=0.14 X 1073 cm?/mol is
shown in Fig. 4. It is worth noticing that the value of J,
which controls the bandwidth of the softest spin-wave
mode (see Fig. 3), appears to be similar in both com-
pounds. This may explain why they undergo magnetic
transition at similar Ty = 15 K, despite very different
high temperature susceptibilities.

To conclude, we have clarified the origin of zigzag
magnetic order in Na,IrO; in terms of nearest-neighbor
Kitaev-Heisenberg model for localized Ir moments. The
model well agrees with the low-energy magnon and
high temperature magnetic susceptibility data. A general
implication of this work is that the interactions considered
here should hold a key for understanding the magnetism
of a broad class of spin-orbit Mott insulators with
90°-exchange bonding geometry, including triangular,
honeycomb, and hyperkagome lattice iridates.
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Direct evidence for dominant bond-directional
interactions in a honeycomb lattice iridate Na,IrO;

Sae Hwan Chun', Jong-Woo Kim?, Jungho Kim?, H. Zheng', Constantinos C. Stoumpos’,
C. D. Malliakas’, J. F. Mitchell', Kavita Mehlawat?, Yogesh Singh?, Y. Choi?, T. Gog?, A. Al-Zein?,
M. Moretti Sala®, M. Krisch?, J. Chaloupka®, G. Jackeli®’, G. Khaliullin® and B. J. Kim®*

Heisenberg interactions are ubiquitous in magnetic materials
and play a central role in modelling and designing quan-
tum magnets. Bond-directional interactions™ offer a novel
alternative to Heisenberg exchange and provide the building
blocks of the Kitaev model®, which has a quantum spin
liquid as its exact ground state. Honeycomb iridates, A,IrO;
(A = Na, Li), offer potential realizations of the Kitaev magnetic
exchange coupling, and their reported magnetic behaviour
may be interpreted within the Kitaev framework. However,
the extent of their relevance to the Kitaev model remains
unclear, as evidence for bond-directional interactions has so
far been indirect. Here we present direct evidence for dominant
bond-directional interactions in antiferromagnetic Na,IrO; and
show that they lead to strong magnetic frustration. Diffuse
magnetic X-ray scattering reveals broken spin-rotational
symmetry even above the Néel temperature, with the three
spin components exhibiting short-range correlations along
distinct crystallographic directions. This spin- and real-space
entanglement directly uncovers the bond-directional nature of
these interactions, thus providing a direct connection between
honeycomb iridates and Kitaev physics.

Iridium (IV) jons with pseudospin-1/2 moments form in
Na,IrOs;, a quasi-two-dimensional (2D) honeycomb network, which
is sandwiched between two layers of oxygen ions that frame
edge-shared octahedra around the magnetic ions and mediate
superexchange interactions between neighbouring pseudospins
(Fig. 1a). Owing to the particular spin-orbital structure of the
pseudospin®®, the isotropic part of the magnetic interaction is
strongly suppressed in the 90° bonding geometry of the edge-
shared octahedra®’, thereby allowing otherwise subdominant
bond-dependent anisotropic interactions to play the main role
and manifest themselves at the forefront of magnetism. This
bonding geometry, common to many transition-metal oxides, in
combination with the pseudospin that arises from strong spin-orbit
coupling gives rise to an entirely new class of magnetism beyond
the traditional paradigm of Heisenberg magnets. On a honeycomb
lattice, for instance, the leading anisotropic interactions take the
form of the Kitaev model’, which is a rare example of exactly
solvable models with non-trivial properties such as Majorana
fermions and non-Abelian statistics, and with potential links to
quantum computing*.

Realization of the Kitaev model is now being intensively
sought out in a growing number of materials’™", including 3D
extensions of the honeycomb Li,IrO;, dubbed ‘hyper-honeycomb”
and ‘harmonic-honeycomb®, and 4d transition-metal analogues
such as RuCl; (ref. 12) and Li,RhO; (ref. 13). Although most of
these are known to magnetically order at low temperature, they
exhibit a rich array of magnetic structures, including zigzag''c,
spiral” and other more complex non-coplanar structures'" that
are predicted to occur in the vicinity of the Kitaev quantum spin
liquid (QSL) phase***, which hosts many degenerate ground states
frustrated by three bond-directional Ising-type anisotropies. All of
these magnetic orders are captured in an extended version of the
Kitaev model written as

H=Y" [KS/S/ +]8-8+ [(S;S +8/8))]
(ij)y

which includes, in addition to the Kitaev term K, the Heisenberg
exchange J, which may be incompletely suppressed in the
superexchange process and/or arise from a direct exchange
process®, and the symmetric off-diagonal exchange term I”, which
is symmetry-allowed even in the absence of lattice distortions” .
This ‘minimal’ Hamiltonian couples pseudospins S (hereafter
referred to as ‘spin’) only on nearest-neighbour bonds (ij), neglecting
further-neighbour couplings, which may be non-negligible. The
bond-directional nature of the K and I” terms is reflected in the spin
components [« # B # y € (x,y,z)] which they couple for a given
bond (y €x-, y-, z-bonds; Fig. 1a). For example, the K term couples
only the spin component normal to the Ir,O4 plaquette containing
the particular bond. Despite these extra terms that may account for
finite-temperature magnetic orders in the candidate materials, the
fact that the Kitaev QSL phase has a finite window of stability against
these perturbations®®* calls for investigation of competing phases
and a vigorous search for the Kitaev QSL phase.

Although the notion of magnetic frustration induced by
competing bond-directional interactions is compelling, it remains
a theoretical construct without an existence proof for such
interactions in a real-world material. Moreover, theories for
iridium compounds based on itinerant electrons suggest alternative
pictures®®*. In principle, measurement of the dynamical structure
factor through inelastic neutron scattering (INS) or resonant
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Figure 1| Magnetic easy axis and temperature dependence of the zigzag order. a, Honeycomb layers of Ir*+ in the monoclinic Bravais lattice. Green,

yellow and blue planes show Ir,Og plaquettes normal to the local x-, y- and z-axes (black arrows), respectively, which point along three nearest-neighbour
Ir-O bonds in an octahedron. Ir-Ir bonds are labelled following the plaquettes they belong to. Nat is not shown for clarity. Blue arrows show the spins in the
static zigzag order propagating along the b direction. Spins are antiparallel between the layers (not shown). b, lllustration of the scattering geometry. Shown
in blue is the scattering plane defined by the incident (k;) and outgoing (k;) wavevector (red arrows). Green arrows show the X-ray polarizations. The
azimuth, ¥, is defined as the angle between the a-axis and the scattering plane. ¢, ¥ -dependence of the magnetic Bragg peak (blue filled circle) intensity at
(0,1, 3.5) measured in the o-7” channel. The black hexagon is the Brillouin zone of the honeycomb net. The red solid line shows the best fitting result to the
data with ® =44.3°, with a standard error of +1.24°. We note that the actual error may be larger owing to systematic errors arising from factors such as
changes in the beam footprint on the sample. Green and blue lines shows the calculated ¥ dependence for ® =40° and 50°, respectively. d-f, H, K and L
scans, respectively, of the magnetic Bragg peak at (O, 1, 6.5) for selected temperatures. g, Temperature dependence of the correlation lengths along the a-,
b- and c-axes from Gaussian fitting to the scans. Error bars represent the standard deviation in the fitting procedure. The solid lines are guides to the eye.

inelastic X-ray scattering (RIXS) provides the most direct access to
the Hamiltonian describing the magnetic interactions. However, a
fully momentum- and energy-resolved dynamical structure factor
thus far remains elusive for any of the candidate materials;
RIXS suffers from insufficient energy resolution® and INS is at
present limited by unavailability of large-volume single crystals®.
In this Letter, we take a new approach using diffuse magnetic
X-ray scattering to provide direct evidence for predominant bond-
directional interactions in Na,IrO; through the measurement of
equal-time correlations of spin components above the ordering
temperature (Ty =12-15K, see Supplementary Fig. 1).

We start by establishing the spin orientation in the static
zigzag order'™'® below Ty, as shown in Fig. la, using standard
resonant magnetic X-ray diffraction. In this measurement, the
X-ray polarization projects out a certain spin component; the
intensity depends on the spin orientation through the relation I o
|k; - S|* for the o—n" channel measured, where k; is the scattered X-
ray wavevector (Fig. 1b). Figure 1c¢ shows the intensity variation as
the sample is rotated about the ordering wavevector Q= (0, 1, 3.5)

NATURE PHYSICS | VOL 11 | JUNE 2015 | www.nature.com/naturephysics

by an azimuthal angle ¥, which causes S to precess around Q.
Earlier studies'*'® have established that S is constrained to lie in
the ac-plane, so this measurement of I(¥) determines the spin
orientation by resolving the tilting angle ® of S with respect
to the ag-axis. The best fitting result with ® = 44.3° indicates
that the magnetic easy axis is approximately half way between
the cubic x- and y-axes (Fig. la). This static spin orientation is
a compromise among all anisotropic interactions present in the
system, and is strongly tied to the magnetic structure because
of their bond-directional nature. To see this point, consider, for
example, the K term: in the zigzag structure propagating along
the b direction, where the spins are antiferromagnetically aligned
on the z-bond and ferromagnetically aligned on the x-bond
and y-bond, a ferromagnetic (antiferromagnetic) K favours spins
pointing perpendicular to (along) the z-axis for a pair of spins on
the z-bond, and along (perpendicular to) the x-axis and y-axis for
the pairs on the x-bond and y-bond, respectively.

The zigzag order is one of the many magnetic states (including
the aforementioned spiral and non-coplanar structures) that are
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Figure 2 | Diffuse magnetic X-ray scattering intensities above Ty. a, Intensity plots in the HK-plane (L varying between 6.5 and 7) measured at T=17 K for
selected azimuth angles summing 7-0” and -7’ channels, sensitive to spin components parallel to k; and perpendicular to the scattering plane,
respectively. For example, ¥ =0° measures the sum of correlations Sy, and Sy,. The dashed hexagon indicates the first Brillouin zone of the honeycomb
net. b, Spin-component-resolved equal-time correlations extracted from a. ¢, Spin-component-integrated equal-time correlations extracted from a. Peaks
are located at Q==+(0,1), £(0.5,0.5), and +(0.5,—0.5). d, ¥ -dependence of the diffuse peak intensities for Samples 1 (open symbol) and 2 (closed
symbol). Solid lines show the calculated ¥-dependence for x-, y- and z-zigzag states shown in e for the 7-o’ and -7’ polarization channels summed.

e, Zigzag orders propagating along three equivalent directions. Blue zigzag is the static structure, and green and yellow zigzags are generated by 120°

rotation of the blue zigzag.

classically degenerate in the pure Kitaev limit* and comprise the
micro-states in the QSL phase. Away from the pure Kitaev limit,
depending on their energy separations, signatures of other magnetic
states and their associated magnetic anisotropies may become
observable in the paramagnetic phase through diffuse magnetic
scattering. In particular, zigzag orders propagating in two other
directions, +120° rotated from the static one, are expected for a
honeycomb net with C; symmetry. (The actual 3D crystal structure
has an only approximate C; symmetry because of a monoclinic
distortion, which singles out one propagation direction for the long-
range ordered state (along b direction) out of the three possible
under the ideal C; symmetry*.)

With other magnetic correlations possibly emerging at high
temperature in mind, we follow the temperature evolution of the
zigzag order. Figure 1d-f shows H, K and L scans, respectively, of
the magnetic Bragg peak at Q = (0, 1, 6.5) for selected temperatures.
Figure 1g shows the correlation lengths along the a-, b- and
c-axes as a function of temperature. As the temperature increases
above Ty, the zigzag correlations diminish rather isotropically,
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despite dominant 2D couplings in the honeycomb net. This
3D characteristic of the magnetic correlations contrasts with
that of the quasi-2D Heisenberg antiferromagnet Sr,IrO,, which
exhibits 2D long-range correlations well above Ty (ref. 31), and
implies that the critical temperature in Na,IrO; is limited by the
anisotropic interactions rather than the interlayer coupling; the
Mermin—Wagner theorem requires either the symmetry to be lower
than SU(2) or the dimension to be higher than 2D for a finite-
temperature phase transition. The zigzag correlations survive on a
length scale of several nanometres (approximately three unit cells
wide) above Ty, but the peak intensities drop by two orders of
magnitude. To isolate such small signals from the background, we
used an experimental set-up that maximizes the signal-to-noise
ratio, as described in the Methods.

Figure 2a maps the diffuse scattering intensity over a region
in momentum space encompassing a full Brillouin zone of the
honeycomb net, at several different ¥ angles to resolve the spin
components (see Supplementary Fig. 2). These maps integrate
the dynamic structure factor over the range 0 < w < 100 meV,

NATURE PHYSICS | VOL 11 | JUNE 2015 | www.nature.com/naturephysics
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Figure 3 | Simulation of diffuse scattering using exact diagonalization.
The Kitaev-Heisenberg model including up to third nearest-neighbour
Heisenberg interactions was considered. & interpolates between the pure
Heisenberg model and the pure Kitaev model via Jj=J, =J3=1—& and
K=—&. A ferromagnetic K with finite J;, J and J3 stabilizes the zigzag state
for most values of &. The black curve shows the spectral asymmetry,
defined as the ratio of spectral weight at Q=(0.5,0.5) to that at Q=(0, D).
Images show equal-time correlations (5’(‘35{Q) obtained by exact
diagonalization using a 24-site cluster and plotted in the extended Brillouin
zone for selected &. The correlations for y and z components (not shown)
can be generated by £120° rotations of the images shown.

covering the entire range of magnetic excitations, and serve
as an excellent approximation for the equal-time correlation
Sea = (858%,) (@=x,y,z). When averaged over the three spin
components, the intensity map (Fig. 2¢) indeed shows three zigzag
correlations above Ty, with peaks at Q ==£(0,1), £(0.5,0.5) and
£(0.5, —0.5) of equal intensities, confirming the near-ideal C;
symmetry. However, the spin-component-resolved maps, shown
in Fig. 2b, manifestly break the C; symmetry. The system is left
invariant only when C; rotation is performed simultaneously in the
real space and in the spin space—that is, cyclic permutation of spin
indices. This ‘global’ C; symmetry implies a strong entanglement
between the real space and the spin space. Specifically, the full
azimuthal dependence of each zigzag state, shown in Fig. 2d, closely
follows the curves simulated for spin orientation fixed relative to
the propagation direction, as depicted in Fig. 2e. In other words,
specifying a spin component amounts to fixing the momentum
direction and vice versa. This one-to-one correspondence between
the spin space and the real space is a direct consequence of the bond-
dependent nature of the anisotropic exchange terms.

Qualitatively, it is immediately seen that the anisotropic
interactions dominate over the isotropic interactions and the
system is very far away from the pure Heisenberg limit, in
which case the spatial correlations must be spin-component-
independent with three zigzag peaks having equal intensities by
symmetry (as in the spin-averaged correlation shown in Fig. 2c
preserving C, symmetry). A measure of how close the system is
to either the Heisenberg or the Kitaev limits is provided by the
intensity ratio of the weakest peak to the two bright peaks in the
spin-component-resolved correlations (Fig. 2b). To quantify this
measure, represented by a variable linearly interpolating between
these two limits, £, requires specifying the Hamiltonian, which
is not precisely known. For an estimation at a semi-quantitative
level, we adopt a simple Hamiltonian that neglects all anisotropic
terms beyond the K term. (This in turn requires including further-
neighbour Heisenberg couplings J, and J; to stabilize the zigzag
order*?, which we take to be equal to J, for simplicity.) Figure 3 shows
the simulated patterns for selected &. It is clear that the observed
diffuse pattern is consistent with the simulated pattern for the large
& limit. In fact, the observed intensity ratio of ~0.2 is even smaller
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Figure 4 | Resonant inelastic X-ray scattering spectra below Ty.

RIXS spectra recorded at T=9K and ¥ =180°. Q=(0, 1), (0.5,0.5) and
(0.5,—0.5), shown as blue, green and yellow filled symbols, respectively,
marked on the Brillouin zone of the honeycomb net and colour-coded with
the spectra. At this ¥ angle, S lies approximately along k¢ and 7-o” and
-7’ channels measure the two spin components transverse to S. For
comparison, the inset shows the diffuse map at T=17 K for the same ¥
angle, generated by rotating the ¥ =60° data shown in Fig. 2a clockwise
by 120°.

than calculated (Fig. 3) for the largest & in the zigzag phase, which
confirms the predominant anisotropic interactions.

Interpreted within this model, our calculations would imply that
the system is very close to the Kitaev limit. However, it is becoming
increasingly evident that other anisotropic terms beyond the Kitaev
interaction do play a role*>*. This is, in fact, evident from the static
spin not pointing along one of the cubic axes favoured by the K term;
all other anisotropic terms conspire to rotate the spin away from
the principal axes. This in turn suggests that the zigzag structure is
further stabilized by other anisotropic terms. The zigzag correlations
survive at least up to ~70 K (see Supplementary Fig. 3), which is in
accord with the observation that coherent spin waves' disperse up
to ~5 meV. This energy scale coincides with the temperature scale
(100 K) below which the magnetic susceptibility deviates from the
Curie-Weiss behaviour®. This energy scale is, however, still far too
small in comparison with the energy (2100 meV) spanned by the
magnetic excitations (Fig. 4), suggesting that the zigzag order is an
emergent phenomenon. Despite the macroscopic degeneracy in the
Kitaev QSL phase being reduced down to three zigzags, the high-
energy Kitaev interactions leave their signature in the low-energy
sector: the three spin components, each carrying its own zigzag,
compete and melt the long-range order at a temperature much lower
than that suggested by the Weiss temperature (®y), leading to a
large frustration parameter® (= @y /Ty) approximately equal to 8.

The fluctuations among three zigzag states remain even below
Ty, albeit with subtle spectral changes (Supplementary Fig. 3d),
implying that they are primarily quantum rather than thermal
fluctuations. At ¥ =180° (Fig. 4), the intensity remains highest
at Q==(0.5,0.5) and Q = =£(0.5, —0.5), away from the Bragg
peaks at Q=2(0, 1), and peaked at zero energy within the energy
resolution of 24 meV. Note that this scattering geometry probes two
spin components transverse to the static component. A profound
consequence of the unusual nature of the fluctuations is that the soft
excitations are located away from the Bragg peak'. This is a notable
exception to the universality held in conventional magnets that
spin waves emanate from Bragg peaks by virtue of the Goldstone
theorem, and magnetic anisotropy is manifested as a spin-wave
gap, even in systems with extremely large magnetic anisotropy™.
By contrast, the spin gap in our system is small (unresolved in our
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spectra and estimated to be smaller than 2 meV from INS data'®)
in comparison with the overall energy scale of the system, despite
the fact that the magnetism is dominated by the anisotropic terms.
Rather, the anisotropy is manifested as the separation of the long-
wavelength spin waves from the Bragg peaks, which is a natural
consequence of each spin component exhibiting its own real-space
correlations. Our results directly reveal the key building blocks of
the Kitaev model in Na,IrO;, and establish a new design strategy
for the long-sought quantum spin liquids via the bond-directional
magnetic coupling.

Methods

Methods and any associated references are available in the online
version of the paper.
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Methods

Single-crystal growth. Single crystals of Na,IrO; were grown following two
different recipes using Na, CO; flux (Sample 1) and self-flux (Sample 2). For
Sample 1, a mixture of Na,CO; and IrO, with a molar ratio of 50:1 was melted at
1,050 °C for 6 h followed by fast cooling at a rate of 100 °Ch™" down to 1,000 °C,
slow cooling at a rate of 1 °Ch™' down to 800 °C and furnace cooling to room
temperature in sequence. Hexagonal pillar-shaped crystals with typical dimensions
of 0.2mm x 0.2 mm X 0.4 mm were obtained after dissolving Na,CO; flux in
acetone and water. For Sample 2, powders of Na, CO; were mixed with 10-20%
excess IrO, and were calcined at 700 °C for 24 h. Single crystals were grown on top
of a powder matrix in a subsequent heating at 1,050 °C. Plate-like crystals with
typical dimensions of 5mm x 5mm x 0.1 mm were physically extracted.

Resonant X-ray scattering. Incident X-rays were tuned to the Ir L; edge
(11.2145 keV). The resonant X-ray diffraction experiments were carried out at the
6 ID-B beamline of the Advanced Photon Source. The polarization analysis was
performed in the vertical scattering geometry using a pyrolytic graphite analyser

NATURE PHYSICS | www.nature.com/naturephysics

probing the o-7" channel. The RIXS was performed at ID20 of the European
Synchrotron Radiation Facility. The total instrumental energy resolution of 24 meV
was achieved with a monochromator and a diced spherical analyser made from Si
(844) and a position-sensitive area detector placed on a Rowland circle with a 2m
radius. The diffuse magnetic scattering was performed using the RIXS
spectrometers at the 9 ID, 27 ID and 30 ID (MERIX) beamlines of the Advanced
Photon Source, where a monochromator of 90 meV bandwidth was used for an
order-of-magnitude higher incident photon flux than that from the Si (844)
monochromator. In these experiments, a horizontal scattering geometry was used
with the 77 -incident X-ray polarization measuring the sum of 7-¢’ and 7 -7’
channels. The 26 angle was fixed at 90° to minimize the contribution from
Thompson elastic scattering. As a result, L values in the HK maps shown in Fig. 2a
vary in the range between 6.5 and 7. The in-plane momentum resolution of the
RIXS spectrometer was £0.048 A~'. The use of RIXS spectrometers rejecting all
inelastically scattered X-rays outside of the 100 meV energy window centred at the
elastic line led to a significant improvement in the signal-to-noise ratio. A typical
counting time of 2 h was required for a map shown in Fig. 2.
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Direct evidence for dominant bond-directional
interactions in a honeycomb lattice iridate Na,lrO;

A. Sample characterization

The powder x-ray diffraction patterns of both Sample #1 and #2 were consistent with the crystal structure in the
C2/m space group as previous reported!®. Sample #1 had a slightly lower Ty=12 K compared to Sample #2 with
Tn=15 K, as measured by SQUID magnetometry (Fig. Sla) and by resonant x-ray diffraction through the magnetic
Bragg peaks at Q = (0 1 n+3) (n: integer) (Fig. S1b). Sample #1 was found to be of multi domains but had a
superior crystallinity with 0.1° mosaicity (as compared to 0.5° mosaicity of Sample #2) (Fig. Slc), and thus was used
for the resonant diffraction experiment (polarization analysis and measurement of the magnetic correlation length.)
Sample #2 was found to be of a single domain and was used for the RIXS measurement. Both Sample #1 and #2

were used for the diffuse scattering measurement and gave identical results.
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Supplementary Figure 1. Characterization of Sample #1 and Sample #2. (a) Temperature dependence
of magnetic susceptibility. Dotted lines indicate Ty. Black arrows indicate that the data were measured while

warming after zero-field cooling. (b) Temperature dependence of the magnetic Bragg peaks. (c¢) Sample mosaicity.

B. Extraction of the spin-component resolved equal-time correlators

The x-ray scattering intensity measured without using a polarization analyzer contains contributions from both 7-o’
and 7-7’ channels, probing spin components along k; and perpendicular to the horizontal scattering plane, respectively.
In other words, two spin components perpendicular to ky are measured in the 90° horizontal scattering geometry used.

For example, when ¥=0°, the z local cubic axis points approximately along ky (Fig. S2), and thus the scattering
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Q< aaxis Y

Supplementary Figure 2. Scattering configurations. (a) U= 0°, (b) ¥ = 120°, and (c) ¥ = 240°. The
azimuth W is the angle between the a axis and the scattering plane. Thick black arrows denote the local z, y, and z
axes in the IrOg octahedron. a axis is indicated by a thin black arrow. Cyan arrows are the incident and scattered
x-rays with the wave vectors k; and ky, respectively. Green arrows indicate the x-ray polarizations. Q (dark blue

arrow) is the momentum transfer.

intensity measures the correlation S;;+S,,. Likewise, ¥=120°(¥=240°) measures Sy;+S5..(Syy+S5:-). Then, Sy,

Syy, and S, can be extracted by solving a set of linear equations.

C. Temperature dependence of the diffuse magnetic peak and RIXS spectra

The short-range zig-zag order is observable at least up to T~70 K (Fig. S3a). The magnetic correlation length (1.6-1.8
nm) along the a axis does not vary significantly in the measured temperature region. Figs. S3b and S3c plot the
diffuse map at T=50 K for ¥=0° and ¥=30°, respectively, which is similar to the diffuse map recorded at T=17 K
(shown in Fig. 2a) apart from thermal broadenings. Fig. S3d depicts the RIXS spectra at Q=(0.5 0.5) and (0.5 -0.5)

for ¥=180°, which show subtle spectral change in the temperature range, 9 K-17 K, below and above Ty.
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Supplementary Figure 3. Diffuse magnetic x-ray scattering intensities above TN and RIXS spectra
below and above Tn. (a) H profiles of the diffuse peak at Q=(0 1). Shown in the inset is the magnetic correlation
length along the a axis derived from Gaussian fitting (solid curves)of the data for Sample #1. (b,c) Diffuse maps at
T=50 K for ¥=0° and ¥=30°. The dashed hexagon indicates the first Brillouin zone of the honeycomb net. (d)
Temperature evolution (9 K-17 K) of RIXS spectra at Q=(0.5 0.5) and Q=(0.5 -0.5) for ¥'=180°.
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D. Calculated azimuthal angle dependence for all polarization channels
In order to facilitate comparison between the two azimuth angle dependence curves shown in Fig. 1c and Fig. 2d mea-

sured with different analyzer settings, we provide in Fig. S4 calculated azimuth angle dependence for all polarization

channels for the two measured Q positions.
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Supplementary Figure 4. Azimuthal angle dependence for all polarization channels. (a) For Q=(0 1
6.74) (b) For Q=(0 1 3.5).
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Implications for the honeycomb-lattice iridates A,IrO;
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We have explored the hidden symmetries of a generic four-parameter nearest-neighbor spin model, allowed
in honeycomb-lattice compounds under trigonal compression. Our method utilizes a systematic algorithm to
identify all dual transformations of the model that map the Hamiltonian on itself, changing the parameters and
providing exact links between different points in its parameter space. We have found the complete set of points of
hidden SU(2) symmetry at which a seemingly highly anisotropic model can be mapped back on the Heisenberg
model and inherits therefore its properties such as the presence of gapless Goldstone modes. The procedure
used to search for the hidden symmetries is quite general and may be extended to other bond-anisotropic spin
models and other lattices, such as the triangular, kagome, hyperhoneycomb, or harmonic-honeycomb lattices.
We apply our findings to the honeycomb-lattice iridates Na,IrO3 and Li,IrO;, and illustrate how they help to

identify plausible values of the model parameters that are compatible with the available experimental data.

DOI: 10.1103/PhysRevB.92.024413

I. INTRODUCTION

When relativistic spin-orbit coupling dominates over the
exchange and orbital-lattice interactions, the orbital moment
L of an ion remains unquenched and a total angular mo-
mentum J = S + L is formed. This was known to happen
in compounds of late transition metal ions such as of cobalt
(see, e.g., Ref. [1]); however, the “cleanest” examples of
spin-orbit coupled magnets emerged more recently: these are
the iridium oxides Sr,IrO4 and Na,IrO; with perovskite and
honeycomb-lattice structures, correspondingly.

By construction, magnetic ordering in these systems nec-
essarily involves interactions between orbital moments L,
in addition to a conventional Heisenberg exchange among
the spin part of total angular momentum J [2]. Since the
L moment, hosted by #,, orbital in a crystal, is only an
“effective” one [3], it need not be conserved during the
electron hoppings; thus the L-moment exchange interactions
are generally not SU(2) invariant [4]. Moreover, the orbital
moments have a “shape” and hence the L interactions are
anisotropic in real space, too, and thus strongly frustrated even
on simple cubic lattices. Altogether, this results in nontrivial
L Hamiltonians and orderings, including, e.g., noncoplanar
(multi-Q) states, “hidden” Goldstone modes, etc. [5,6]. Via
the spin-orbit coupling, these peculiar features of orbital
physics are inherited by the “pseudospin-J” wave functions
and interactions [6—14]. In essence, the frustrated nature
and quantum behavior of f,,-orbital moments [15,16] are
transferred to those of low-energy pseudospins J.

Depending on the electron configuration of ions, the ground
state pseudospin may take different values J = 0,1/2,1, ...,
and a variety of magnetic Hamiltonians with different sym-
metries and diverse behavior emerge in each case, because of
different admixture of non-Heisenberg L interactions. Perhaps
the most radical departure from a conventional magnetism is
realized in compounds with apparently “nonmagnetic” J = 0
ions, where a competition between spin-orbit and exchange
interactions results in a nonmagnetic-magnetic quantum phase
transition [17-20].

1098-0121/2015/92(2)/024413(14)
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The case of pseudospin J = 1/2 iridates is of special
interest. This is because SrpIrO4 perovskite was found
[22-24] to host cuprate-like magnetism, and honeycomb-
lattice iridates A,IrO3 (A = Na, Li) have been suggested [9]
as a candidate material where the Kitaev model [25] physics
might be realized. Following this proposal, a subsequent work
[11] has introduced the minimal magnetic Hamiltonian for
iridates A,IrOj3: the Kitaev-Heisenberg model (KH model)—a
frustrated spin model with many attractive properties. Most
importantly, its phase diagram contains a finite window of
a quantum spin-liquid phase which emanates from the pure
Kitaev point of the model with a known exact solution [25].
To reflect the later experimental findings in iridates, such as
the zigzag (Na,IrO3; [26-28]) and spiral (LipIrO3 [29]) type
magnetic orderings, the initially proposed model was modified
by including longer-range Heisenberg [28,30] or anisotropic
[31] interactions, extending the parameter range [32-34],
by considering further anisotropic terms in the Hamiltonian
[35-42], or by including spatial anisotropy of the model
parameters [43]. An alternative picture based on an itinerant
approach has been also suggested [44].

Despite the extensive efforts, no consensus concerning
the minimal model for the honeycomb-lattice iridates has
thus far been reached. A reliable microscopic derivation of
the exchange interactions is difficult and does not lead to a
conclusive suggestion for the minimal Hamiltonian and its
parameters. On the experimental side, the richest information
about the underlying spin model would be provided by map-
ping momentum-resolved spin excitation spectrum. However,
due to the lack of large enough monocrystals, the inelastic
neutron scattering (INS) has been performed on powders
only [28]. Another possible probe—resonant inelastic x-ray
scattering (RIXS)—suffers from a small resolution at present.
While it could be successfully applied in the case of perovskite
iridates [23], here the limitation comes from the much smaller
energy scale of the excitations to be studied in detail by
RIXS; however, the overall strength of magnetic interactions
in NayIrO; has been quantified [45,46].

©2015 American Physical Society
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Nevertheless, the experimental data collected to date puts
rather strong constraints on the possible models. First, the
RIXS-derived magnetic energies [45,46] (of the order of 40
meV) are much higher than the ordering temperature (~15 K),
suggesting strong frustration. Second, the magnetic scattering
intensity, measured by RIXS at zero momentum, Q = 0, is
as strong as elsewhere in the Brillouin zone, which implies a
dominance of anisotropic, non-Heisenberg spin interactions.
Third, the recent resonant x-ray scattering data [46] have
revealed nearly ideal C3 symmetry of the spin correlations
in momentum space. Moreover, inelastic neutron scattering
data [28] have indicated that a spin gap, if present, would be
relatively small (less than 2 meV). All these observations taken
together imply that the dominant pseudospin interactions in iri-
dates are strongly frustrated, highly anisotropic in spin space,
and yet highly symmetric in real space. By very construction,
all these features are in fact the intrinsic properties of the KH
model and its extended versions.

The KH model, supplemented by other C; symmetry
allowed terms (see below), is therefore physically sound and
plausible. However, there is a problem of its large parameter
space (four parameters even within the nearest-neighbor
model) resulting in complex phase diagrams, which makes the
analysis of experimental data and the extraction of the model
parameters a difficult task. In such cases, clarification of the
underlying symmetry properties of the model is often of a great
help. In general, the spin-orbital models in Mott insulators
possess peculiar symmetries [6,14] which are rooted in the
bond-directional nature of orbitals. In this context, a special
four-sublattice rotation [6] within spin space has proved itself
as an extremely useful tool in the case of the original two-
parameter KH model [11,32,47-50]. It maps the Hamiltonian
on itself but changes the Hamiltonian parameters, connecting
thereby different points in the parameter space. Being an exact
transformation, it transfers the complete knowledge about
some point in the phase diagram, including the ground state,
excitation spectrum, response functions, etc., to its partner.
Based solely on this self-duality of the model, the entire phase
diagram could be sketched and the deep relations between the
phases understood. In addition, it also reveals points of hidden
SU(2) symmetry, where the system is exactly equivalent to a
Heisenberg model for the rotated spins. Given its usefulness, it
is highly desirable to find and analyze similar transformations
for the extended versions of the KH model.

In this paper, we introduce a systematic method to derive
dual transformations of bond-anisotropic spin Hamiltonians
and demonstrate its results and their physical implications
in the case of honeycomb iridates adopting the full nearest-
neighbor model [36,37,39]. We find all the hidden SU(2)-
symmetry points of the model, the most peculiar one being
characterized by a “vortex”-like pattern with a six-site unit
cell, and demonstrate how the characteristics of the hidden
Heisenberg magnet manifest themselves in the anisotropic
situations. By identifying the SU(2) points we characterize all
the possible gapless Goldstone modes that may be encountered
within the model. This is relevant in the context of real
materials as the spin gap was found to be well below 2 meV
[28,29], suggesting a connection to some of the SU(2) points.
Finally, using a self-duality of the model, we will provide a link
between our fits of the earlier Na,IrO3 data [32] and the recent
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experimental observation of the ordered moment direction
[46]. We argue that this observation provides a direct access
to the strength of the additional terms “extending” the KH
model, and quantify the spin easy axis direction in terms of this
“departure” from the pure KH model. This allows us to suggest
plausible values of the model parameters that are compatible
with the current data. While we focus here on the case of a
honeycomb lattice as realized in NaIrO; and more recently
in RuCl; [51], the method is general and expected to produce
interesting results also in the context of the new structural
families of iridates—recently synthesized hyperhoneycomb
[52,53] and harmonic-honeycomb lattices [54,55], or the
theoretically proposed hyperoctagon lattice [56].

The paper is organized as follows. Section II introduces the
Hamiltonian and discusses its parameters. Sections III and IV
introduce the method and derive and discuss the main results
of the paper—the hidden symmetries of the model. Section V
and Appendix B discuss the implications of the results for
honeycomb iridates.

II. EXTENDED KITAEV-HEISENBERG MODEL

We start by specifying the model Hamiltonian including
all symmetry-allowed spin interactions on nearest-neighbor
bonds. An ideal, undistorted structure of the honeycomb
Nalr,O¢ plane is shown in Fig. 1(a). We will utilize its
rotational C3 symmetry and the three sets of parallel mirror

(a)

(b)

FIG. 1. (Color online) (a) Top view of the honeycomb Nalr,Og
plane, the definition of global X,Y,Z axes, and the xyz reference
frame for the spin components. The X and Y directions coincide with
the crystallographic a and b axes. The three bond directions of the
honeycomb lattice are labeled as a, b, and c; its two sublattices are
labeled by A and B. (b) Two edge-shared IrOg octahedra of a ¢ bond
and the definition of the local spin axes ¥, ¥, Z [used in Eq. (1)]. (c)
Simultaneous cyclic permutation of the Ir-Ir bond directions a, b, ¢
and the spin components x, y, z when applying a C; rotation to the
model.
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planes containing the shared edges of the IrO¢ octahedra and
cutting the Ir-Ir bonds into halves. The C3 symmetry links the
interactions for different bond directions while the presence of
the mirror planes restricts the possible interactions for a given
bond direction. A trigonal distortion (compression or elon-
gation along the Z axis) fully preserves these symmetries so
that our Hamiltonian applies in that case as well. Furthermore,
recent experiments [46] indicate a nearly ideal C3 symmetry
of the spin properties and hence suggest that additional
terms, possibly induced by a monoclinic distortion present in
Na,IrO3, can be neglected. Physically, this observation implies
the robustness of the pseudospin wave functions against weak
monoclinic distortions.

The bond Hamiltonian is most compactly expressed in
a local, bond-dependent XjZ reference frame for spins,
presented in Fig. 1(b) for a ¢ bond. Due to the mirror symmetry,
the in-bond S component is forbidden to interact with the S¥
and S? components [36]. Following the notation of Ref. [36]
we arrange the allowed terms into the form

Hipyje =J Si - S; + K S;S;
+D (5787 = 8/S]) +C(S/S; +5787). (1)

This four-parameter Hamiltonian extends the KH model (J and
K terms) by the D term bringing further anisotropy among
the diagonal components of the interaction, and the C term
determining the only symmetry-allowed nondiagonal element
in the exchange interaction tensor. Parameter C would vanish
for an isolated pair of undistorted octahedra; it becomes finite
due to a trigonal distortion and/or due to the extended nature of
orbitals in a crystal (“recognizing” the fact that the octahedra
are canted relative to the crystal axis Z).

To capture the C3 symmetry, it is convenient to switch to
cubic axes xyz, introduced in Fig. 1(a) and pointing from an
Ir ion to neighboring O ion positions in an ideal structure. The
c-bond Hamiltonian in the cubic reference frame, as derived
in Ref. [37], reads then as

Hijyie =J Si-S; + K S; S5 + F(S;‘S}'Jrsl:"s;)
T (S 8548787 +5] S5+ S5757), )

with the correspondence I' = —D and I’ = JLEC , often used
below. For the other bond directions, the Hamiltonian is
obtained by a cyclic permutation [see Fig. 1(c)], resulting in
one-to-one correspondence between the three types of bonds
and interactions, as required by C; symmetry. Physically, each
type of bond favors its own distinct “orbital setup” to optimize
the hopping energy, and this is fingerprinted in pseudospin
interactions via spin-orbit coupling. For completeness, Ap-
pendix A shows the Hamiltonian in the global axes XY Z; it
has certain advantages moving the bond dependence from the
operator forms to the coupling constants.

A few comments are in order concerning the model parame-
ters. In general, calculation of exchange integrals in transition
metal compounds with 90° d — p — d bonding geometry is
an intricate task, because more hopping pathways are allowed
as compared to a simpler case of 180°d — p — d bonding
in perovskites (where theory [9] has correctly predicted the
strength of dominant exchange constants). For instance, .
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orbitals may also overlap directly, in addition to oxygen-
mediated hoppings; there is a large overlap between orbitals of
h, and e, symmetries (forbidden in perovskites), etc., resulting
in anumber of competing ferromagnetic and antiferromagnetic
contributions which are difficult to evaluate, in particular in
compounds with small Mott and/or charge-transfer excitation
gaps. The uncertainties in interaction parameters U and Jy
further affect the theoretical estimates.

Initial consideration [6] of the pseudospin one-half ex-
change interactions in 90°-bonding geometry resulted in K =
—2J [hitting a “hidden” SU(2) point by chance] in the cubic
limit; later work [8,9,11] using different approximations has
changed this estimate both in terms of the signs and values of
J and K, illustrating the difficulties described above. It was
also found that the nondiagonal element I" allowed in cubic
symmetry may take sizable values [36,37,39,40]. Further,
I is expected to become as large as the other parameters
if trigonal splitting A of the t,, orbital level, caused by
a compression along the Z axis, becomes comparable to
spin-orbit coupling A; also, the trigonal field suppresses the
parameter K. These trends are easy to understand: large
trigonal field suppresses the in-plane components of orbital
moment Ly and Ly, leaving the axial L component the only
unquenched one; thus the pseudospin one-half Hamiltonian,
written most conveniently in global axes in this limit, may
not contain anything but XX +YY and ZZ type terms:
Jxy(S}SF+58SY) 4 J2S7 S7, identical for all bonds. This
is what has indeed been found by explicit calculations [6,35]
in the limit of A > A. This implies K =0 and " =T
in this limit (see also Appendix A), while Jyy = (J —T)
and Jz = (J + 2I') may take any values depending on the
microscopic details. Although this limit is not very realistic for
the Ir** ion with large spin-orbit constant A ~ 0.4 eV [3,57],
we may expect sizable values of both I" and IV in Na,IrO;
where A seems to exceed 0.1 eV [58,59]. The role of I" and
I’ terms should further increase in other compounds based on
pseudospin-1/2 Co**, Ru**, and Rh** ions with smaller A.

In general, the high-energy behavior of spins and orbitals
in transition metal compounds is well captured by the Kugel-
Khomskii models [4] and their descendants [6]. However, the
low-energy physics and ultimate magnetic “fixed-point™ are
heavily influenced by many “unpleasant” details originating
from orbital-lattice coupling and distortions, unavoidable in
real materials. In perovskites, the Kugel-Khomskii energy
scale is given by 4#%>/U independent of spin-orbit coupling;
however, this leading term drops out for pseudospins-1/2 in
the edge-shared, 90°-bonding geometry [6,9], so the “high-
energy”’ scale is set up by the subleading terms. In iridates,
the hope [9] is that the Kitaev-type coupling is the leading one
among these subleading terms. Since this coupling is itself a
correction to 4¢2/ U, this expectation may or may not hold in
reality.

To summarize up to now: in real materials even with an ideal
C3 symmetry, all four of the exchange parameters may play a
significant role. This motivates us to regard the Hamiltonian
(1) and (2) as an effective model with arbitrary parameters,
and look for some general symmetry arguments that may help
to identify plausible parameter windows in the analysis of
experimental data.
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III. SYSTEMATIC CONSTRUCTION OF DUAL
TRANSFORMATIONS

Having fixed the model Hamiltonian, we are ready to
explore its dual transformations. By a dual transformation we
mean a prescription for site-dependent rotations in the spin
space, S; = R;S;, which transforms a spin Hamiltonian #(S)
into a formally new Hamiltonian H'(S"). We are interested in
self-dual transformations of # that map the model onto itself,
preserving all its symmetry properties. That is, the rotated
partner H’ (i) has the same four terms albeit with different
parameters J'K’D’'C’, and (ii) it respects the Cj rotation rules
encoded in Fig. 1(c), hence preserving the original distribution
of the three types of bond-dependent interactions on a lattice.

Starting with the J K DC Hamiltonian expressed as H.(S) =
2ii SI'H;;S; where H;; are 3 x 3 matrices, we obtain
H(S)=H'(S) =Y, Si" H};S with H, = R; H;/R . For
a self-dual transformation, the matrices Hi’j are identical to H;;,
but the parameters J K DC are replaced by J'K'D’C’, and the
one-to-one correspondence between the bond directions and
interactions remains intact. These two points in the parameter
space are linked by the transformation and knowing the
solution at one of the points, we may “rotate” it to the other one.

In this section we give an algorithm to find the self-dual
transformations for the extended KH model that map it
onto itself. We have found a single self-dual transformation
JKDC < J'K'D'C’ operating in full parameter space of the
model; we will show it shortly below and return to it later when
discussing experimental data.

However, studying the hidden symmetries of the model, we
have identified a number of restricted self-dual transformations
that operate only in some regions of the parameter space, where
constants J,K,D,C are all finite but obey certain relations, or
some of them are simply zero. Our primary interest is in the
special class of such transformations of the type Jy <+ JK DC,
which convert the Heisenberg model into the full JKDC
model and vice versa. These transformations, to be discussed
in the next section, reveal points of hidden SU(2) symmetry;
by inverting the transformation the anisotropic model with
the parameters J K DC can be exactly mapped back to the
Heisenberg model with the exchange constant Jj.

A. Algorithm

A systematic search for the dual transformations seems to
be an intricate task. Fortunately, it can be easily performed by
computer on a finite cluster of the lattice using the following
simple algorithm. We give it specifically for the case of a
self-dual transformation:

(A) As a first step, we choose two rotation matrices R;,
R ; on a selected bond (ij). They have to preserve the JK DC
form given by (1), which leaves us with only a few choices,
each having only one free angular parameter.

(B) Next, we randomly choose nonzero values of the initial
parameters J K DC and use the relation H]; = R; H, j’RJT to-
gether with the C; symmetry to determine the new Hamiltonian
matrices for the three bond directions.

(C) Knowing all the bond Hamiltonians, we may now
determine further rotation matrices by utilizing relations of
the type R; = (Hi’j.)_lRi H;; and proceeding neighbor-by-
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neighbor. To fully determine the rotation matrices, about two
thirds of the bonds need to be used.

(D) The bonds of the remaining third are used to check
consistency; the Hamiltonian matrix determined by using the
rotation matrices belonging to the bond has to be identical to
that determined in step B. If the total difference on all the
remaining bonds equals zero, we have just constructed a self-
dual transformation. By scanning through the entire interval
of the free parameter introduced in step A, we find all the
self-dual transformations.

The above procedure may be easily adapted to find the dual
transformations such as Jy <> JK DC. In this case, in step
A of the algorithm, we use the symmetry of the Heisenberg
model and choose R; as an identity matrix. The choice of
the second matrix R; is restricted by the requirement that
H), = RiHinjT = JRJT be of the JK DC form.

By inspecting the rotation matrices of the cluster, we can
identify the particular unit cell of the transformation. Note
that even if our cluster is smaller than this unit cell, we do not
miss the corresponding transformation, so that the method is
completely systematic [60].

B. Self-duality of the extended Kitaev-Heisenberg model

The systematic procedure described above has identified
only a single self-dual transformation JK DC < J'K'D'C’.
This is not surprising given the complexity of the model. The
corresponding parameter transformation may be written in a
matrix form

B 1 4E 4 g2 ,
1 4 2V/2
K| _ | -3 -3 —TF|lk 3
C/ 9 9 9 C
0

For convenience, we also give the transformation of the
parameters J KI'T" entering the Hamiltonian (2):

4 4 4
N 1 +? —2 +z J
k| |0 -3 +3 —3|[K @
rl = 4 5 sl
v 0 +5 +3 +35 r
0o -2 42 47
9 9 9

In terms of the spins, the transformation, labeled for future
reference as 71, is simply a global & rotation about the Z axis
defined in Fig. 1(a). The individual X, S¥, and % components
transform according to

Ti: X,Y,Z)=(-X,-Y,2) )

at every site. By applying the transformation twice, we get an
identity and the matrices in (3) and (4) are thus self-inverse.
Despite its apparent triviality, this transformation will play an
essential role when discussing the real materials; see Sec. V
below.

IV. POINTS OF HIDDEN SU(2) SYMMETRY

In this paragraph we find and characterize all the points of
hidden SU(2) symmetry present in the extended KH model.
At these special points in the parameter space, the anisotropic
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TABLE 1. Parameter values for the SU(2) points in units of the
exchange constant Jj of the hidden Heisenberg model.

Ih o K/l T=-D)h (=10
T -1/3 0 2/3 2/3
Ta ~1 2 0 0
T 0 ~1 —1 0
TTs -1/9  -2/3 8/9 —4/9
T —2/3 1 1/3 ~2/3

model can be mapped back to a Heisenberg ferromagnet or
antiferromagnet. The SU(2) points of the original KH model
have been identified [11] by virtue of the four-sublattice
transformation introduced in Ref. [6]. The corresponding
ordering patterns on the honeycomb lattice are of stripy and
zigzag type. A similar symmetry analysis of the KH model
was performed for other relevant lattices [47].

The extended KH model of course inherits the SU(2)
points of the KH model and contains several new ones in
addition. They are identified by dual transformations of the
type Jo <> JKDC which is less general than JKDC <«
J'K'D’'C’. Because of this, we obtain a relatively rich set
of dual transformations characterized by two-, four-, and
six-sublattice structure of the rotations. In terms of parameters,
all the nontrivial SU(2) points are listed in Table I. We now
proceed with the detailed description of the corresponding
transformations.

A. Summary of the SU(2) points and the corresponding
rotations on the sublattices

We first give a summary of the transformations as repre-
sented by rotations in the real space. Each of them generates
an infinite number of orderings, since the ordered moment
direction in the underlying Heisenberg model can be chosen
arbitrarily. Figure 2 shows a few important examples.

The simplest transformation 7, is 7 rotation about the Z
axis at one of the two sublattices of the honeycomb lattice:

T (X.Y.Z)=(X.Y.Z) (sublattice A) ,
(X',Y',Z)Y=(=X,—Y,Z) (sublattice B). (6)

Its physical relevance is small due to the dominance of I''(=
\/%C ) and the complete absence of K (corresponding to the
case of strong trigonal field splitting, as explained above). As
a curiosity, if we choose the spins to lie in the honeycomb
plane, 7, converts the FM pattern to AF and vice versa. We
may thus have an AF/FM ordered pattern, but the hidden nature
revealing itself, e.g., in the spin dynamics is that of Heisenberg
FM/AF, respectively.

The next transformation 74 has a four-sublattice structure
depicted in Fig. 2(a) with 7 rotations about cubic x, y, and
z axes applied at sublattices 1, 2, and 3, respectively, and no
rotation involved at sublattice 4. Written explicitly:

(sublattice 1),
(sublattice 2),

Ta: 'y, )= —y,—2)
',y 2) = (=x,y, = 2)
(x',y,2) = (=x, = y,2)
(x',y',2) = (x,y,2)

(sublattice 3),
(sublattice 4).  (7)
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(a) (b)

FIG. 2. (Color online) (a), (b) Unit cells for the four- and six-
sublattice transformations. (c), (d) Stripy and zigzag patterns related
to the FM and AF order of a hidden Heisenberg magnet via the
four-sublattice transformation 7;. The spins take the z-axis direction.
(e), (f) “Vortex-like patterns generated by the six-sublattice transfor-
mation 7Tg. The spins are lying in the lattice plane in the case presented.
The colors of the arrows in panels (d) and (f) indicate the sublattices
of the hidden AF order. (g) Brillouin zones of the honeycomb (inner
hexagon) and the completed triangular lattice (outer hexagon). The
characteristic vectors Q, ;. of the four-sublattice transformation and
0 2.3 of the six-sublattice transformation are shown in red and blue,
respectively. (h) Bragg spots of the patterns in panels (c)—(f). The dot
size is proportional to [Sg|.

This transformation, introduced earlier in Ref. [6], is a self-
dual transformation of the original two-parameter KH model
and has been already heavily used in this context. Applying
the transformation to an ordered Heisenberg FM/AF with the
moments pointing along the z axis, we get the stripy/zigzag
order shown in Figs. 2(c) and 2(d).

Perhaps the most surprising SU(2) point of the model is
linked to the six-sublattice transformation 7. Its rotations are
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most conveniently described in the cubic coordinates. On the
lattice sites 1, 3, and 5 [see Fig. 2(b)] they correspond to cyclic
permutations among the spin components. On the lattice sites
2,4, and 6 the rotations correspond to anticyclic permutations
which have to be followed by a spin inversion. Altogether the
transformation can be written as

To (x',y",2) = (x,y,2) (sublattice 1),
x',y,7)=(-y, —x, —z) (sublattice 2),
',y".7) = (y,2,%) (sublattice 3),
(x',y",Z)y=(—x, —z,—y) (sublattice 4),

(sublattice 5),
(sublattice 6). (8)

"y = (z.x,y)
(-x/vylazl) = (_Zs - Y, — -x)

It is easy to see that for K = I'(= —D)and J = I'" = 0, these
rotations lead to the isotropic Heisenberg Hamiltonian. As
an example, we consider the ¢ bond 1 — 2 of Fig. 2(b). By
exchanging x and y at site 2, the nondiagonal I" term in (2)
becomes diagonal and the inversion ensures its proper sign.
Sample patterns generated by 7¢ and showing a “vortex”-like
structure are presented in Figs. 2(e) and 2(f). The peculiarity
of the SU(2) points is now best demonstrated: the Hamiltonian
is completely anisotropic containing K and I'(= — D) terms
only, the ordered spins form a very unusual pattern, yet the
hidden nature of the system is exactly that of the Heisenberg
FM or AF, including, e.g., the presence of gapless Goldstone
modes.

Apart from revealing a hidden SU(2) point of the present
model, the 7¢ transformation has a remarkable property that
deserves special attention. Namely, applying 7 to the Kitaev
Hamiltonian, we notice that it redistributes three types of Ising-
interactions on a honeycomb lattice such that at each hexagon
a Kekulé-type pattern is formed [61]. We thus arrive at the
so-called Kekulé-Kitaev model [62]. In other words, the Kitaev
and Kekulé-Kitaev models are exact dual partners linked via
the 7¢ transformation. This observation should be helpful in
studying both models, in particular of their extended versions
including a Heisenberg term [62,63].

Two more transformations providing SU(2) points are
obtained as the combinations 7174 and 7,7¢. They share the
sublattice structure with 74 and 7Tg, respectively. Adopting
the extended KH model, the former one is probably the
SU(2) point closest to the real situation in Na,IrOsz as will
be discussed in Sec. V.

B. Implications for the phase diagram

After examining the nature of the individual SU(2) points,
we want to visualize now their positions in the parameter space,
get a sketch of the phase diagram, and infer the relations
between the individual phases. The result can be compared
with the published phase diagrams of Refs. [37] and [38], ob-
tained by classical analysis and partly complemented by exact
diagonalization. For this reason, we adopt the representation
of the parameter space introduced in Ref. [37]. The overall
energy scale irrelevant for the phase diagram is removed and
J, K, I are parametrized using “spherical” angles 6 and ¢
viaJ =sinfcos¢, K =sinfsing,and" = —D = £ cos6,
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@

zigzag

>0

A: T’=+0.894 T,
B: I'=-0.398 1,7,
C: I'=-0535 7

B I''=-0.365 Na,lrOg
0 I'=-0.395 Li,lrOq4

zigzag

(b)

zigzag

<0

A: T’=-0.894 T,
B: I'=+0.398 1,7,
C: I'=+0.535 T,7g

strip

«_.-.-.-.—-'_'-
"vortex" C

stripy

FIG. 3. (Color online) (a) Depiction of the SU(2) points using
the parametrization of Ref. [37], J = sin6 cos ¢, K = sin6 sin ¢,
I' = cos 6. The distance from the center of the circle corresponds
to 6 going from O (center) through 7 /4 (dashed circle) to 7 /2 (solid
circle). The polar angle is ¢. Filled squares show the SU(2) points with
I'" = 0, open squares those with nonzero I'’ values given on the right
along with the transformation label. The color of the points indicates
their hidden FM (blue) or AF (red) nature. The green square (circle)
shows the parameter values specified in Sec. V when discussing
Na,IrO; (LiyIrO;). (b) The same as in panel (a) but with I’ = — cos 6.

keeping I''(= JLEC) as a separate parameter of the phase
portrait.

Shown in Fig. 3 is the complete set of SU(2) points of
the extended KH model. The outer rings correspond to the
original KH model and contain the trivial SU(2) points and
the two well-known 74 hidden SU(2) points of the KH model
characterized by a stripy and zigzag pattern. Still within the
J KT plane is the “vortex” 7 point associated with a “vortex”-
like pattern. The corresponding phases determined by these
SU(2) points can be observed in Figs. 2 and 3 of Ref. [37],
with the 7¢ point lying in their 120° phase.

Three more SU(2) points A, B, and C characterized by a
nonzero value of I'” are shown as projected onto the JKT°
plane. For the I > 0 case presented in Fig. 3(a), they are
of AF character; one of them appears for positive (point A)
and two for negative (points B and C) values of I'". The
point A (given by 7;) of hidden AF nature can possess FM
pattern as discussed in the previous paragraph. The region
between the true FM Heisenberg point and the point A in the
phase diagram obtained classically is therefore filled by the
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FM phase extending as I"" increases (see panels (c) and (e)
of Fig. 2 of Ref. [38]). However, the (hidden) nature of this
phase changes from FM to AF which should manifest itself,
e.g., on the character of the magnon dispersion. Similarly, the
presence of the points B (7174) and C (7;7¢) of zigzag and
“vortex” character, respectively, explains the enlarged region
of the corresponding phases in the classical phase diagram
for I < O (see panels (a) and (d) of Fig. 2 of Ref. [38]). We
also observe an intimate relation between the zigzag phase
emanating from the B (7;7;) point and that connected to the
zigzag SU(2) point of the original KH model (given by 7). Due
to the additional 77 rotation, their ordered moment directions
are related by  rotation about the global Z axis. This point
will be further discussed in Sec. V. Finally, similar conclusion
as for the I' > 0 case presented in Fig. 3(a) can be drawn
for the I' < 0 case shown in Fig. 3(b). The SU(2) points are
related by inversion with respect to the center of the circle and
the opposite FM/AF nature.

In summary, we have illustrated that the gross features of
the phase diagram of the extended, four-parameter KH model
can be deduced solely by inspecting the nature of the points
of hidden SU(2) symmetry and their location in the parameter
space.

C. Spin excitation spectra

We proceed further by inspecting the spin excitation spectra
at the SU(2) points associated with 74 and T transformations,
and see how they are related to those of the simple Heisenberg
model. To this end, the dual transformations have to be
expressed in Fourier space and relations between the Fourier
components S, of the dual partners have to be established.
The situation is somewhat complicated by the two-sublattice
structure of the honeycomb lattice, requiring us to introduce
an additional index [see the labels A and B in Fig. 1(a) for the
convention used below].

In both cases, it is convenient to use the cubic axes xyz. The
four-sublattice transformation has three characteristic vectors
Qup = (:Fn/\/g, —m/3) and Q. = (0,27/3) touching the
Brillouin zone boundary in the middle of its edges [see
Fig. 2(g)]. The rotation matrices have a simple diagonal form,
reflecting only the sign changes of the respective components

Rasp = diag (' QR L o QR (10K ©)

The six-sublattice transformation written in Fourier represen-
tation has a full matrix structure

Rass = £3U + Massy + M} 5v") (10)

with the factor y = %(eiQ"R + /@R | 0105y apd the ma-
trices

1 1 1 ¢ ¢
I = 1 1 s MA = c 1 * s
1 1 1 c* c 1
c 1 c*
Mg=|1 ¢ ], a1
c* c 1
where ¢ = e?/3, The characteristic vectors @, =

(—27/3+/3, £27/3) and Q3 = (47/3+/3,0) shown in
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Fig. 2(g) again touch the boundary of the Brillouin zone,
now in its corners. The dual transformation takes a general
form §',, = ZQ e'2RR 408 g (here for sublattice A) which
translates into

Siy =Y _ RaoSaq o (12)
0

i.e., the Fourier components get shifted by the characteristic
vectors. As a side result, the above relation gives the Bragg
spots derived from the Bragg spots of Heisenberg FM/AF
(8S4,g=0 = £8p 4—0 = 1) and presented in Fig. 2(h).

To study the spin excitations, we employ the spin suscepti-
bility tensor defined as

Xap(q. @) =i /O ([S¢).82 ,]) e’ ar. (13)

It is evaluated at the SU(2) points by first decomposing S, into
the A- and B-sublattice contributions via

S, = % V(28 e S, (14)
applying the dual transformation in the Fourier form of Eq. (12)
to get back to the underlying Heisenberg model, and using the
spin susceptibility for the Heisenberg model obtained within
linear-spin-wave (LSW) approximation. In the case of 74, this
brings simple ¢ shifts by Q,, Qp, and Q. for the individ-
ual components. For Tg, the corresponding expressions are
somewhat more involved containing a nonshifted contribution
and shifted contributions combining pairs of the characteristic
vectors @, @», and Q3. Without going into details, the
presence of both shifted and nonshifted parts can be easily
understood based on Eq. (10).

Presented in Fig. 4 are the traces of the spin susceptibility
tensor of the Heisenberg model and the extended KH model
at the two hidden SU(2) points under consideration. For
completeness, we demonstrate both hidden FM and AF cases
characterized by quadratic and linearly dispersing Goldstone
modes, respectively. The situation is more transparent for
the four-sublattice patterns—stripy (hidden FM) and zigzag
(hidden AF)—since the spin wave dispersions are just shifted
with the ¢ = M points replacing the Goldstone points I" and
I’ of the Heisenberg case. In our example, we have chosen
the z axis as the ordered moment direction. For the magnons,
which are in fact deviations of the ordered moment in x and y
directions, only Q, and @), shifts are active, selecting four out
of the six M points in total. The remaining two are the Bragg
spots reached from I" and I'” by Q.. shifts active for the ordered
z spin component. The Bragg spots and the Goldstone points
are thus complementary in this case. The spin excitations
associated with the six-sublattice patterns are significantly
more complicated. They contain both shifted Goldstone modes
[in Fig. 4(c) such a mode appears at ¢ = K point coinciding
with @3] and Goldstone modes at the characteristic momenta
q = I' and ¢ = I"" of the underlying Heisenberg model. In the
latter case just the intensity of the modes has been transferred
by the dual transformation, making, e.g., the linear Goldstone
mode at ¢ = I" the most intense one in the hidden AF case.

A similar analysis of the spin excitations as presented here
for 74 and T SU(2) points can be performed for the remaining
SU(2) points. Due to the nature of the relevant transformations,
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FIG. 4. (Color online) (a) LSW dispersion of the Heisenberg FM
(blue) and AF (red) on the honeycomb lattice. The width of the lines
indicates the trace of the spin susceptibility tensor, Za Koo (@, ),
calculated in the LSW approximation. (b) The same for the stripy and
zigzag state presented in Figs. 2(c) and 2(d). Energy is scaled by Jy
of the hidden Heisenberg magnet. (c) The same for the “vortex”-like
patterns presented in Figs. 2(e) and 2(f).

no other characteristic vectors appear. Therefore, ¢ = 1", ¢ =
IV and their counterparts shifted by the vectors Q. and
0,3 entering the transformations 74 and 7 constitute the
entire set of the wave vectors of the Goldstone modes that can
be observed within the extended KH model.

V. APPLICATION TO THE REAL MATERIALS

The aim of this work was to study the basic symmetry
properties of the extended KH model—a promising spin
Hamiltonian for the magnetism of honeycomb iridates. Below
we illustrate how this knowledge, taken together with the
experimental data, helps to locate the plausible windows in
otherwise very large parameter space even for this nearest-
neighbor (NN) model. We will show that, despite having only
a single result, the search for full self-dual transformations
JKDC < J'K'D'C’ of the extended KH model provides
us with a surprisingly useful tool in the context of Na,IrOs.
This utility of 7; emerges due to the recent observation of
the magnetic moment direction [46] which, as we see shortly,
imposes an important constraint on the model parameters. This
is because, in general, the data on magnetic easy axes in a
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crystal, along with the magnon gaps and torque magnetometry
data, provide direct information on the symmetry and strength
of the anisotropy terms in spin Hamiltonians, and the case of
Na,IrOj3 is of course not at all special in this sense.

To begin with, we recall that NayIrOs; shows so-called
zigzag order, where the spins on a and b bonds are parallel and
form ferromagnetic chains that run along the X direction and
couple antiferromagnetically along the Y axis. This relatively
simple collinear magnetic structure has been first explained
[28,30] as due to 2nd-NN J, and 3rd-NN J; Heisenberg
couplings (which are often relevant in compounds with
90°-bonding geometry; a well-known example is quasi-one-
dimensional cuprates). This model emphasizes a geometrical
frustration which is realized at large values of J, 3 and resolved
by the C3 symmetry breaking zigzag formation.

However, as argued in the Introduction, more recent data
[45,46] suggest that the origin of frustrations is largely
related to the non-Heisenberg-type interactions which are
bond-dependent and hence highly frustrated even on the level
of NN models. A minimal NN model of this sort is the KH
model, which has been shown [32] to host zigzag order in its
phase diagram indeed. We follow this way of reasoning and
explore below the extended version of the KH model as the
basic NN model for iridates. On the way, we will also see the
point where the data may require the presence of additional
terms J5 3 too, suggesting that the both “zigzag theories” above
are the part of a full story.

In Ref. [32], the available experimental data on Na,IrOj
have been fitted using the two-parameter KH model, regarding
it as a phenomenological spin Hamiltonian with arbitrary
parameters. For K = 21 meV and J = —4 meV, the model
was found consistent with experiments in terms of the type
of magnetic ordering, the temperature dependence of static
magnetic susceptibility, and the low-energy spin-excitation
spectrum being compared to powder INS. Later, RIXS experi-
ments [45,46] confirmed the presence of a high-energy branch
of spin excitations, with an even better agreement obtained if
the LSW calculation of Ref. [32] is replaced by a more suitable
exact diagonalization [65].

However, the recent data [46] on the moment direction
came about as an unexpected surprise, challenging at first
glance the above coherent description of Na,IrOs. The point is
that within the original two-parameter KH model, the zigzag
order is characterized by the spins pointing towards one of the
oxygen ions [see Fig. 1(a)]. This expectation is generic and
guaranteed by the “order-from-disorder” physics [66] which
typically selects one of the high-symmetry cubic axes as the
easy one, when a spin Hamiltonian contains the compass-
type or Kitaev-type bond-dependent anisotropy [11,16,40,67],
independently of parameter values. The resonant magnetic x-
ray diffraction data [46] show instead that the magnetic easy
axis is in fact far away from any of the Ir-O bond directions: it
is oriented “nowhere” slightly below a midpoint between the
two, x and y, oxygen ions in Figs. 1(a) and 5(a). This is a clear
indication of the significance of the D and C terms in the spin
Hamiltonian [68].

To reconcile all the data at hand using now the full
four-parameter model, we first notice that the above two easy
axis directions—the one observed in Na,IrO; and the one
expected from the KH model as used in Ref. [32]—are roughly
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FIG. 5. (a) Pseudospin angle « relative to the XY plane (see inset)
as a function of the parameterr = D /(K + C/ﬁ) =-T/(K+T).
Dashed lines show the “magic” angle oy =~ 35° and its complement
&y >~ 55°, determined by the z axis and xy plane, respectively,
as sketched in the inset. (b) The phase diagram as a function of
long-range couplings J, = J; and anisotropy parameter r. Starting
with the “bare,” T,-derived values of J/ = 5.3 meV, K = —7.0 meV,
D =-93meV, and C = —6.6 meV, we have scaled D and C
simultaneously to vary r. To stay within the zigzag phase at the smaller
values of r < 0.59, one needs to have finite J, 3 couplings. Otherwise,
the NN-only extended KH model with negative K < 0 switches to
the incommensurate and “stripy” [11,32,69] ground states. The inset
shows the exchange bonds J, and J5.

related to each other simply by a 7 rotation about the Z axis.
This observation gives an immediate hint of how to obtain a
starting parameter point when fitting the current data set for
Na,IrO; within the extended, four-parameter KH model in an
appealingly easy way, and resolve the above apparent problem
with the moment direction.

As discussed in Sec. IV B, the 7;-associated zigzag phase
of the KH model with K > O is related to the zigzag phase
connected to the SU(2) point B (7;7;) of Fig. 3(a) via 7Tj.
Remarkably, due to the nature of 7;—a global 7 rotation of the
magnetic moments about the Z axis—all the aforementioned
consistent results [32] of the two-parameter KH model are
fully preserved if we apply Eq. (3) to the parameters K
and J of Ref. [32] given above; the only change is the
spin easy axis being rotated to the proper direction as in
experiment. The corresponding set of parameters obtained via
B3)isJ =53meV,K =—-7.0meV,D = —-TI = —-9.3 meV,
C = /2I'" = —6.6 meV. We would like to emphasize that
these numbers should not be taken literally; rather, they fix the
signs of the parameters involved and put an upper limit for D
and C, as we explain below.

For the representative parameters given above, the pseu-
dospin makes a “magic” angle of oy >~ 35° from the XY plane,
as follows from 77 construction. This is slightly lower than
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observed [46,70]. Now, we inspect how the angle « varies as a
function of the anisotropy parameters. The result is illustrated
in Fig. 5(a) and shows that the exact value of o heavily
influences the “departure” from the KH model quantified
by the parameter r = D/(K + C/~/2) = —T'/(K +I"). [The
corresponding Egs. (B13), (B14), and (B16) for the spin
direction are derived in the Appendix B by minimizing the
classical energy]. The “magic” angle o = o appears at r =
0.8 — as obtained for the above parameters. Yet, as observed
in Fig. 5(a), by increasing « for example by 10° only, we
already find r ~ 0.3 and get closer to the |K| > | D| regime.
Therefore, more detailed measurements and fits of the ordered
spin direction are highly desirable to get the actual values of
the parameters D and C relative to the Kitaev term K. Doing
s0, it is crucial to take into account the fact that the pseudospin
direction and magnetic moment direction are not the same
in general; while they coincide in the cubic limit, a sizable
trigonal-field splitting might be present in Na,IrO; [45,59].
It is thus important to quantify this splitting by independent
measurements.

At this point, longer-range couplings J, 3 become a part
of the full spin model for iridates, for the following reason.
As a 7T partner of the zigzag phase of Ref. [32], the present
NN-model with large D is well in its zigzag ordered state.
But this is not so at smaller values of D (e.g., for » ~ 0.5),
which are required to get the spin angles « ~ 40° or above;
see Fig. 5(a). Incorporating moderate J, and J3 couplings into
the model, we can however stabilize the zigzag phase, see
Fig. 5(b), and hence obtain the ordered spin angles above the
“magic” one. The values of J,3 of the order of 1-2 meV
are indeed suggested by ab initio calculations [39]. This
shows again the key importance of the experimental data on
moment directions for quantifying the balance between the
two zigzag-supporting mechanisms discussed above: based on
J».3 geometrical frustration, and on frustration driven by the
non-Heisenberg nature of interactions in spin-orbit coupled
magnets. Recent observations [46] of a pronounced spin-space
anisotropy on one hand, and an “intermediate” spin direction
that requires finite J, 3 values on the other hand, suggest that
both mechanisms are at play in NayIrOs.

Altogether, the present analysis using the symmetry prop-
erties of the model, taking into account the recent data on
moment direction [46], as well as considering the role of the
J»3 couplings, suggests a plausible window in the parameter
space of an effective spin model for NayIrOz: Jr3 < J ~
|C| < |D| < |K|, with positive (AF) Heisenberg couplings
J»3 and J. The leading anisotropy terms K < 0 and D <0
are both negative, while a smaller term C may in principle take
any sign. This parameter window is globally consistent with
experimental observations on Na,IrO; we are aware of to date,
and may be used as a guide in future analysis, in particular
once g-resolved spin response becomes available, and the
ordered pseudospin and magnetic moment directions (they
differ in general) are obtained and confirmed by independent
measurements.

Even though this general result still leaves quite a freedom,
it is of great help by fixing the signs of most relevant couplings
and their hierarchy. This is the main outcome of the present
theory in the context of real materials. Further, we note that
the Kitaev coupling K can be deduced from overall magnetic
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energy scale, and the spin and magnetic moment directions
should determine the parameter » hence D. From a careful
analysis of the zigzag stability condition, magnon gaps and
dispersions, paramagnetic susceptibility data, etc., one should
be able to quantify all the model parameters including C, J,
and 12,3.

Considering this result in the context of microscopic theo-
ries, we notice first that the signsof / > Oand K < O above are
consistent with the original calculations of these parameters
for honeycomb iridates [9,11] as well as with the later studies
[36—40]. Next, we may conclude that a contribution from #,,-e,
hopping that favors pseudospin interaction with K > 0 [6] is
not significant in iridates; this is also consistent with the recent
calculations [36,73]. Further, the present symmetry analysis
resolves an apparent conflict with the theoretical K < 0[9,11]
and the positive K > 0 that follows from the best data fit using
the KH model [32]: in fact, the pure KH model with K > 0
and the extended one with K < 0 and sizable D,C terms are
T1-dual partners (the latter one being physical).

More surprisingly, a relatively large D (= —I') anisotropy
term is required to “turn” the moment direction well away
from the pure KH model position. A positive implication
of this observation is that this term makes it much easier to
stabilize the zigzag order (the pure KH model with large K < 0
would require large long-range J; 3 couplings otherwise). In a
view of the discussion in Sec. II, this suggests a presence
of sizable trigonal field effects in Na,IrO;. Eventually, an
unusual—out of any crystal symmetry axis—orientation of
pseudospins [46] should originate from a competition among
the several anisotropy terms K, D, and C of different symmetry
and physical origin.

To conclude our discussion of Na,IrOs: it seems that the
extended KH model, likely further “extended” by moderate
longer-range couplings, is indeed a good candidate model
for this compound. Even though these extensions (to be still
quantified by future experiments) reduce the chances for
“pure” Kitaev-model physics in iridates, the model itself is
highly interesting due to its rich internal structure and hidden
symmetries that we have uncovered in this work.

Motivated by the above, we further consider the case of
LiIrO;3. Since the data are limited here, the discussion will
be brief and suggestive only. Due to the smaller Curie-Weiss
temperature and more “ferromagnetic” behavior of its spin
susceptibility [74,75], this compound was located closer
to the SU(2) point of the KH model [32]. Even though
the parameters K = 15.8 meV and J = —5.3 meV given in
Ref. [32] correspond to the zigzag phase while Li,[rO3 shows
a spiral magnetic ordering [29], these parameters can be used to
get ahint of the direction in the parameter space to consider. We
therefore transform the above parameters using (3) to obtain
J=17meV,K =-53meV,D=-T=-70meV, C =
V2I'" = —5.0 meV. Representing the parameters for Na and
Li compounds obtained via the 7; transformation (3) in Fig. 3,
we see that both are close to the SU(2) point B (774), with Li
being closer, as expected. To approach the spiral state observed
in Li, IrO3, we first note that, in first approximation, K ~ D <
0 in both cases and that Li compound is characterized by a
much smaller J. For simplicity, we set J = 0 meV, assume
K = D = —10 meV to roughly preserve the overall energy
scale, and reduce the parameter C associated with the trigonal
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FIG. 6. (a) Map of the g-dependent classical energy (per site, in
units of meV) obtained by Luttinger-Tisza method [71,72] for the
“bare,” i.e., Ti-derived parameters J = 5.3 meV, K = —7.0 meV,
D = —-93 meV, C = —6.6 meV relevant for Na,IrO;. The hexagon
indicates the first Brillouin zone. (b) The same for the parameters
K =D=—-10meV, J =C =0 relevant to Li,IrO;. (c) Length
of the ordering vector for varying C, keeping the other parameter
values unchanged. The dashed (solid) line was calculated using the
above parameters J K D relevant to Na,IrO; (Li,IrOs). Points a and
b show the C values used in panels (a) and (b), respectively. (d) LSW
dispersions for the parameters used in panel (a) (left) and panel (b)
(right). In the latter case, we have taken C >~ —1.2 meV instead of
C =0 meV to stay in the zigzag phase at the border to the spiral
phase.

distortion, which is expected to be much smaller in LiyIrO3
with the bond angles being closer to 90°. The Luttinger-Tisza
[71,72] maps of the classical energy for the Na and Li case
presented in Figs. 6(a) and 6(b) confirm the zigzag and
incommensurate magnetic ordering, respectively. For C = 0
the incommensurate ordering wave vector is obtained as Q =~
% 0. [see Figs. 6(b) and 6(c)]; this would predict a magnetic
Bragg peak in powder neutron diffraction experiments at
a | Q| value that could be consistent with experiments on
powder LixIrO; [29]. Finally, Fig. 6(d) compares the spin
excitations obtained using the LSW approximation. In the case
of Na,IrOs3, the dispersion is identical to that presented in Fig. 3
of Ref. [32], possessing low- and high-energy branches. As the
parameter J is reduced, these two branches gradually merge,
leading to a steeper dispersion compared to Na,IrOs, which
might be consistent with powder inelastic neutron scattering
experiments on powder Li,IrO3 [29]. The predicted dispersion
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is illustrated in Fig. 6(d) for a point on the boundary between
the zigzag and the spiral phase. A further minor reduction
of C to enter the spiral phase and get the proper ordering
vector should not affect this result dramatically, apart from
the changes at low energies forming an “hour-glass” shape
characteristic of spiral magnets (see, e.g., Ref. [76]).

VI. CONCLUSIONS

To summarize, we have analyzed nontrivial symmetries
of the extended Kitaev-Heisenberg model on the honeycomb
lattice. As a main result, we have identified the complete set
of points in the parameter space where this bond-anisotropic
model can be transformed to a simple Heisenberg model and
is therefore characterized by hidden SU(2) symmetry. Such a
dual transformation can be performed using a particular choice
of sublattice rotations of the spins, specific for each of the
SU(2) points. The sublattice structure of the transformations
creates a number of ordering patterns which together with the
location of the hidden SU(2) points in the parameter space
give a good overview of the global phase diagram of the
model. In terms of the spin excitations, the hidden SU(2)
symmetry manifests itself by the presence of Goldstone modes
inherited from the SU(2) symmetric Heisenberg FM/AF on the
honeycomb lattice. Their characteristic vectors and even the
full spin excitation spectra are easily obtained by an explicit
transformation of the FM/AF case.

One of the special transformations linked to the hidden
SU(2) points reveals at the same time an exact duality between
the Kitaev and Kekulé-Kitaev models; this result should be
useful in theoretical studies of these and related models.

We emphasize that, adopting the extended KH model, all
the above results are necessary consequences of its symmetry
which is in turn dictated by the underlying C3 symmetry of the
lattice.

Having the results of the general symmetry analysis at
hand, we were able to find the region of the parameter
space that is consistent with the observed properties of the
honeycomb lattice iridates Na,IrO; and LiyIrOs. Further, a
relation between the ordered moment direction and the model
parameters is derived, which may help to quantify these
parameters from future experiments.

Finally, our method to systematically explore the hidden
symmetries is general and can be applied to other bond-
anisotropic models as well. In the context of the iridate
materials, the symmetry analysis of the extended KH model
on hyperhoneycomb and harmonic-honeycomb lattices is of a
great interest.
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APPENDIX A: XYZ FORM OF THE HAMILTONIAN

The Hamiltonian expressed in terms of the spin components
SX, 87, and SZ, corresponding to the XY Z reference frame in
Fig. 1(a), takes the form

Hipiy = Ixv (S5ST +8I'S)) + J287 87
+Ale, (SFSF=5SS]) — s, (S¥S]+S57)]
— BV2[c, (S*S7+S7S) + 5, (S S7+575))].
(A1)

Here the C3; symmetry of the model is embodied in the
factors ¢, = cos ¢, and s, = sin ¢, where the angles ¢, are
determined by the bond directions: ¢, = 0, 2?”, 47” for the ¢, a,
and b bonds, respectively. In terms of the original parameters
JKTT’, the exchange constants entering (A1) read as

A=1K+ 3T -1, (A2)
B=1K-4T-T), (A3)
Jxy=J+B-T, (Ad)
Jz=J+A+20" (AS5)

Note that it is the A and B terms which bring about the
bond directionality of the interactions, and hence they naturally
support C3 symmetry breaking orderings such as zigzag in the
present model. Physically, these terms arise from the exchange
processes that involve the in-plane components of orbital
momentum Ly and Ly which “know” the bond directions,
like the orbitals do in the Kugel-Khomskii models.

It is also noticed that the A and B terms change the
Z component of total angular momentum by +2 and =+1,
correspondingly. This is because the f,-orbital angular
momentum L is not a conserved quantity in a crystal, and this
commonly shows up in effective spin Hamiltonians due to the
spin-orbit coupling.

A strong trigonal field splits the #,, level such that the lowest
Kramers doublet (pseudospin) wave functions |1),]]) become
simple products of Lz = =£1 and spin || ), |1) states, corre-
spondingly; i.e., there will be a one-to-one correspondence
between the real spin and pseudospin directions. Since the
total spin is conserved during the hoppings, pseudospin is then
conserved, too. Thus, the spin-nonconserving terms A and B
must vanish in this limit, which implies K — O and I" — I/
simultaneously. Physically, a strong compression along the
trigonal axis dictates that this axis becomes the “easy” (or
“hard”) one for moments. Since this limit is not realized in
iridates, we will not use the XY Z form of the Hamiltonian
in this paper; however, it might be useful for pseudospin-1/2
Co™*, Rh*", and Ru** compounds where the spin-orbit and
crystal field effects may strongly compete.

APPENDIX B: ANALYSIS OF THE CLASSICAL ENERGY
AND MOMENT DIRECTION

In this Appendix we show the expressions used in the
classical energy analysis. We first give the Hamiltonian in
its momentum space form utilized within the Luttinger-Tisza
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method. By minimizing the classical energy in the zigzag phase
we then find the ordered moment direction.

Transforming the spin operators via Spg = Zq erRS A,
and similarly for the B sublattice, we cast the Hamiltonian
into the form

. S
M=) Wi HW, with qu,:(S;}Z), (B1)
q

where the ¢ vectors cover the first Brillouin zone of the
triangular lattice of R. The simplest expressions for the 6 x 6
matrices H, of the momentum-space Hamiltonian (B1) are
obtained using the cubic axes x, y, z. Complementing the
interactions in Eq. (2) by long-range J, and J3, we arrive at

F, G, 1 1 0 0
Hq = Nsite(GT F ) with Fq = 5]2 0 1 0 M2q
q q 0 0 1
(B2)
and
1 0 0
Gy =3(Jimg+Img[0 1 0
0 0 1
e 0 0 0 1 €
+3K[0 e Of4+4T(1 0 e
0 0 1 () (4] 0
0 e1t+e e +1
+%F/ e+ e 0 ex+1]1. (B3)
e+ 1 e+ 1 0
Here the momentum-dependent factors read as
€1y = e i 3EV30+3q) (B4)
Mg =1 +200$@67t%q", (B5)
N2g = COS «/§qx + 2cos ‘ﬁTq cos % (B6)
N3g = €39 4 2cos v/3¢,. (B7)

In the Luttinger-Tisza method [71,72], the matrices
Hy/2Nge for g running through the Brillouin zone are
diagonalized. The ¢ vector and the eigenvector corresponding
to the minimum eigenvalue then determine the ordering
resulting on a classical level and the minimum eigenvalue
itself gives the classical energy per site. This approach relaxes
the spin-length constraint which should be checked afterward.

Next, we evaluate the classical energy for the zigzag
state with the ordering vector Q = Q. = (0,27/3) and an
arbitrary ordered moment direction given by a unit vector
u. The corresponding zigzag pattern is captured by Vo =
(—l—%u, — %u)T. Using (B1), we get for the classical energy
per site

Ecas = §(J1 — K —2J, = 3J3) + gu’ Mu (BS)
with the matrix
2K -r+2r T
M=|-T+2I" 2K r (B9)
r r 0
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or equivalently

2K D++2C =D
D +4/2C 2K -D
-D -D 0

M = (B10)

The ordered moment direction can now be obtained as
the eigenvector of M corresponding to its lowest eigenvalue.
However, as will be clear in a moment, it is more convenient
to switch to the reference frame which coincides with the local
X, ¥, Z axes for ¢ bonds [see Fig. 1(b)]. The matrix M is then
transformed to

2K —D—+/2C 0 0
M = 0 2K+D+2C —/2D |,
0 2D 0

(B11)
which can be readily diagonalized and the angle o of the
ordered pseudospin to the XY plane can be found.

As discussed in the main text, if we rotate the spins by 180°
around the global Z axis, the observed moment would come
close to the 7 axis. Since the latter is an attractive point for
the two-parameter KH model [11], we guess that this rotation
will transform the actual J, K, D,C Hamiltonian (K < 0, large
D) for NayIrOj3 into an effective J/,K’,D’,C’ one, with K >
0 and small only D’ and C’ values, i.e., into a nearly two-
parameter KH model (which guarantees that the corresponding
effective easy axis is close to Z). We therefore first apply the
771 transformation via Eq. (3), calculate the moment direction
for effective J',K’,D’,C’, and later make use of the expected
smallness of the transformed D’. The first two steps yield an
analytical expression for the angle o:

272D’ E12)
2K'+ D'+ J2C’

with the first contribution being the “magic” angle oy =
arcsin(l/«/g) ~ 35.3° of the 7 axis to the XY plane and the
second contribution supposed to be small. Now, we return to
the original spin axes by applying the 7 transformation again.
This does not alter the angle « but rotates the moment into its
physical position: below a midpoint between two oxygen ions
[46]. In terms of the original parameters we have

1 4K — 5D +24/2C
o = ap + - arctan [ 2+/2 +2v2 . (B13)
2 14K + 23D + 7/2C

1
o= oy + 5 arctan (

For D = C =0, this equation gives the moment direction
towards a midpoint of two oxygens, as expected for negative
K values of the Kitaev coupling [46] on a classical level (but
it will turn to either the x or y oxygen direction once the
order-by-disorder mechanism is switched on [11,40]). The
moment moves down from this position once the model is
extended by D and C terms of a proper sign. At the parameter
set given in the main text, the moment takes the “magic” angle.
By expanding the arctangent near this point, we arrive at the
following formula for the deviation from o:

1 AV2 1—3r\ 2v21—-73r
Saziarctan ~

7 1+§r 7 1+§r

(B14)
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with the single parameter

D r

r = = — .
K+-Lc K+T/

V2

(B15)

This parameter quantifies the “departure” from the KH model
and can be measured by resonant x-ray [46] or neutron
diffraction experiments; as mentioned in the main text, care
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has to be taken in the fits by considering the crystal field effects
on pseudospin wave functions.
In terms of the parameter r, Eq. (B13) can be rewritten as

1+7r
Tr—2
Note that this and the previous equations for « hold at finite

J».3 Heisenberg corrections as well, since the easy axis is
determined solely by the anisotropy terms.

tan 20 = 4+/2

(B16)
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We study the ordered moment direction in the extended Kitaev-Heisenberg model relevant to honeycomb
lattice magnets with strong spin-orbit coupling. We utilize numerical diagonalization and analyze the exact
cluster ground states using a particular set of spin-coherent states, obtaining thereby quantum corrections to the
magnetic anisotropy beyond conventional perturbative methods. It is found that the quantum fluctuations strongly
modify the moment direction obtained at a classical level and are thus crucial for a precise quantification of the
interactions. The results show that the moment direction is a sensitive probe of the model parameters in real
materials. Focusing on the experimentally relevant zigzag phases of the model, we analyze the currently available
neutron-diffraction and resonant x-ray-diffraction data on Na,IrO; and RuCl; and discuss the parameter regimes

plausible in these Kitaev-Heisenberg model systems.
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I. INTRODUCTION

Due to their intermediate spatial extension, d electrons
in transition-metal compounds comprise both the localized
and itinerant features. This duality is manifested in a rich
variety of metal-insulator transitions [1,2]. Even deep in the
Mott-insulating phase, the d electrons partially retain their
kinetic energy, by making virtual hoppings to the neighboring
sites and forming the covalent bonds. The internal structure
of these bonds is dictated by the orbital shape of d electrons
as well as by Pauli principle and Hund’s interactions among
spins. This results in an intimate link between the nature of
chemical bonds (“orbital order””) and magnetism [3], which can
be cast in terms of phenomenological Goodenough-Kanamori
rules.

The Kugel-Khomskii models [4] form a theoretical frame-
work where the “spin physics” and “orbital chemistry” are
treated on equal footing. A special feature of these models is
that the d orbital is spatially anisotropic and hence cannot sat-
isfy all the bonds simultaneously. In high-symmetry crystals,
this results in a picture of fluctuating orbitals [5,6], where
the frustration among different covalent bonds is resolved
by virtue of their quantum superposition, lifting the orbital
degeneracy without a static order.

It might seem that a relativistic spin-orbit coupling, which
lifts the orbital degeneracy already on a single ion level [3,4],
will readily eliminate the orbital frustration problem. This
coupling does indeed greatly reduce the initially large spin-
orbital Hilbert space of d ions, leaving often just a twofold
degenerate Kramers level with an effective (“pseudo”) spin
one-half [7]. It turns out, however, that the pseudospins
still well “remember” the orbital frustration, by inheriting
the bond-directional nature of orbital interactions via the
spin-orbit entanglement [6].

The bond-directional nature of pseudospin interactions
has profound consequences for magnetism (as well as for
the properties of doped systems [8]). The most remarkable
example, pointed out in Ref. [9], is a possible realization of
Kitaev’s honeycomb model [10] in materials with the ds(tzg)
electronic configuration such as Na,IrO;. This theoretical
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proposal has sparked a broad interest in honeycomb lattice
pseudospin systems (see the recent review paper [11] and
references therein).

There is a direct experimental evidence [12] that the
Kitaev-type interactions are indeed dominant in NayIrOs;.
Unusual features pointing towards the Kitaev model have been
observed [13] also in spin excitation spectra of RuClj (this
compound was suggested [14] to host pseudospin physics,
too). On the other hand, it is also clear that there are terms in
the pseudospin Hamiltonian that take these systems away from
the Kitaev spin-liquid phase window [15]. The identification
of these “undesired” interactions and clarification of their
dependence on material parameters is an important issue that
has been in the focus of many recent studies.

Experimentally, the strength of a dominant Kitaev coupling
|K| can readily be evaluated from an overall bandwidth of
spin excitations; however, the determination of its sign and
quantification of the subdominant terms is not straightforward
and needs a theory support. The aim of this paper is to show
that the direction of the ordered moments, which can be
extracted from the neutron-diffraction and x-ray-diffraction
data, contains valuable information on the model parameters,
including the sign of K. Considering a symmetry dictated
form of the model Hamiltonian, we calculate the pseudospin
direction fully including quantum fluctuations which are
expected to be crucial in frustrated spin models. We will point
out that the pseudospin itself is not directly probed by neutrons;
rather, they detect the direction of the magnetic moment which
is not the same as that of the pseudospin. Similarly, we will
describe how to extract the pseudospin direction from resonant
x-ray-scattering (RXS) data.

The paper is organized as follows. Section II introduces
the model Hamiltonian. Section III briefly discusses the
pseudospin easy axis direction on a classical level. Section IV
introduces the method of deriving the moment direction from
exact diagonalization (ED) data. Section V presents the ED
results on moment direction as a function of model parameters.
Section VI considers a relation between the pseudospins and
magnetic moments probed by neutron-diffraction and RXS
experiments, and discusses implications of the theory for
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NayIrO; and RuCl;. Appendix A compares the method of
Sec. IV with the standard approach. Appendix B derives
the equations used in the analysis of RXS data. Finally,
Appendix C discusses how the trigonal field can be extracted
from J = 3/2 magnetic excitation spectra.

II. EXTENDED KITAEV-HEISENBERG MODEL

To describe the interactions among the pseudospins (re-
ferred to as “spins” below), we adopt a model containing
all symmetry allowed nearest-neighbor (NN) terms and the
longer-range Heisenberg interactions:

H= Z Hg)—i- Z JijSi - S;. (1)
(

ij)eNN (ij)¢NN

The nearest-neighbor contribution is the extended Kitaev-
Heisenberg model [16-18] that, apart from the Heisenberg
interaction, includes all the bond-anisotropic interactions
compatible with the symmetries of a trigonally distorted
honeycomb lattice. Its z-bond contribution (see Fig. 1 for the
definitions of the bonds and spin axes) takes the following
form:

M) =KS:Si+ 78-S, +T(SS] +5/8%)
+(SEST+ SEST 4+ 8UST 4+ 55SY). @

The Hamiltonian contributions for the other bonds (x and y)
are obtained by a cyclic permutation among S;,S,,S.. The
resulting alternation of the local easy axis directions from
bond to bond, imposed by the Ising-like term K, brings about
a strong frustration which, as discussed above, can be traced
back to the orbital frustration problem in Kugel-Khomskii type
models. An extensive discussion of the above Hamiltonian
and its nontrivial symmetry properties can be found in
Ref. [19].

With the Kitaev-coupling K alone, the model has a spin-
liquid ground state. Both Na,IrO; and RuCl; show spin order
where the zigzag-type ferromagnetic (FM) chains, running
along the a direction, are coupled to each other antiferromag-
netically [see Fig. 1(b)]. This order becomes a ground state of
the Kitaev model with K > 0 [antiferromagnetic (AF) sign],
when a small FM J < 0 Heisenberg coupling is added [20]. If
the Kitaev coupling is negative, K < 0 (FM sign), then zigzag
order emerges due to longer-range AF couplings [21,22] and/or
[, T terms [17-19]. Given that the stability of the Kitaev-liquid
phase against perturbations strongly depends on the sign of
K [20], which scenario is realized in a given compound
becomes an important issue.

Leaving aside the “orbital chemistry” aspects that decide
the sign of K as well as the other model parameters, we just
mention that various ab initio estimates (see, e.g., [16,23,24])
generally support the FM K < 0 regime, most likely reflecting
the decisive role of Hund’s coupling effect on K emphasized
earlier [9,15]. However, we take here a phenomenological
approach, considering the model with free parameter values
including both signs of K. The J, I', and I'’ values are varied
such that the ground state stays within the zigzag phase. Based
on a recent result [24] that third-NN Heisenberg coupling J3
is more significant than second-NN J, in both NaIrO3 and
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(b)

FM Kitaev

FIG. 1. (a) Top view of the honeycomb lattice of the edge-shared
IrOg octahedra in Na,IrOs. (b) Three types of bonds and zigzag-AF
state where x and y bonds connecting similar dots are FM, while the
z bonds are AF (top), and the orientation of the cubic axes x, y, z with
respect to the octahedra (bottom). (c) The possible directions of the
ordered moment in the above zigzag state. In the AF Kitaev case the
moment is tied to the cubic z axis and deviates from it only slightly
with nonzero I'. In the FM Kitaev case with I' = 0, it is constrained
to the xy plane classically, and pinned to a cubic x or y axis when
quantum fluctuations are included. Nonzero I' < 0 gradually pushes
the moment direction towards the b axis in the honeycomb plane,
while positive I drives it first towards the ac plane [which is reached
at I' & 0.05|K|, see Fig. 3(a)], and then rotates the moment within
the ac plane towards the a axis.

RuCl3, we replace J;; in Eq. (1) by J3, reducing thereby the
parameter space.

The magnetic anisotropy in the present model is a nontrivial
problem, since the leading term K is anisotropic by itself, and,
on top of this highly frustrated interaction, the other terms
which eventually drive a magnetic order in real compounds
have a strong impact on magnetic energy profile. As illustrated
in Fig. 1(c) and discussed in detail below, the ordered moment
direction is very sensitive to the model parameters, and it shows
a qualitatively different behavior in case of FM and AF Kitaev
couplings. We note that the “moment direction” in this figure
refers to that of pseudospin; Sec. VI explains how it is related
to the magnetic moments probed by neutron-diffraction and
x-ray-diffraction experiments.
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III. CLASSICAL MOMENT DIRECTION

Let us briefly mention the results of a classical analysis
(for details see Appendix B of Ref. [19]) assuming the zigzag
order with antiferromagnetic z bonds as shown in Fig. 1(b).
On this level, the moment direction is determined solely by
the anisotropy parameters K, I', and I'" and corresponds to the
eigenvector of the matrix

2K —I'42r" T
M=|-I+2r 2K r 3)
r r 0

that has the lowest eigenvalue. This minimizes the anisotropic
contribution in the classical energy per site of the zigzag
phase, Ecass = §(J — K —3J3) + gm” Mm, where m is a
unit vector. The dominant Kitaev interaction contributing by
the diagonal terms makes the main choice—it prefers either the
xy plane (FM K < 0) or the z axis (AF K > 0). The smaller
" and I'’ terms lead to a finer selection of the ordered moment
direction.

In the case of the zigzag order stabilized by AF K > 0 and
FM J < 0, the ordered moment direction is close to the z axis
being slightly tilted in the ac plane mainly by virtue of I" [see
Fig. 1(c)].

The FM K < 0 case, where the zigzag order is stabilized
by ' and J5 terms, is more complex. With I' = T'" = 0, the
entire xy plane is degenerate on a classical level. Further
selection depends on the sign of I — 2I'’, with the positive
and negative sign making the moment to jump into the ac
plane or the b axis in the honeycomb plane, respectively.
In the former case, an increasing I' further pushes the
moment closer to the honeycomb plane. As it has been found
earlier [15,25] and discussed below, the Kitaev term generates
an additional magnetic anisotropy due to quantum and/or
thermal fluctuations, pinning the moment direction to the cubic
axes. This will turn the above jumps into a gradual rotation
of the easy axis with changing I', along the path shown in
Fig. 1(c).

IV. EXTRACTION OF THE MOMENT DIRECTION FROM
A CLUSTER GROUND STATE

To determine the ground state of the Hamiltonian (1) and
obtain the moment direction as a function of model parameters
more rigorously than in the previous perturbative methods, we
have performed an exact diagonalization using a hexagon-
shaped 24-site supercell covering the honeycomb lattice. This
cluster is highly symmetric and compatible with all the hidden
symmetries of the model [19] so that no bias induced by the
cluster geometry is expected.

Since the cluster ground state does not spontaneously break
the symmetry and corresponds to a superposition of all possible
degenerate orderings, the identification of the ordered moment
direction is not straightforward. One possibility is to evaluate
the 3 x 3 correlation matrix (SZQSZ) (0,8 = x,y,7) at the
ordering vector @ and to take the direction of the eigenvector
corresponding to its largest eigenvalue. Because of specific
problems of this standard approach in the present context
(see Appendix A for details), we have developed here another
method that brings a more intuitive picture of the exact ground

PHYSICAL REVIEW B 94, 064435 (2016)

state by “measuring” the presence of the classical states with
a varying moment direction. As a basic building block, we
utilize the spin-% coherent state

10,0) = Ro(OR,(O)I1) = e *¥ e |1) “4)

that is fully polarized along the (6,¢) direction [26]. Here the
cubic axes are used as a convenient reference frame and 6 and
¢ are the conventional spherical angles. A spin-coherent state
on the cluster is constructed as a direct product

N
w) =[]16;.6, (5)
j=1

with the unit vectors m; = (cos ¢ sinf, sin¢ sin6, cos 0);
forming the desired pattern. In this fully polarized classical
state (\Ifle‘SfW) = %mf‘m]ﬂ and the energy (W|H|W) is thus
equal to the classical energy. We consider only collinear states
of FM, AF, and zigzag type. For example, a FM state with the
moment direction (6,¢) is explicitly expressed as

N
(W) =[] (e cos § 1), + e ¥sin§ [1);).  (6)
j=1
By varying 6 and ¢ and evaluating the overlap with the exact
cluster ground state |GS), we obtain the probability map
P(6,¢) = |{¥|GS)|%. The ordered moment direction is then
identified by locating the maxima of P(6,¢).

There is an intrinsic width of the peaks in P(6,¢) due
to the nonzero overlap of the spin-coherent states, namely,
(W[W)|? = cos?™(392), where Q is the angle between the
directions (0,¢) and (0’,¢’). This gives an approximate half
width at half maximum of /2/N (in terms of the angular dis-
tance from the maximum), evaluating to about 17° for N = 24.
Despite this sizable intrinsic width, the ordered moment
direction can be detected with a high accuracy (limited only
by the accuracy of the ground-state vector), as we see below.

V. MOMENT DIRECTION—EXACT DIAGONALIZATION
RESULTS

A. Testing the method: Nearly Heisenberg limit

Before discussing in detail the ordered moment direction in
the zigzag phases, relevant for actual compounds Na,IrO; and
RuCl3, let us demonstrate the above method by considering
the Kitaev-Heisenberg model close to the Heisenberg limit,
|J| > | K|, with both signs of J. In such a situation, the FM or
AF order is established by the dominant isotropic interaction,
while the anisotropic Kitaev interaction merely selects the easy
axis direction via an order-from-disorder mechanism [27].

We start with the FM case J < 0. Figure 2(a) is the
corresponding probability map obtained by the method of
Sec. IV for K/J = 0.2. The probability is clearly peaked at
the directions of the cubic axes attaining there the maximum
value Py, slightly less than %. This is due to the cluster ground
state being a superposition of six possible classical states and
a small contribution of quantum fluctuations. The width of the
peaks matches well the intrinsic width estimated in Sec. IV.

That the K term favors cubic axes for the ordered moment
follows also from simple analytical calculations. By treating
the quantum fluctuations within second-order perturbation
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FIG. 2. (a) Map of the probability of the spin-coherent state given
by Eq. (6) in the FM ground state of the KH model near the Heisenberg
limit. The radial coordinate gives the angle « to the honeycomb plane;
the polar angle ¢ matches that defined in Fig. 1(b). (b) Probability
map for the AF ground state obtained using small K and dominant
J > 0. Only the variation AP on top of Py = 2.923% is shown.
(c) Probability map for the zigzag phase of the KH model with K > 0,
J < 0 reveals a strong pinning to the z axis. The coherent state
corresponding to the zigzag pattern in Fig. 1(b) was used. Directions
lying in the xy plane are indicated by the dashed line. (d) Soft xy
plane for FM K < 0 zigzag stabilized by J;. Cubic axes x and y are
selected but the moment strongly fluctuates in the plane. (e,f) The

same as in panel (d) but extended by a sizable I' term forcing the
moment into the ac plane (left) or the b axis (right).
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expansion (see Ref. [28] for details), we obtain the magnetic
anisotropy energy

;ﬁzm(l—mi—m‘;—m;‘), (7)
depending on the moment direction given by a unit vector m =
(my,my,m;). This quantum correction on top of the isotropic
classical energy is minimized for m pointing along the cubic
axes x,y, and z that become the easy axes, consistent with the
ED result.

The case of the AF J > 0 is rather different due to the
presence of large quantum fluctuations already in the Heisen-
berg limit. This is manifested in an almost flat probability
profile with P of about 3% [see Fig. 2(b)]. Nevertheless, the
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probability maxima again precisely locate the x,y, and z
directions for the ordered moments, consistent with the “order-
from-disorder” calculations [15,25,28-30] in the models con-
taining compass- or Kitaev-type bond-directional anisotropy.

B. Moment direction in the zigzag phases

Having verified the method, we now move to the zigzag
phases observed in Na,IrO; and RuCl;. We first inspect the
case of I,V = 0 when the anisotropy is due to the Kitaev
term alone. Shown in Fig. 2(c) is the probability map for AF
K > 0and FM J < 0, where the 7 axis is selected already on
the classical level as discussed in Sec. III [31]. The probability
is indeed strongly peaked at the direction of the z axis. The
small P.x of about 3% is again a signature of large quantum
fluctuations in the ground state. Note that this number contains
an overall reduction factor of % due to the six possible zigzag
states being superposed in the cluster ground state.

The probability map Fig. 2(d) for the FM K < 0 zigzag
case reveals the moment being constrained to the vicinity
of the xy plane, as expected from classical considerations.
Within this plane, the order-from-disorder mechanism selects
the cubic axes x and y where the probability reaches its
maxima. Concluding the survey of the probability maps, we
show P calculated including a large enough I" that leads to the
selection of a direction within the ac plane [I" > 0, Fig. 2(e)]
or the b axis [[" < 0, Fig. 2(f)].

The above three examples for the FM K zigzag indicate
a rather complex behavior of the moments in this case, as
already suggested in Fig. 1(c). In the following, we therefore
focus on the full I' dependence presented in Fig. 3(a) in the
form of the angles a(I") (the angle to the honeycomb plane)
and ¢(I") (polar angle of the projection into the honeycomb
plane). Instead of the jump in «(I") obtained on a classical
level, we find a finite window || < 0.05|K| of an order-
from-disorder stabilized phase, where the moment direction
gradually moves from the cubic axis (I" = 0) to either the b
axis (I' < 0) or the ac plane (I' > 0). Once the critical value
of I' is reached, the moment either stays along the b axis or
is pushed down within the ac plane closer to the honeycomb
plane. Figure 3(b) illustrates the evolution of «(I") for different
values of J3 stabilizing the zigzag order. For small J3, the
dominant directional Kitaev term makes the moment more
pinned to the cubic axes, which is manifested by a significantly
reduced slope of «(I") near I' = 0 compared to the large-J3
case. On the other hand, the critical values of I are only slightly
affected by J3.

The above crossover behavior near I' = 0 may be eas-
ily understood and even semiquantitatively reproduced by
considering a competition of the classical energy and the
order-from-disorder potential as follows. Keeping the moment
m = (cos ¢, sin ¢,0) within the xy plane preferred by K < 0,
we can evaluate the classical energy per site:

Eclass = %(K -3hL+J)- %(F — 2F,) sin2¢>. (8)

In this contribution, the anisotropy is due to the I" and T
terms only. E .5 is complemented by an order-from-disorder
potential Equ(¢) that should contain four equivalent minima
atp =0, %n 7, %n corresponding to the cubic axes (supported
by the K term). Such a potential can be represented by the
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FIG. 3. (a) I'-dependent angles «, ¢ specifying the moment
direction reveal three regimes for FM K zigzag supported by small
Js;. The values K = —1 and J = J; = 0.2 were used. At ' =0,
the angles give the direction towards an oxygen ion. A crossover in
the interval |I"| < 0.05 corresponds to the path shown in Fig. 1(c).
(b) Left panel shows the angle o for K = —1, J = 0.2 and several
J3 values manifesting a stronger pinning to the cubic axis at smaller
J3. The same data are presented as «(¢) in the right panel together
with «(¢) corresponding to the xy plane (dashed). The black dot
indicates the cubic axis direction. (c) The angle « for larger values
of I' > 0 compared to the classical result of Ref. [19] (dotted). The
blue solid curve is a continuation of that of panel (a), red and green
curves are calculated using different J; values used in panel (b), and
the blue dashed curve denotes a larger J value. (d) The angle «
for the parameters K = —1, J = J; = 0.2, and several I/ values.
(e) I'-dependent « in the AF K = +1 case with J = —0.2 and
several J3 values compared to the classical result of Ref. [19] (dotted).
The endpoints of the curves are determined by a sharp drop of the
probability of the classical zigzag state indicating a phase boundary.
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following form:
Equee = V sin* 2¢, )

approximating Ejq..(¢) by its lowest harmonic. This function
is characterized by a single unknown parameter—the barrier
height V, determined mainly by the dominant K. Assuming
" = 0, the minimization of the total energy FE jss + Efuct
gives ¢p(I') = % arcsin % and the critical value 'y = 16V.
This enables us to extract effective V from our numerical data.
By taking D' = 0.05]K| observed in Figs. 3(a) and 3(b)
we get V ~ 0.003|K|. Furthermore, converting ¢ in the xy
plane to the angle « to the honeycomb plane, we obtain

“phenomenological” «(I") = arcsin,/ %(l + %) that roughly
approximates the numerical «(I") data. The agreement between
these two «(I") profiles improves with increasing J3, when the
order-from-disorder potential becomes more harmonic and the
deviation of the moment direction from the xy plane for I > 0
reduces [see Fig. 3(b)]. In fact, Egs. (8) and (9), together with
the value of V =~ 0.003|K| extracted from the ED data, may
be used for a semiquantitative determination of the easy axis
direction within the xy plane.

For curiosity, we have evaluated the potential barrier V
also analytically, by two slightly different methods. First, as
in Sec. V A, we estimated quantum corrections for the zigzag
phase along the lines of Ref. [28]. This reproduced the above
form (9) of the anisotropy potential, and provided a consistent
estimate of V & 0.005|K|. An alternative evaluation of the
anisotropy potential within the linear spin-wave framework
resulted in zero-point energy of the same form as Eq. (9)
again, but with an overestimated value of V ~ 0.014|K|.

In Na,IrO5; the moment direction was found [12] in the ac
plane suggesting that I' > I'( for this material. We thus focus
on this particular case and investigate how the precise value of
« is affected by the model parameters in more detail. Already
on a classical level, finite I' > O rotates the moment within
the ac plane from o &~ 54.7° (corresponding to the xy plane)
toward the honeycomb plane (o = 0). Such an effect is well
visible also in Figs. 3(a) and 3(b). Presented in Fig. 3(c) are
a few representative «(I") curves for larger values of I" up to
| K| that serve as a test of the classical prediction

1+r . r
with r = —
Tr—2 K+1

derived in Ref. [19]. As we find, the quantum fluctuations
included in the exact ground state push the ordered moments
much closer to the honeycomb plane. The difference is
substantial and needs to be considered when trying to quantify
the model parameters based on the experimental data.

So far, we have considered I'" = 0 only, while a small
negative I'” is expected to be generated by a trigonal compres-
sion [18,19,32]. Based on Eq. (8), I'’ is expected to effectively
shift the value of I" in the first approximation. Indeed, as shown
in Fig. 3(d), the rough three-phase picture as in Fig. 3(a) is
preserved and the negative I'” shifts the «(T") curve in the
negative direction. This enables « to reach higher values, even
above the xy-plane angle 54.7°.

Finally, in Fig. 3(e) we briefly analyze the AF K situation
with the moment near the z axis. In contrast to the FM K case,
small " has a relatively little effect here, because the z axis

tan 20 = 4+/2 (10)
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is classically selected by the dominant K > 0 itself. Quantum
fluctuations are found to generate an even stronger pinning to
the z axis, compared to the classical solution of Ref. [19]. Only
a very large I coupling is able to take the spin away from the
Z axis.

VI. COMPARISON TO EXPERIMENT

A. Extracting pseudospin direction from resonant x-ray and
neutron-scattering data

Having quantified the pseudospin easy axis direction as
a function of the Hamiltonian parameters, we consider now
how this “pseudomoment” direction is related to that of
real magnetic moments measured by neutron-scattering and
x-ray scattering experiments. To this end, we first define the
pseudospin one-half wave functions including crystal field of
trigonal symmetry. The latter splits the #,, manifold into an

orbital singlet a;, = \/%(xy + yz + zx) and the ¢, doublet

{ﬁ(yz + zx —2xy); %(zx — yz)}. Denoting this splitting
by A and using the hole representation, we have

H = A 3[2n(aiy) — n(e,)]. (11)

Within a point-charge model, positive (negative) A would
correspond to a compression (elongation) of octahedra along
the trigonal ¢ axis. The actual value of A in real material is
decided by various factors, but this issue is not relevant in the
present context.

In terms of the effective angular momentum / = 1 of the #,,
shell, the ay, state corresponds to the /. = 0 state, while the e;,
doublet hosts the [, = =1 states, using the quantization axis ¢
suggested by the trigonal crystal field. Explicitly,

1
V3
1 X :
|£1) = i%(eﬂ”’ﬁlyZ) +em P zx) + lxy). (13)

0) = —=(lyz) + [zx) + |xy)), (12)

Viathese /. states, pseudospin—% wave functions are defined
as

[+1) = +sin 9 0,1) — cos ? |+1,), (14)

—1)=—sin® [0,) + cos ¥ |—1,1), (15)

where 1 and |, refer to the projections of the hole spin on the
trigonal ¢ axis. The spin-orbit “mixing” angle 0 < ¥ < 7 /2
is given by tan 29 = 2+/2/(1 4 8), where § = 2A /A.

Using the wave functions (14) and (15), we may express the
spin s and orbital / moments of a hole via the pseudospin S. In
a cubic limit, i.e., A = 0, one has s = —%S,l = %S, and total
magnetic moment M = (2s —I) = —2S (note a negative g
factor g = —2). These relations imply that the pseudospin easy
axis direction is identical to that of spin, orbital, and magnetic
moments when the trigonal field is zero. However, this is
no longer valid at finite A. For instance, strong compression
(¢ = 0) would completely suppress the ab-plane components
of magnetic moments, so the pseudospin and magnetic
moment will not be parallel anymore (unless pseudospin is
ordered along the ¢ axis).

PHYSICAL REVIEW B 94, 064435 (2016)

The x rays and neutrons couple initially to the spin and
orbital moments, and the scattering operator has to be projected
onto the pseudospin basis. We first consider an effective RXS
operator. For pseudospin one-half in a trigonal field, it has to
have a form R o ifap(PySq + PpSp) +if.P.S., where P =
& x &' and e (¢') is the polarization of the incoming (outgoing)
photon. This can be written as R oiP - N, introducing a
vector N = (.84, f5Sp, fcSc) with f, = f, = fup. The RXS
data determine a direction of this auxiliary vector N; in
Na,IrOs3, it was found to make an angle ay &~ 44.3° to the ab
plane [12]. However, this is not yet the pseudospin direction,
since f,, # f. and hence ag # oy, unless the trigonal field
is exactly zero (unlikely in real materials). To access the
pseudospin angle oy and quantify the model parameters, one
has to know the “RXS factors” f,, and f,.

We have derived the f factors (see Appendix B for details).
For the L3 edge, they read as

1 5 1
Jar = 3 + 6_\/§sw — g o (16)
P ! a7)
= oy — —— Sa.
3 20 W;; 29

Here, 525 = 2+/2/r,c29 = (1 +8)/r,andr = /8 + (1 + 8).
Figure 4(a) shows the f factors as a function of trigonal field
parameter §. In the cubic limit, one has f,;, = f. and hence N
is parallel to S, as expected.

For completeness, we show also the f factors for the L,
edge:

fab =2fc = =3+ L cop + V252, (18)

which vanish at the § = 0 limit, as a consequence of the spin-
orbit entangled nature of pseudospins [33].

In neutron-diffraction experiments, the magnetic moment
M = (2,5.,8»Sp,8S¢) 1s probed. For the pseudospins as de-
fined above, the g factors are (neglecting covalency effects [7])

Sar = —(1 + V2525 — c29), (19)

8 = —(1+3cp). (20)

The g-factor anisotropy can quantify the strength of the trigo-
nal field, as illustrated in Fig. 4(b). Again, magnetic moment
direction is in general different from that of pseudospin, and
to access the latter one needs to know the g factors.

These considerations imply that the orientations of the
(x-ray) N vector and magnetic moment M differ from each
other, and also from that of pseudospin S which enters the
model Hamiltonian. As we show in Fig. 4(c), their relative
angles come in the order oy > ay > ag for positive A, and
in reversed order oy > oy > oy for negative A. Ideally,
having measured both N and M directions in the same
compound, one could extract the crystal-field parameter §
using the above equations, and uniquely fix the pseudospin
easy axis angle ag. In principle, the g-factor anisotropy
provides the same information on §, but obtaining g factors in
magnetically concentrated systems is a somewhat nontrivial
task. Alternatively, one could extract the value and sign of A
directly from the splitting and anisotropy of the high-energy
J = 3/2 quartetin single crystals (see Appendix C for details).
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FIG. 4. (a)Factors f entering the relation between the pseudospin
S and L3 RXS vector N presented as functions of the trigonal field.
(b) g factors as functions of the trigonal field. Intervals of § consis-
tent with the g factors suggested by the experimental data on RuCl;
[34,35] and Na,IrO; [36,37] are indicated by shading. (c) Directions
of the S, N, and M vectors for sample values of the trigonal field
parameter § and a fixed pseudospin angle oy = 38°. The case with
the negative § = —1 could be relevant for RuCl;, while positive
§ = +0.75 with the reverse order of the vectors M, N, and S for
Na,IrO;. (d),(e) Angles ag, ay, and ay, of the vectors S, N, and M
to the honeycomb plane as functions of § keeping fixed oy = 44.3°
(d) or apy = 35° (e). The shaded § intervals are the same as in
panel (b).

B. Implications for Na,IrO; and RuCl;

Armed with the above relations between different moments,
and using the results of Sec. VB, let us now analyze the
available experimental data on Na,IrO3 and RuCls.

Starting with the case of Na,IrOs3, we utilize the value
oy ~ 44.3° determined recently by RXS [12]. Keeping this

PHYSICAL REVIEW B 94, 064435 (2016)

experimental constraint, in Fig. 4(d) we plot the remaining
angles oy, and ag as functions of the relative strength of the
trigonal crystal field §. In Ref. [19], the value A /A &~ 3/8 was
deduced based on the splitting Agc & 0.1 eV of the J = 3/2
quartet [37]. As seen in Fig. 4(b), the corresponding é§ =~ 0.75
is also roughly consistent with the anisotropy of the g factors,
gc/8ap ~ 1.4, obtained by fitting the temperature-dependent
magnetic susceptibilities x. > x.» [36]. The data in Fig. 4(d)
then suggest that the magnetic moment takes an angle
of about ay =~ 50° to the honeycomb plane, while the
pseudospin angle «g is roughly 38-40°. Such a deviation
of the pseudospin from the xy plane (o =~ 54.7°) implies a
sizable I" value. Based on Fig. 3(c) we may naively expect
the I'/| K | ratio in the range 0.3-0.5. We emphasize, however,
that this conclusion relies on the above estimate of the trigonal
field, that should be verified by measuring the “magnetic”
angle « directly by neutron scattering.

Compared to NayIrO;, RuCl; shows an opposite
magnetic anisotropy behavior with x. < x.» [34]. The
magnetic structure has been recently investigated by neutron
scattering [38], with the result oy, ~ 35° and ¢ being equal
to either O or 180°. Similarly to Fig. 4(d), in Fig. 4(e) we
keep the measured angle, now «y,, fixed at its experimental
value, and plot og and «p for varying 6 = 2A/A. This
parameter could be obtained from the anisotropy of J = 3/2
transitions in single crystals (see Appendix C). We are not
aware of such a direct measurement in RuCls, so the trigonal
field is best assessed by considering the anisotropy of the g
factors. References [34,35] reported in-plane and out-of-plane
magnetization curves measured for high fields up to 60 T.
Even though the saturation was not reached, the data indicate
the value g./g.» =~ 0.4-0.5. A similar ratio was also found by
Yadav et al. [39] using quantum chemistry methods and by
fitting the high-field data of Ref. [35]. The corresponding &
puts the pseudospin angle «g at relatively high values of about
as 2 50° [see Fig. 4(e)]. Adopting this estimate, we will try
to identify a consistent parameter window.

Unfortunately, the present neutron experiment [38] could
not directly resolve the orientation of the moments with respect
to the a axis, i.e., whether ¢ = 0 or 180°. The absence of this
most conclusive evidence for the sign of the Kitaev interaction
requires us to consider both possibilities.

We assume first FM K < 0 as obtained in two recent ab ini-
tio calculations of the exchange interactions in RuCl; [24,39].
Figure 3(c) gives a hint that the estimated os = 50° can be
reached for small I' only. As seen in Fig. 3(d), by including
small negative IV that shifts the crossover towards negative
I', the pseudospin direction may rotate even far above the
xy plane. Interestingly, the corresponding parameter regime
J ~—I ~ —I'"~0.2|K| matches well the prediction by
quantum chemistry calculations [39].

Now we analyze the AF K > 0 case, proposed for RuCl; in
Refs. [13,38,40]. In this case, the zigzag order is obtained on
the level of the two-parameter Kitaev-Heisenberg model [20]
alone, and this simplicity makes the AF K scenario particularly
attractive. In the zigzag phase of the two-parameter model, the
pseudospins point along the cubic z axis leading to oy ~ 35°.
This can be reconciled with the experimental value oy, ~ 35°
only in a nearly cubic situation with a small trigonal distortion.
Considering, however, the large anisotropy of the g factors
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discussed above and the resulting ag = 50°, it seems that
the AF Kitaev interaction needs to be supplemented by other
anisotropic interactions lifting the pseudospin considerably
up. This scenario is addressed in Fig. 3(e). We have found
that I'” does not influence s much so that we focus on the I’
dependence. Since the AF K zigzag phase becomes fragile if
the other anisotropy terms are included, the model has to be
additionally extended by J3. Based on the data of Fig. 3(e),
we may conclude that large negative I' comparable to K is
needed to obtain ag = 50°. It should be carefully checked if
such a substantially extended model is still consistent with
other experimental data, in particular with the spin excitation
spectrum with only small gaps [13].

We would like to stress again that our analysis of RuClj; for
both K < 0 and K > 0 heavily relied on the relative trigonal
field strength A /A inferred solely from the magnetization
anisotropy in high magnetic fields. It is thus highly desirable
to measure the complementary angle oy by RXS and quantify
A /A more precisely, as suggested in the previous subsection.
As discussed in Appendix C, measuring the anisotropy of
J = 3/2 states by inelastic neutron scattering in single crystals
would be also very helpful.

To summarize this section, in NayIrOs;, the measured
moment direction [12] with ¢ = 0° well fixes the FM sign
of the Kitaev interaction, and our analysis of its angle from the
ab plane suggests that I' ~ 0.3 — 0.5| K| coupling is present.
Concerning RuCl3, the current ambiguity in the angle ¢ (0
or 180°) leaves open the issue of the sign of K. There is
also an uncertainty in the trigonal field value A; based so
far on the g-factor anisotropy, we found that FM K < 0 with
relatively small " and I'" values would be consistent with
the data, while the AF K > 0 situation requires large I' < 0
couplings comparable to K.

VII. CONCLUSIONS

We have investigated the ordered moment direction in the
zigzag phases of the extended Kitaev-Heisenberg model for
honeycomb lattice magnets. Our method analyzes the exact
cluster ground states using a particular set of spin coherent
states and as such fully accounts for the quantum fluctuations.
The interplay among the various anisotropic interactions leads
to a complex behavior of the ordered moment direction as a
function of the model parameters. We have found substantial
corrections to the results of a classical analysis that are
important when quantifying the exchange interactions based
on the experimental data.

We have pointed out that, away from the ideal cubic
situation, the notion of the “ordered moment direction” has
to be precisely specified. Assuming a trigonal field relevant to
the layered honeycomb systems, we have derived relations
among the directions of (i) the pseudospins entering the
model Hamiltonian, (ii) the magnetic moments measured by
neutron diffraction, and (iii) the moment direction as probed
by resonant magnetic x-ray scattering. These relations and a
combination of neutron and x-ray data should enable a reliable
quantification of the trigonal field as well as the pseudospin
direction in future experiments.

PHYSICAL REVIEW B 94, 064435 (2016)

Using the above results, we have analyzed the currently
available experimental data on NayIrO; and RuCl; and
identified plausible parameter regimes in these compounds.
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APPENDIX A: COMPARISON OF NUMERICAL METHODS

As mentioned in the main text, the standard method to
obtain the ordered moment direction using the ED ground state
is to evaluate the spin-spin correlation matrix (S 0 S’;) (0,8 =
x,y,z) at the ordering vector @ and to find its eigenvector
corresponding to the largest eigenvalue. However, there are
two main problems associated with this simple method, both
emerging since the cluster ground state is a linear superposition
of degenerate orderings where the individual orderings have
equal weights.

(i) If there are several equivalent easy axis directions
associated with the selected ordering vector Q, they will be
characterized by the same eigenvalue. This leads to a degener-
ate eigenspace and prevents us from resolving such directions.
The most severe cases are those with a dominant Heisenberg
interaction presented in Figs. 2(a) and 2(b). Here we have three
degenerate easy axes x, y, and z which makes the correlation
matrix proportional to a unit matrix and thus isotropic. In the
FM K < 0 zigzag situation shown in Fig. 2(d) and the entire
middle phase in Fig. 3(a), two degenerate moment directions
for a particular zigzag pattern (selected by Q) are possible and
the correlation matrix therefore just uncovers the softness of
the xy plane. Only after these two directions merge for a large
enough |I"|, the moment direction can be identified.

(ii) The zigzag pattern to be probed is selected by choosing
the ordering vector Q. In contrast to an infinite lattice, at a
finite cluster this separation of the three zigzag directions is
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50° |
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20°

----- classical
— ED & overlaps
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FIG. 5. Comparison of the angle o of the pseudospin direction
to the ab plane obtained using various methods. The parameters
K = —1 and J = J; = 0.2 were used. The blue curve is identical to
the one shown in Figs. 3(a)-3(d).
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not perfect. The range of spin correlations is limited by the
size of the cluster and the corresponding momentum space
peaks become broad. The correlation matrix at given @ is thus
“polluted” by small contributions of the two other zigzags
in the ground state, that are associated with the remaining
ordering vectors.

Our method introduced in Sec. IV does not suffer from
the above problems and is able to handle all the situations
encountered. This is due to the full resolution of the various
degenerate orderings present in the cluster ground state by
using a prescribed ordering pattern and by a construction of a
full directional map.

If applicable, the standard method gives results very similar
to our method. We demonstrate this in Fig. 5 that compares
the two methods for the parameters K = —1, J = J3 =0.2
and varying I" used in Fig. 3. The slight deviations observed
for I' > 0 can be interpreted as a manifestation of the second
problem discussed above.

APPENDIX B: DERIVATION OF THE L-EDGE
RXS OPERATOR

Resonant x-ray scattering is conceptually similar to the
Raman light scattering, in a sense that both processes involve
the intermediate states created and subsequently eliminated
by incoming and outgoing photons. However, the nature
of the intermediate states in these two cases is radically
different: while the Raman light scattering involves intersite
d-d transitions, the x rays create the high-energy on-site
p-d transitions. As a result, the Raman light scattering
probes intersite (two-magnon) spin flips, while the presence
of a strong spin-orbit coupled 2p-core hole in the RXS
intermediate states makes single-ion spin flips a dominant
magnetic scattering channel (see the recent review [41] and
references therein for details).

A complex time dynamics of the intermediate states makes
the x-ray-scattering process hard to analyze microscopically.
However, as far as one is concerned with the low-energy
excitations in Mott insulators, the problem of the intermediate
states can be disentangled and cast in the form of frequency-
independent phenomenological constants [42—44]. This results
is an effective RXS operator formulated in terms of low-energy
(orbital, spin, etc.) degrees of freedom alone. The form of this
operator is dictated by symmetry. In essence, this approach is
similar to that of Fleury and Loudon [45] widely used in the
theories of Raman light scattering in quantum magnets.

While the RXS operator used in the main text follows from
an underlying trigonal symmetry, the ratio between f,;, and
fe constants requires specific calculations. This can be easily
done, with some routine modifications of the previous work
for the case of tetragonal symmetry [46,47], as outlined below.

In cubic axes x,y, and z (see Fig. 1), a dipolar 2p to 5d
transition operator reads as

D =g T, +8yTy+8ZTZs (B1)

where ¢, , . are the polarization factors, and Ty = dgx p: +
diypy, Ty =dlyp, +di.p., T. = dl.p, +di, p,. Here and
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below, it is implied that d and p operators carry also the spin
quantum numbers (4, | ) over which summation is taken.

In the quantization axes a,b, and ¢, suggested by the
trigonal crystal field, this operator takes the following form:

1

P=7

(eaTa + Ty +ecT0), (B2)

where
T, = (d} +2d' )pi + @] —d' )po+ @d] —d)p_..
iTy = (—dj +2d" )pi + (d] +d')po — 24} +d})p_1.
T. = 2Qd\py—d{pi —d', p_y). (B3)

Here, the indices 0 and %1 stand for the /. orbital quantum
numbers of d and p electrons.

Within the above Fleury-Loudon-like approach to the x-
ray-scattering problem, the effective RXS operator is given by
D(¢")D(e), and its part responsible for the magnetic scattering
reads as R o i(e x &) - (TT x T).

Next, the core-hole operators p in Eq. (B3) are expressed
in terms of spin-orbit split j = 1/2 and 3/2 eigenstates of the
2 p level, resulting in two sets of T operators active in L, and
L3 edges, correspondingly. After “integrating out” these 2p1
and 2ps operators, the product (T T x T) becomes a simple
quadratic form of d operators. Finally, projecting this form
onto a pseudospin doublet [given by Egs. (14) and (15) of the
main text], we arrive at the RXS operator R o i far(PuSy +
P,Sy) +if.P.S., with the f factors shown in the main text.
Via the pseudospin wave functions, the RXS f factors are
sensitive to a trigonal field strength.

APPENDIX C: DETERMINATION OF THE TRIGONAL
FIELD FROM J= 3/2 MAGNETIC EXCITATION SPECTRA

Under spin-orbit coupling A and trigonal crystal field A, #5,-
hole states split into three levels A, B, and C [see Fig. 6(a)]. The
A level hosts a Kramers pseudospin one-half (corresponding
to J = 1/2 in the cubic limit), with the wave functions

|A4) = +sin? [0,1) —cos ¥ [+1,]), (ChH
|A_) = —sin®d |0,]) +cos ¥ |—1,1), (C2)

as were given by Eqgs. (14) and (15) of the main text. The upper
Kramers doublets B and C are derived from the spin-orbit
J = 3/2 quartet. The former correspond to pure J. = +3/2
states of J = 3/2 moment:
|By) = |[+1.1). (€3)
|B-) =|=1.1), (C4

while the C level wave functions are given by
C4) = cos 9 [0,4) +sind [+1,), (C5)
|C_) =cos¥10,])+ sind |—1,1), (C6)

corresponding to J. = £1/2 states of the J =3/2 quar-
tet in the cubic limit, and containing some admixture of

064435-9



132

JIRi CHALOUPKA AND GINIYAT KHALIULLIN

(a) T T T T T
1.0 J=3/2 quartet
0.5
<
< 00
2
2 .05
()
-1.0
45 [ J=1/2 doublet |
1 1 1 1 1
(b) T T T T T
P ~~ |(C)
2.0 g ~L_C T

intensity

(c) 16 r T T T T T ]
15 C B B » (¢} i
214 -
=~ 13 1.0 1.5 2.0 2.5A 1.0 1.5 2.0 251 7
L2t
11 I /
1.0 ' :
-3 -2 -1 0 1 2 3

6=2A/M\

FIG. 6. (a) Level structure of a ds(tzg) ion upon trigonal field
splitting characterized by § = 2A /A (hole picture). (b) Intensities
of the magnetic transitions A — B and A — C for the ab-plane
and c-axis components of the dynamical spin structure factor as
given by Egs. (C11) and (C13). (c) Ratio of the powder-averaged
intensities. The insets show the broadened (HWHM = i)\) peak
structure assuming § = —1 (left) and 6 = +1 (right), respectively.

the original J = 1/2 doublet at finite A. The energies of
these states are E4 ¢ /A = }1[:}: 8+ (1+8)2r—11+ 11—28 and
Eg/h =15 —1s.

Transitions from the ground-state A level to B and C states
are magnetically active; their spectral weights in the dynamical
spin structure factor are determined by matrix elements of

PHYSICAL REVIEW B 94, 064435 (2016)
the magnetic moment M = 2s — [:
! (Bx|MplAL) U+ L 1%
- = cos — sin ¥,
7 DMyl A NG
1 1 (C7)
+(ClMalAs) = = (CxIMy|As) = S (520 + V2e29) . (CB)

F(BLIM,|Ax) =

Out-of-plane moment M, matrix elements between A and B
vanish (independent of the spin-orbit mixing angle ¢), while

(CIMc|As) = 3529 (€9)
In the magnetic excitation spectra, a transition A — B gives a
peak at the energy

A
Egp —Ej = Z[
with the following intensities for different components of the
dynamical spin structure factor:

8+ (1 +8)2+3 -4, (C10)

1
13+ a9 +22s ab plane
Iy — a( 2 w) (abp ). 1)
0 (c axis)
The second transition A — C is peaked at the energy
A
Ec—Es= 5\/8+(1+8)2 (C12)
and has the intensity
3520 +v/2c29)* (b plane)
Ic = . (C13)
253, (c axis)
The B and C peaks are separated by Apgc/A =

}1[ 8 + (1 + 8)* — 3 + §]; at small trigonal splitting A < A,
this can be approximated as Ag¢c ~ %A. At positive (negative)
A, the B peak position is lower (higher) than that of the C peak
[see Fig. 6(a)].

Figure 6(b) shows that the intensities of both transitions
are highly anisotropic with respect to ab-plane and c-axis
polarizations, with the opposite behavior of B and C contri-
butions. The out-of-plane response is due to the C transition
exclusively, while the B peak dominates the ab-plane intensity.
This should enable one to distinguish them and determine
thereby both the sign and value of trigonal field parameter &
from single-crystal spin-polarized neutron-scattering data.

On the other hand, the powder averaged intensities of B
and C peaks are nearly the same for realistic values of § [see
Fig. 6(c)]. Even at |§| =1, the two peaks may overlap to
give a single broad line, leaving an ambiguity in the sign of
parameter §.
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We explore the phase diagram of the Kitaev-Heisenberg model with nearest neighbor interactions on the
honeycomb lattice using the exact diagonalization of finite systems combined with the cluster mean field
approximation, and supplemented by the insights from analytic approaches: the linear spin-wave and second-order
perturbation theories. This study confirms that by varying the balance between the Heisenberg and Kitaev term,
frustrated exchange interactions stabilize in this model either one of four phases with magnetic long range order:
Néel phase, ferromagnetic phase, and two other phases with coexisting antiferromagnetic and ferromagnetic
bonds, zigzag and stripy phase, or one of two distinct spin-liquid phases. Out of these latter disordered phases,
the one with ferromagnetic Kitaev interactions has a substantially broader range of stability as the neighboring
competing ordered phases, ferromagnetic and stripy, have very weak quantum fluctuations. Focusing on the
quantum spin-liquid phases, we study spatial spin correlations and dynamic spin structure factor of the model
by the exact diagonalization technique, and discuss the evolution of gapped low-energy spin response across the
quantum phase transitions between the disordered spin liquid and phases with long range magnetic order.

DOI: 10.1103/PhysRevB.95.024426

I. INTRODUCTION

Frustration in magnetic systems occurs by competing
exchange interactions and leads frequently to disordered spin-
liquid states [1-3]. Recent progress in understanding transition
metal oxides with orbital degrees of freedom demonstrated
many unusual properties of systems with active t,, degrees of
freedom—they are characterized by anisotropic hopping [4-8]
which generates Ising-like orbital interactions [9—17], similar
to the orbital superexchange in e, systems [18,19]. Particularly
challenging are 4d and 5d transition metal oxides, where the
interplay between strong electron correlations and spin-orbit
interaction leads to several novel phases [20,21]. In iridates
the spin-orbit interaction is so strong that spins and orbital
operators combine to new S = 1/2 pseudospins at each site
[22], and interactions between these pseudospins decide about
the magnetic order in the ground state.

The A;IrO3; (A = Na, Li) family of honeycomb iridates
has attracted a lot of attention as these compounds have 1,
orbital degree of freedom and lie close to the exactly solvable
S = 1/2 Kitaev model [23]. This model has a number of
remarkable features, including the absence of any symmetry
breaking in its quantum Kitaev spin-liquid (KSL) ground
state, with gapless Majorana fermions [23] and extremely
short-ranged spin correlations confined to nearest neighbors
[24]. We emphasize that below we call a KSL also disordered
spin-liquid states which arise near the Kitaev points in presence
of perturbing Heisenberg interactions o J.

By analyzing possible couplings between the Kramers
doublets it was proposed that the microscopic model
adequate to describe the honeycomb iridates includes Kitaev
interactions accompanied by Heisenberg exchange in the
form of the Kitaev-Heisenberg (KH) model [25]. Soon after

2469-9950/2017/95(2)/024426(11)
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the experimental evidence was presented that several features
of the observed zigzag order are indeed captured by the
KH model [26-34]. Its parameters for A;IrOs; compounds
are still under debate at present [35,36]. One finds also
a rather unique crossover from the quasiparticle states
to a non-Fermi-liquid behavior by varying the frustrated
interactions [37]. Unfortunately, however, it was recently
realized that this model is not sufficient to explain the observed
direction of magnetic moments in Na,IrOs, and its extension
is indeed necessary to describe the magnetic order in real
materials [38,39]. For example, bond-anisotropic interactions
associated with the trigonal distortions have to play a role to
explain the differences between Na,IrOs and Li, IrO3 [40], the
two compounds with quite different behavior reminiscent of
the unsolved problem of NaNiO, and LiNiO; in spin-orbital
physics [19]. On the other hand, the KH model might be
applicable in another honeycomb magnet «-RuCls, see, e.g.,
a recent study of its spin excitation spectrum [41].
Understanding the consequences of frustrated Heisenberg
interactions on the honeycomb lattice is very challenging and
has stimulated several studies [42—45]. The KH model itself is
highly nontrivial and poses an even more interesting problem
in the theory [25,34,46,47]: The Kitaev term alone has intrinsic
frustration due to directional Ising-like interactions between
the spin components selected by the bond direction [23]. In
addition, these interactions are disturbed by nearest neighbor
Heisenberg exchange which triggers long-range order (LRO)
sufficiently far from the Kitaev points [25,34,46,47]. In
general, ferromagnetic (FM) and antiferromagnetic (AF) inter-
actions coexist and the phase diagram of the KH model is quite
rich as shown in several previous studies [25,34,46—49]. Fi-
nally, the KH model has also a very interesting phase diagram
on the triangular lattice [S0-53]. These studies motivate better

©2017 American Physical Society
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understanding of quantum effects in the KH model on the hon-
eycomb lattice in the full range of its competing interactions.

The first purpose of this paper is to revisit the phase diagram
of the KH model and to investigate it further by comparing the
exact diagonalization (ED) result [34] with the self-consistent
cluster mean field theory (CMFT), supplemented by the
insights from the linear spin-wave theory (LSWT) and the
second-order perturbation theory (SOPT). The main advantage
of CMFT is that it goes beyond a single site mean field classical
theory and gives not only the symmetry-broken states with
LRO, but partly includes quantum fluctuations as well, namely
the ones within the considered clusters [43,54,55]. In this way
the treatment is more balanced and may allow for disordered
states in cases when frustration of interactions dominates.

We present below a complete CMFT treatment of the phase
diagram which includes also the Kitaev term in MF part of the
Hamiltonian and covers the entire parameter space (in contrast
to the earlier prototype version of CMFT calculation on a single
hexagon for the KH model [56]). Note that the CMFT comple-
ments the ED which is unable to get symmetry breaking for a
finite system, but nevertheless can be employed to investigate
the phase transitions in the present KH model by evaluating
the second derivative of the ground state energy to identify
phase transitions by its characteristic maxima [25,34]. The
ED result can be also used to recognize the type of magnetic
order by transforming to reciprocal space and computing spin-
structure factor. The second purpose is to investigate further the
difference between quantum KSL regions around both Kitaev
points mentioned in Ref. [34] and LRO/KSL boundaries.

The paper is organized as follows: In Sec. II we introduce
the KH model and define its parameters. In Sec. III we
present three methods of choice: (i) the exact diagonalization
in Sec. III A, (ii) the self-consistent CMFT in Sec. III B, and
(iii) linear spin wave theory in Sec. III D. An efficient method
of solving the self-consistence problem obtained within the
CMFT is introduced in Sec. III C. The numerical results are
presented and discussed in Sec. IV: (i) the phase transitions
and the phase diagram are introduced in Sec. IV A, and
(i) the phase boundaries, the values of the ground state ener-
gies, and the magnetic moments obtained by different methods
are presented and discussed in Secs. IVB and IVC, and
(iii) we discuss the impact of the Kitaev interaction on different
spin ordered states in Sec. IV C. Spin correlations obtained
for various phases are presented in Sec. V. The dynamical
spin susceptibility and spin structure factor are introduced and
analyzed for different phases in Sec. VI. Finally, in Sec. VII
we present the main conclusions and short summary. The
paper is supplemented with the Appendix where we explain
the advantages of the linearization procedure implemented on
the CMFT on the example of a single hexagon.

II. KITAEV-HEISENBERG MODEL

We start from the KH Hamiltonian with nearest neighbor
interactions on the honeycomb lattice in a form,

HEKZSg/S}/‘FJZSi‘Sj’

@y (ij)

2.1

where y = x,y,z labels the bond direction. The Kitaev term
o K favors local bond correlations of the spin component

PHYSICAL REVIEW B 95, 024426 (2017)

interacting on the particular bond. The superexchange J is
of Heisenberg form and alone would generate a LRO state,
antiferromagnetic or ferromagnetic, depending on whether
J > 0orJ < 0. We fix the overall energy scale,

JP+K*=1, (2.2)
and choose angular parametrization:
K =sing, J =cosg, (2.3)

varying ¢ within the interval ¢ € [0,27]. This parametrization
exhausts all the possibilities for nearest neighbor interactions
in the KH model.

While zigzag AF order was observed in Na,IrO3 [28-32],
its microscopic explanation has been under debate for a
long time. The ab initio studies [35,57] give motivation
to investigate a broad regime of parameters K and J, see
Egs. (2.3). Further motivation comes from the honeycomb
magnet ¢-RuCl; [41]. Note that we do not intend to identify the
parameter sets representative for each individual experimental
system, but shall concentrate instead on the phase diagram of
the model Eq. (2.1) with nearest neighbor interactions only.

III. CALCULATION METHODS

A. Exact diagonalization

We perform Lanczos diagonalization for an N = 24-site
cluster with periodic boundary conditions (PBC). This cluster
respects all the symmetries of the model, including hidden
ones. Among the accessible clusters it is expected to have the
minimal finite-size effects.

B. Cluster mean field theory

A method which combines ED with an explicit breaking
of Hamiltonian’s symmetries is the so-called self-consistent
CMFT. It has been applied to several models with frustrated
interactions, including the Kugel-Khomskii model [54,55].
The method was also extensively used by Albuquerque et al.
[43] as one of the means to establish the full phase diagram of
the Heisenberg-J,-J3 model on the honeycomb lattice.

Within CMFT the internal bonds of the cluster [connecting
the circles in Fig. 1(a)] are treated exactly. The corresponding
part Hpy of the Hamiltonian is the nearest neighbor KH
Hamiltonian, Eq. (2.1). The external bonds that connect the
boundary sites (o) with the corresponding boundary sites of
periodic copies of the cluster ((J) are described by the MF part
of the Hamiltonian,

Hyrp =K ) (S5)S:+ 7 ) (S7)s5,

lij1lz [ij]

(3.1

where [ij] marks the external bonds. Since the ordered
moments in the KH model align always along one of the cubic
axes x, y, z (see, e.g., Ref. [25]), we have put

(Si)- S = (87)s3 (3.2)

in Hyr to simplify the calculations.
The averages (S;) generate effective magnetic fields acting
on the boundary sites of the cluster. The total Hamiltonian

‘H = Hix + Hur (3.3)
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FIG. 1. (a) 24-site cluster and the introduction of the mean fields.
Gray (black) circles indicate internal (boundary) sites. In CMFT the
internal bonds of the cluster are treated exactly while the external
bonds crossing the cluster boundary (dashed) are treated on the MF
level. The sites marked by [] generate effective magnetic fields on
the boundary sites e. Labels x, y, and z stand for three inequivalent
bond directions determining the active products S S}' in the Kitaev
part of the Hamiltonian (2.1), e.g., bonds of x direction contribute
with the S7 S} product to the Hamiltonian, etc. The pseudospin axes
used here are parallel to the cubic axes indicated in the top view of a
single octahedron. (b) Unit cells: for honeycomb lattice (coinciding
with a single hexagon of that lattice), for triangular lattice (inner
dotted hexagon), and zigzag magnetic unit cell (dashed rectangle).
Black and white circles stand for up/down spin and indicate one of
three equivalent zigzag patterns. (c) Corresponding Brillouin zones
and special ¢ points for the lattice constant a = 1. The ¢ vectors
compatible with the 24-site cluster in (a) are also shown.

is diagonalized in a self-consistent manner, taking a slightly
different approach than the one presented in Ref. [43]: Instead
of starting with a random wave function our algorithm begins
with expectation values (S} )i, on each boundary site i of the
cluster. These can represent a certain pattern (zigzag, stripy,
Néel, FM) or be set randomly to have a “neutral” starting
point. After diagonalizing the Hamiltonian (3.3) (again by
the ED Lanczos method) the ground state of the system is
obtained and we recalculate the expectation values (S}) to be
used in the second iteration. The procedure is repeated until
self-consistency is reached.

C. Linearized cluster mean field theory

A single iteration of the self-consistent MF calculation may
be viewed as a nonlinear mapping of the set of initial averages

PHYSICAL REVIEW B 95, 024426 (2017)
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FIG. 2. (a) The values of A obtained by the linearization of CMFT
for an embedded cluster of N = 24 sites with fixed magnetic order
patterns: FM, AF, stripy, and zigzag. Leading A > 1 indicates the
order that sets in. The disordered KSL phases near ¢ = /2 and
37 /2 are indicated by red. (b) Second derivative of the ground state
energy, —d?Ey(¢)/d¢?, obtained by ED. Adopted from Ref. [34].

{(S7)in} to the resulting averages {(S;)an}. The self-consistent
solution is then a stable stationary point of such a mapping.
To find the leading instability, we may consider the case of
small initial averages in the CMFT calculation and identify
the pattern characterized by the fastest growth during the
iterations. To this end we linearize the above mapping.

In the lowest order the mapping corresponds to the
multiplication of the vector of the averages {(S})in} by the
matrix,

34

where i and j run through the cluster boundary sites.
During iterations, the patterns corresponding to the individual
eigenvectors of the matrix F grow as A" after n iterations for
a particular eigenvalue A. The ordering pattern obtained by
CMEFT is then given by the eigenvector with largest Ay, > 1.
In the quantum KSL regimes, all the eigenvalues are less than
1 and no magnetic order emerges. An example of linearized
CMEFT applied to a single hexagon with PBC can be found in
the Appendix.

A modified version of this method, used to obtain Fig. 2(a),
assumes a particular ordered pattern (Néel, zigzag, FM, or
stripy phase) and uses a single spin average (S°);, distributed
along the boundary sites outside the cluster, with the signs
consistent with this pattern. The resulting values, (S} )gn, are
then averaged correspondingly. In this case the matrix F is
reduced to a single value A plotted in Fig. 2(a). We observe that
the largest eigenvalue either drops below 1 when the disordered

024426-3



138

DOROTA GOTFRYD et al.

KSL state takes over, or interchanges with another eigenvalue
at a quantum phase transition to a different ordered phase.

D. Linear spin-wave theory

The LSWT is a basic tool to determine spin excitations and
quantum corrections in systems with LRO [58]. For systems
with coexisting AF and FM bonds quantum corrections are
smaller than for the Néel phase on the same lattice but are
still substantial for § = 1/2 spins [59]. For the KH model the
LSWT [25,29,34] has to be implemented separately for each of
the four ordered ground states: Néel (N), zigzag (ZZ), FM, or
stripy (ST). Then for a particular ground state the Hamiltonian
is rewritten in terms of the Holstein-Primakoff bosons [29,60]
and only quadratic terms in bosonic operators are kept. The
spectrum of such a quadratic Hamiltonian is finally obtained
using the successive Fourier and Bogoliubov transformations.

While the spin wave dispersion relations are usually of
prime interest [25,29,34,60], there are also two other quantities
which can easily be calculated using LSWT and which will
be important in the discussion that follows: (i) the value of the
total ordered moment (M) per site, and (ii) the total energy
per site (E). These observables are calculated in a standard
way [58,59] and expressed in terms of the eigenvalues, i.e.,
spin-wave energies wgy, and the eigenvector components
{vkas} of the bosonic Hamiltonian before the Bogoliubov
transformation:

1
(M) =8— — / Uk | d°K, (3.5)
Lv a,A:ZI,:...,L keBZ ’

and

(E) =E4 [S? = S(S+ 1]

(3.6)

.....

where the choice of the sign of the eigenvalues and the
normalization of their eigenvectors is described in Ref. [58].
Here E is the classical ground state energy per site, e.g.,

Eq=—Jz8%/2, (3.7)

with z = 3 for the Néel phase at K =0 and S = 1/2 is the
value of spin quantum number. L in Egs. (3.5)-(3.6) is the
number of the eigenvalues of the problem (spin-wave modes)
and o enumerates these modes. For all cases except for the
zigzag order [25], the integrals go over the two-sublattice
(L =2) rectangular Brillouin zone (BZ) [61] with its volume
V =87%/3/3 and —7/v3 <k, < /3, —27m/3 <k, <
2m/3 (as already mentioned we assume the lattice constant
a = 1). For the zigzag state L = 4 and the rectangular BZ can
be chosen as: —n/\/g <k, < n/\/g and —m/3 <k, <7/3
and its volume is V = 472/3./3.

IV. QUANTUM PHASE TRANSITIONS
A. Phase diagram

Here we supplement the ED-based phase diagram for the
KH model Eq. (2.1) established in Ref. [34] with the one
obtained within CMFT. Figure 3 displays the phase boundaries
obtained with ED [34], within CMFT, as well as classical
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FIG. 3. T = 0 phase diagram for KH model. The outer ring is
composed from ED data for the 24-site cluster, reproducing the
result from Ref. [34] in the new parametrization, the middle ring
shows CMFT results also for 24-site cluster and the inner black circle
represents the classical result. The convention used for the angular
parameter ¢ which determines coupling constants [see Eqgs. (2.3)] is
shown in the center of the inner circle. The colors represent particular
phases, shown also as mini drawings next to suitable regions of the
phase diagram. Starting from ¢ = 0 green colored region corresponds
to Néel order, red—KSL, yellow—zigzag order, dark blue—FM,
red—KSL, light blue—stripy phase, and again green—N¢éel phase.

(Luttinger-Tisza) phase boundaries. The latter are included
for completeness and to highlight the fact that the quantum
fluctuations stabilize the KSL phases beyond single points,
see below. To examine them in more detail it is instructive to
analyze the data in Fig. 2(a) for the boundaries obtained from
linearized CMFT and Fig. 2(b) for the peaks in the second
derivative of energy, —d? Eo(¢)/dg?, giving phase boundaries
in ED [34].

Itis clearly visible that all the methods that include quantum
fluctuations give quantum versions of the four classically
established magnetic phases: Néel, zigzag, FM, and stripy.
As the most important effect we note that when quantum
fluctuations are included within a classical phase, the energy
is generally lowered and that the emerging phase is expected
to expand beyond the classical boundaries, but only in cases
when a phase which competes with it has weaker quantum
fluctuations. This implies that phases of AF nature will expand
at the expense of the FM ones as the latter phases have lower
energy gains by quantum fluctuations (which even vanish
exactly for the FM order at K = 0 and J < 0).

We summarize the phase boundaries obtained within
different methods in Table I. One finds substantial corrections
to the quantum phase transitions which follow from quantum
fluctuations. These corrections are quite substantial in both
KSLs at the Kitaev points (K = +1, ¢ = %n and K = —1,
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TABLE 1. Phase boundaries for the KH model, parameterized
by the angle ¢ (in units of 7), see Eqs. (2.3). Columns: classical
Luttinger-Tisza approximation, second-order perturbation theory
(SOPT), exact diagonalization (ED), and self-consistent cluster mean
field theory (CMFT).

Boundary Classical SOPT ED CMFT
Néel/KSL 0.5 0.492 0.494 0.496
KSL/zigzag 0.5 0.507 0.506 0.505
zigzag/FM 0.75 0.813 0.814 0.825
FM/KSL 1.5 1.463 1.448 1.478
KSL/stripy 1.5 1.530 1.539 1.519
stripy/Néel 1.75 1.705 1.704 1.699

= %JT, first column of Table I). Indeed, in the classical
approach massively degenerate ground states exist just at
isolated points, but they are replaced by disordered spin-liquid
states that extend to finite intervals of ¢ when quantum
fluctuations are included, see the second, third, and fourth
column in Table I. The expansion of Néel and zigzag phases
beyond classical boundaries is given by particularly large
corrections and is well visible.

The most prominent feature in the phase diagram described
above is however the difference in size between two KSL
regions, already addressed before using ED [34] and also
visible now in the CMFT data. Therefore, the CMFT result
supports the claim from Ref. [34] that the stability of KSL
perturbed by relatively small Heisenberg interaction depends
on the nature of the phases surrounding the spin liquid
and the amount of quantum fluctuations that they carry. In
the following we discuss the above issues more thoroughly,
examining: (i) ground state energy curves emerging from ED,
CMFT, SOPT within the linked cluster expansion and LSWT,
(ii) the ordered moment given by various methods, (iii) the
spin-spin correlation functions, and (iv) the spin structure
factor as well as the dynamical spin susceptibility in the
vicinity of the Kitaev points.

B. Quantum corrections: Energetics

We start the discussion of quantum corrections to the energy
of the ordered phases by noting that, even though it properly
captures finite order parameters, the CMFT looses quantum
energy on the external bonds and would therefore not provide
a reliable estimate of the ground-state energy. However, if
one calculates instead the energy based on the correlations on
the bonds of the central hexagon, the estimate is significantly
improved. Here we choose the energy obtained using the ED
calculations [see Fig. 4(a)] as a reference value because of
all the bonds treated in an exact manner. This observation
is also supported by the fact that the ED phase boundaries
were roughly confirmed by tensor networks (iPEPS) [49]
and density matrix renormalization group (DMRG) results
[48]: The iPEPS phase boundaries agree with ED for AF
KSL/LRO transitions and the boundaries between different
LRO phases differ only slightly from those found in ED
(iPEPS: zigzag/FM—0.8087, stripy/Néel—1.7087). For FM
KSL/LRO transition however the iPEPS result deviates more,
i.e., KSL/stripy—1.5287. On the other hand, DMRG bound-
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FIG. 4. (a) Comparison between ground state energies per site
obtained using various methods: classical Luttinger-Tisza approxi-
mation (dashed black), SOPT (solid red), LSWT (dashed red), ED
for 24-site cluster (solid blue, see Ref. [34] for this result in a different
parametrization), and CMFT (energy given by the central hexagon,
solid green). (b) Ordered moment obtained from CMFT (solid green
line for the central hexagon, dashed green line for the value for
intermediate and boundary sites) and LSWT (dashed red line).

aries agree perfectly with ED and due to four-sublattice dual
transformation [10,25] one can reproduce the FM/zigzag as
well as FM/KSL boundaries. Only the extent of the AF
spin-liquid phase cannot be extracted from this result, but that
is already confirmed by iPEPS.

Figure 4(a) shows a quite remarkable agreement between
the energy values and critical values of ¢ obtained by the
simplest SOPT [25] and our reference ED results. This
suggests that this analytical method can be utilized to get better
insight to the quantum contributions to the ground state energy.
For a phase X with LRO, the energy per site £x, written as a
sum of the classical energy E. and the quantum fluctuation
contribution A E, is obtained as:

1 1
Ex = =5 (K +3J) = (K +3J), 4.1)
E12 = —<(K = I) = —(K = J), 42)
8 16
PR YRV UL SN PR
8 16 K +2J
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Est 5 TR

44
In addition, to get the LRO/KSL phase boundary points in
Table I, we estimate the energy of the KSL phase as

EksL =~ 3(K + J)(S” S )Kitaev» 4.5)

using the analytical result for the Kitaev points [24],
(SY 87 )Kitaev & £0.131.

The two spin-liquid phases in the phase diagram of the
KH model differ strongly in their extent, despite the formal
equivalence of the FM (K = —1) and AF (K = 1) Kitaev
points provided by an exact mapping of the Kitaev Hamiltonian
[23]. As mentioned earlier, this is due to the fact that the
two KSLs compete with LRO phases of a distinct nature.
Here we give a simple interpretation based on the strength
of the quantum corrections of the LRO phases estimated using
Egs. (4.1)—(4.4). Later, in Secs. V and VI we illustrate the
different nature of the transitions between FM and AF KSL
and the surrounding it LRO phases in terms of spin correlations
and spin dynamics.

Let us now compare the quantum fluctuation contribution
and the classical one. For the LRO phases surrounding the AF
spin liquid—Néel and zigzag—we always have AE/E = %
as deduced from Egs. (4.1) and (4.2), i.e., only %51\1 and %&z
are found in the classical approach. This guarantees that the
quantum phase transition between these two types of order
occurs at the same value of ¢ = /2 in SOPT and in the
classical approach that do not capture the spin-liquid phase
in between these ordered states, see Fig. 4(a). In contrast, the
phases neighboring to the FM spin liquid—FM and stripy—
would reach the value of AE/E., = % only at the FM Kitaev
point with J = 0 and away from this point the contribution
of quantum fluctuations decreases rapidly allowing for a large
extent of the FM spin-liquid phase. Note that both these latter
phases contain a point which is exactly fluctuation free—for
the FM phase when frustration is absent (K = 0), and for the
stripy phase it is related to the FM one by the interaction
transformation [39] at K = —2J.

Moving to the CMFT energy analysis one should also keep
in mind that within the CMFT method the external bonds
between (S7) and S J do not include quantum fluctuations fully.
This implies a worse estimate of the energy (of the whole
cluster) for regions of the phase space that allow quantum
fluctuations. As a consequence the region of stability of FM
spin-liquid phase is smaller than that obtained in the ED.
Significantly better energy estimate is given by the central
hexagon, for which all the bonds experience exact interactions.
As a result, this CMFT energy curve [green line in Fig. 4(a)]
lies almost as close to ED energy as the SOPT one. Finally, the
estimates obtained from LSWT, which represents a harmonic
approximation to the quantum fluctuations, are not as good as
those from central hexagon via CMFT and SOPT, see dashed
red lines in Fig. 4(a). As expected, the energy obtained from the
LSWT agrees well with ED curve for phases with less quantum
fluctuations, FM and stripy phase, and starts to diverge when
these phases are unstable beyond quantum phase transitions
within Néel and zigzag phases.
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C. Quantum corrections: Ordered moment

As usual, getting the correct value of the ordered moment
turns out to be a more difficult task than estimating the
ground state energy. This is primarily due to the fact that
the ED does not capture the symmetry-broken states and the
ordered moment can only be indirectly extracted from the
m?; moreover, the SOPT may not be reliable here. Hence,
we are mostly left with the results obtained with CMFT
and LSWT. We discuss the corresponding data [shown in
Fig. 4(b)] together with the several values given already in the
literature.

Let us begin with the Heisenberg AF point ¢ = 0: Here
it is expected that the ordered moment should be strongly
reduced by quantum fluctuations. LSWT estimates the ordered
moment value at 0.248 [61]. Similar values were extracted
from m? in quantum Monte Carlo (0.268 [62—64]) and ED
(0.270 [43]) calculations. In the last case however the authors
admit that the set of clusters for finite size scaling was chosen
so as to make the best agreement with quantum Monte Carlo.
Another method—series expansion (high order perturbation
theory) [47] sets ordered moment value at a somewhat higher
value of 0.307. While all the above results seem roughly
consistent, CMFT value obtained from the boundary sites
seems to stand out (0.374 for ¢ = 0). Nevertheless, the
central-hexagon value (0.330 for ¢ = 0) lies much closer to
the results from the methods mentioned above. Moreover, one
should note that the ordered moment estimated from m? for
24-site cluster ED equals 0.45 [43] which is above the CMFT
value. This suggests that at this point the finite size scaling is
important.

Before moving to the frustrated regime we briefly mention
that the trivial ordered moment value at ¢ = 7 is here
correctly reproduced by both CMFT and LSWT. Besides,
for the regions around the fluctuation-free FM (and stripy)
point the ordered moments predicted by CMFT and LSWT
also match. Following the ground state energy analysis,
LSWT gives the correct result because quantum fluctuations
contribution is small compared to the classical state. The
further one moves towards the Kitaev points, however, the
more incorrect the LSWT approximation should be because of
the strong reduction of the ordered moment due to increasing
frustration.

In contrast, the lack of quantum fluctuations on the external
bonds generates systematic errors within CMFT except for
FM and stripy phases. The ordered moment obtained from
the boundary sites experiences the errors discussed above.
However, the ordered moment values for intermediate sites
and the central hexagon become largely reduced in the whole
Néel and zigzag regions due to the fact that for the internal
part of the cluster the fluctuations are fully included. Still,
the best estimate comes from the central hexagon where
quantum fluctuations on the bonds are included and CMFT
gives more realistic results than LSWT in frustrated parts of
the phase diagram. Here it is also important to stress that the
series expansion captures correctly the fluctuation-free point
at ¢ = (FM) and ¢ = —arctan?2 (stripy) and predicts a
broader region of the FM KSL phase [47]. The order parameter
is also qualitatively correctly estimated and is reduced more
to m =~ 0.3 for both Néel and zigzag phases [47]. However,
while the ordered moment values obtained by CMFT are
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consistent with the four-sublattice dual transformation, the
ordered moment data from the high-order perturbation theory
[47] are not as the values of ordered moment differ at the points
connected by the mapping. Unfortunately the largest difference
appears near the FM LRO/KSL boundaries. This observation
uncovers certain shortcomings of the high-order perturbation
theory.

D. Quantum corrections: Naive interpretation

Let us conclude the discussion of the quantum corrections
with the following more general observation: Developing the
argumentation presented by Iregui, Corboz, and Troyer [49],
the dependence of the quantum corrections to the energy and
to the ordered moment on the angle ¢ suggests that the Kitaev
interaction is less “compatible” with the FM/stripy ground
states than with the Néel/zigzag ones. This can be understood
in the simple picture of the KH model on a four-site segment
of the honeycomb lattice consisting of three bonds attached to
a selected lattice site, as presented below.

Starting with ¢ = 7 (FM ground state, e.g. along the z
quantization axis), increasing ¢ leads to gradual increase of
the FM Kitaev term which favors ferromagnetically aligned
spins along the x, y, and z quantization axes for the x, y, and
z directional bonds, respectively. It can easily be seen that,
e.g., for the x bond, the eigenstate of the FM Kitaev-only
Hamiltonian on that bond (|1, 1,)) has a 25% overlap with the
FM ground state, [(1,1.|1, A= i. While again a similar
situation happens for the y bond, the overlap between such
states for the z bond is maximal, i.e., these states are identical
(we assume the same phase factors 1).

Next, we perform a similar analysis for ¢ = 0 and firstly
assume that we deal with a classical Néel ground state, |1, ).
In this case for the “unsatisfied” bonds from the point of view
of the increasing AF Kitaev interaction we also obtain that the
eigenstate of the AF Kitaev-only Hamiltonian (|1, ,)) on that
bond has a 25% overlap with the classical Néel ground state—
e.g, (1.4 1xdx) | = %. However, this situation changes
once we consider that the spin quantum fluctuations dress the
classical Néel ground state. This can be best understood if we
assumed the unrealistic but insightful case of very strong quan-
tum fluctuations destroying the classical Néel ground state:
then for the x bond a singlet could be stabilized and the overlap
between such a state and the state “favored” by the Kitaev
term increases to 50%: [(0|1, |, )|* = % This suggests that the
Néel ground state, which contains quantum spin fluctuations,
is more “compatible” with the states “favored” by the Kitaev
terms than the FM ground state, resulting in more stable values
of ordered moment for Néel phase. It seems that the above dif-
ference is visible in CMFT data but not in LSWT ones. We shall
discuss this issue further by analyzing spin correlations below.

V. SPIN CORRELATIONS

Additional information about the ground state is given by
spin-spin correlation functions. In Fig. 5(a) one can observe
isotropic stable (Sl.’/ S”) correlations in almost the entire AF
phase (with (S, - §;) ~ —0.36 for ¢ = 0), while for the FM
phase the anisotropy quickly develops when moving away
from the FM Heisenberg point ¢ = 7 (here (S; - S;) reaches
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FIG. 5. (a) Spin correlations (S; - S ;) obtained within ED for the
bonds between nearest neighbors (black line), spin correlations of the
components active in the Kitaev interaction, (S; S;’) (blue line), and
complementary spin components, (Sf Sf) (red line). Below further
neighbor spin correlations |(S; - S;)| are shown (colors correspond
here to different neighbors). ED: (b) near the AF spin-liquid phase,
and (c) for the angle ¢ interval including the FM spin-liquid phase.
CMFT—the neighborhood of the: (d) AF spin-liquid, and (e) FM
spin-liquid region.

the classical value 0.25). This again demonstrates that the AF
(and zigzag) phase is more robust and uniform than the FM
(and stripy) phase.

Moreover, spin-spin correlations allow us to confirm the
disordered regions around the Kitaev points as critical cases
of quantum spin liquid [65]. At the Kitaev points (J = 0)
we observe the expected undisturbed KSL pattern: non-
zero values of nearest neighbor correlations between spin
components active in the Kitaev interaction [blue curve in
Fig. 5(a)] and vanishing correlations between complementary
components (red curve). In contrast, the next nearest and
further neighbor correlations disappear, see Figs. 5(b) and 5(c).
While moving away from the Kitaev points the absolute values
of the correlations enter the regions of slow growth—these
are signatures of the critical spin-liquid phases and they look
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similar in AF and FM spin liquid cases. At some point however
proceeding further results in rapidly growing absolute values
which mark KSL/LRO boundaries.

Furthermore, Figs. 5(b) and 5(c) prove that there is a
qualitative difference between the two spin-liquid regimes.
This is observed in the rapid growth of spin correlations at the
onset of LRO: The steplike jump visible in Fig. 5(b) contrasts
with the smoother crossover seen in Fig. 5(c). Below we
investigate this distinct behavior by analyzing the dynamical
spin susceptibility for various available phases. After Fourier
transformation of the z-component correlations, we obtain the
spin structure factor to be discussed in the context of the spin
susceptibility also in Sec. VI.

As a supplement we present the further neighbor spin
correlations obtained via CMFT [Figs. 5(d) and 5(e)]. One
should remark that within KSL the averages (S7) are 0 and
CMEFT is thus equivalent to ED for an isolated cluster (open
boundary conditions). This leads to stronger finite size effects
and larger inhomogeneity of the correlations. Nevertheless,
considering the central part of the cluster, the emergence
of the longer-range correlations away from the Kitaev point
presented in Figs. 5(d) and 5(e) is almost identical to that
calculated by ED, see Figs. 5(b) and 5(c).

VI. SPIN SUSCEPTIBILITY AND EXCITATIONS IN THE
VICINITY OF THE KITAEYV POINTS

Below we study the spin dynamics within the KH model
by analyzing the dynamical spin susceptibility at T = 0,

o0
Xaa(q.0) =i / (@[ Sy (1),5%,(0)] Do) e dz,  (5.1)
0
with the Fourier-transformed spin operator defined via
1 .
S — Z e—zq»R 59
q T k>
N %

and |®() denoting the cluster ground state. For w > 0, the
imaginary part of x(q,®)q, reads as

(5.2)

1
o+ Egs —H+ié

Ko (@.@) = —Im (o] S 5%, o).

(5.3)

which can be conveniently expressed as a sum over the excited
states {|v)},

(@) =1 Y |(v]5%, | Do) |*8(e — E,),
[v)

5.4

where the excitation energy E, is measured relative to the
ground state energy Egs. We have evaluated y,(q,w) by ED
on a hexagonal cluster of N = 24 sites. In the ED approach,
the exact ground state of the cluster |®,) is found by Lanczos
diagonalization, the operator S, is applied, and the average
of the resolvent 1/(z — H) is determined by Lanczos method
using normalized qu |®g) as a starting vector [66].

In our case of the KH model, the calculation generally
requires a relatively large number of Lanczos steps (up to one
thousand) to achieve convergence of the dense high-energy
part of the spectrum. Having the advantage of being exact, the
method is limited by the g vectors accessible for a finite cluster
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AF order, ¢ = I"". (b) The same for the zigzag wave vector ¢ = M.
(c) Brillouin zone portraits of the spin-structure factor (Siq qu) at
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(d), (e) The same as in panels (a), (b) but for the interval containing
the FM (¢ = T') and stripy (¢ = X) phase. (f) Brillouin zone portraits
of the spin-structure factor obtained at ¢ = 255°, 270°, and 285°.
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and compatible with the PBC, and by finite-size effects due
to small N. These concern mainly the low-energy part of x”
and lead, e.g., to an enlarged gap of spin excitations in LRO
phases of AF nature. Nevertheless, a qualitative understanding
can still be obtained.

The evolution of numerically obtained x”(q,w)qq (5.4) with
varying ¢ is presented in Figs. 6(a) and 6(b) for the region
including AF spin-liquid phase, as well as in Figs. 6(d) and
6(e) for the region including the FM spin-liquid phase. The
transitions are well visible at the characteristic g vectors of
the individual LRO phases. The structure factor pattern, see
Figs. 6(c) and 6(f), changes accordingly between the sharply
peaked one in LRO phases and a wavelike form characteristic
for nearest neighbor correlations in the spin-liquid phases.

After entering the spin-liquid phase, further changes of the
spin response are very different for the AF and FM case. In the

024426-8



143

PHASE DIAGRAM AND SPIN CORRELATIONS OF THE ...

AF case, there is a sharp transition—a level crossing for our
cluster, so that the ground state changes abruptly. The original
intense pseudo-Goldstone mode as well as many other excited
states become inactive in the spin-liquid phase. The observed
low-energy gap in x”(q,w)qq Vvaries only slightly with ¢.

In contrast, when entering the FM spin-liquid phase the
excitation that used to be the gapless magnon mode is
characterized by a gradually increasing gap which culminates
at the Kitaev point. Starting from the Kitaev point, the gradual
reduction of the low-energy gap in x”(g,w)s, due to the
Heisenberg perturbation manifests itself by a development
of finite spin correlations beyond nearest neighbors (already
reported in Fig. 2 of Ref. [25]) and an increase of the
static susceptibility to the magnetic field Zeeman coupled
to the order parameter of the neighboring LRO phase. This
susceptibility then diverges at the transition point (see also
Fig. 3 of Ref. [25]).

VII. SUMMARY AND CONCLUSIONS

In the present paper we report a study of the phase
diagram of the Kitaev-Heisenberg model by a combination of
exact diagonalization and cluster mean field theory (CMFT),
supplemented by the insights from linear spin-wave theory and
the second-order perturbation theory. Both methods allowed
to stabilize previously known phases with long range order:
Néel, zigzag, FM, and stripy. Moreover, the ordered moment
analysis provided by cluster mean field approach demonstrates
Néel-zigzag and FM-stripy connections described before [34].
Compared to the previous CMFT studies utilizing N =6
site cluster (see Ref. [56] or the Appendix), we have used
a sufficiently large cluster of N = 24 sites preserving the
lattice symmetries and improving the ratio between internal
and boundary bonds. This led to a balanced approach which
allowed us to treat both ordered and disordered (spin-liquid)
states on equal footing.

As the main result, the present study uncovers a fundamen-
tal difference between the onset of broken symmetry phases
in the vicinity of Kitaev points with antiferromagnetic or
ferromagnetic interactions. While the spin liquids obtained
at K = +1 and K = —1 are strictly equivalent and can be
transformed one into the other in the absence of Heisenberg
interactions (at J = 0), spin excitations and quantum phase
transitions emerging at finite J are very different in both cases.
For the antiferromagnetic Kitaev spin liquid phase (K =~ 1)
one finds that a gap opens abruptly in x”(q,w) at ¢ =T"
and ¢ = M when the ground state changes to the critical
Kitaev quantum spin liquid. This phase transition is abrupt
and occurs by level crossing. In contrast, for ferromagnetic
spin liquid K ~ —1 the gaps in x"(q,w)atg =T and ¢ = X
open gradually from the points of quantum phase transition
from ordered to disordered phase. With much weaker quantum
corrections for ordered phases in the regime of ferromagnetic
Kitaev interactions, the spin liquid is more robustnear K = —1
as a phase that contains quantum fluctuations and survives in
a broader regime than near K = 1 when antiferromagnetic
Kitaev interactions are disturbed by increasing (antiferromag-
netic or ferromagnetic) Heisenberg interactions. This behavior
is reminiscent of the ferromagnetic Kitaev model in a weak
magnetic field [65].
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APPENDIX: COMPARISON BETWEEN CMFT AND
LINEARIZED CMFT FOR A SINGLE HEXAGON

Here we compare linearization results for a single hexagon
with full CMFT to see how well linearized CMFT performs as a
shortcut method. It is important to realize that this cluster is not
compatible with stripy or zigzag order because of their four-site
magnetic unit cell, see Fig. 1(b), and they are suppressed within
vast regions of ¢ compared to the 24-site case. The size of
the system allows for quick CMFT computations and enables
detailed comparison between the two approaches. Moreover,
specific problems linked to the above incompatibility make the
N = 6-site cluster a good test case to illustrate the linearized
CMFT.

Following the procedure described in Sec. IIIC, 6 eigen-
values A; are produced for each value of ¢ parameter. The
corresponding spin patterns are inferred by inspecting the
eigenvectors. Only the patterns associated with A; > 1 are
able to grow during iterations and eventually stabilize as a

103 n T T T

L Apax > 1 —

2 [ Ll G o\ ek
10 0 /2 T 3n/2 2n

FIG. 7. Full linearized CMFT result for a single hexagon. Blue
lines represent all emerged positive eigenvalues A, while maximal A
larger than 1 is indicated in red.
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FIG. 8. (a) Spin patterns obtained for a single hexagon by CMFT.
From the left: Néel, zigzag, FM, and stripy. (b) Phase diagram for a
single hexagon determined by |(S7)|. Red and blue sites (see inset)
are nonequivalent in the present CMFT due to the approximation
given by Eq. (3.2) which generates the terms o J that add to the
Kitaev term only on the vertical bonds (ij) || z in the MF part of the

Hamiltonian (2.1).

self-consistent solution of full CMFT. Comparison of both
methods presented in Figs. 7 and 8 provides the phase diagram
for a single hexagon: Néel phase for ¢ € [0,0.5)7r, KSL for
¢ = 7, zigzag phase for ¢ € (0.5,0.555)7, disordered region
I for ¢ € (0.555,0.864), FM phase for ¢ € (0.864,1.5)7,
KSL for ¢ = %n, stripy phase for ¢ € (1.5,1.62)7 (lin-
earization), ¢ € (1.5,1.64)7 (CMFT), disordered region II

PHYSICAL REVIEW B 95, 024426 (2017)

for ¢ € (1.62,1.684)r (linearization) and ¢ € (1.64,1.684)x
(CMFT), and Néel phase for ¢ € (1.684,2]x. In contrast to
N = 24 cluster the two spin-liquid regions are replaced by
single points ¢ = 5 and ¢ = %n.

Striking difference between phase diagrams for 24-site and
6-site clusters is the reduction of the zigzag and stripy phases
and the emergence of two regions of disorder indicated by
two gray-shaded regions. Here all A; < 1 and no spin pattern
is strong enough to stabilize. Zigzag pattern emerges from
CMFT with random initial values of (Sf) without additional
help. Stripy pattern however is more difficult to catch. As
one can see in Fig. 7, two different X; corresponding to two
stripy patterns exchange at ¢ = 1.568m. Unfortunately, huge
parasitic oscillations make these patterns extremely difficult
to stabilize within CMFT. These stem from a large negative
A; that previously corresponded to FM pattern and decreased
rapidly for ¢ > 1.57. If one recalls that the equivalent of
one iteration in the linearized version of CMFT is in fact
multiplication by X;, one can easily see that large negative
A; would cause oscillations with an exponentially growing
amplitude when performing the iterations of the self-consistent
loop. To overcome this issue we introduce a damping into
a self-consistent loop by taking (1 — d){(S7)n + d(S7)in as
the new averages. Here d < 1 is a suitably chosen damping
factor. With this modification CMFT produces one finite stripy
order suggested by linearization. However since the parasitic
negative A; grows enormously in magnitude as we approach
the phase boundary an extreme damping has to be included
making the phase boundary hard to determine by using
CMFT.

In conclusion, it is evident that the ordered patterns sug-
gested by linearization were reproduced by CMFT within re-
gions dictated by the maximal A; > 1. Moreover, the linearized
procedure indicated possible difficulties with stabilizing stripy
phases that had to be cured by a strong damping introduced
into the self-consistent loop.
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Compounds of transition metal ions with strong spin-orbit coupling recently attracted attention due to the
possibility to host frustrated bond-dependent anisotropic magnetic interactions. In general, such interactions
lead to complex phase diagrams that may include exotic phases, e.g., the Kitaev spin liquid. Here we report on
our comprehensive analysis of the global phase diagram of the extended Kitaev-Heisenberg model relevant to
honeycomb lattice compounds Na,IrO; and «-RuCl;. We have utilized recently developed method based on spin
coherent states that enabled us to resolve arbitrary spin patterns in the cluster ground states obtained by exact
diagonalization. Global trends in the phase diagram are understood in combination with the analytical mappings
of the Hamiltonian that uncover peculiar links to known models—Heisenberg, Ising, Kitaev, or compass models
on the honeycomb lattice—or reveal entire manifolds of exact fluctuation-free ground states. Finally, our study
can serve as a methodological example that can be applied to other spin models with complex bond-dependent

non-Heisenberg interactions.

DOI: 10.1103/PhysRevB.99.064425

I. INTRODUCTION

In contrast to simple examples of Heisenberg magnets dis-
cussed in standard textbooks, frustrated spin systems [1] offer
much wider range of phenomena, including the exotic spin-
liquid behavior [2,3] or the emergence of effective monopoles
in spin-ice pyrochlores [4,5]. The usual sources of frustration
are frustrated geometry of the lattice (e.g., kagome [6]) or
the presence of longer-range interactions competing with the
nearest-neighbor ones (as, e.g., in J;-J, model [7-9]) and pos-
sibly among themselves. Within the last decade, pseudospin-
% systems with frustrated bond-dependent non-Heisenberg
interactions emerging in Mott insulators as a consequence
of spin-orbit coupling (SOC) became a subject of intense
research [10-16]. While one of the main motivations has
been a possible realization of the Kitaev honeycomb model
[17], the presence of additional interactions leads to very rich
magnetic behavior that is particularly attractive as well as
challenging to study.

The basic element enabling the realization of the above
models possessing bond-dependent anisotropic interactions
has been well known for a long time. It relies on a d° valence
configuration of heavy transition-metal ions with large SOC,
which combines the spin s = % and effective orbital angular
momentum /g = 1 of the hole in the tzsg configuration into

Joir = % Kramers doublet ground state [18,19]. A direct ex-
perimental evidence for the spin-orbital entangled multiplet
structure [20] was obtained, e.g., by resonant x-ray scattering
on Sr,IrOy [21] containing @ Ir*" ions. It was the seminal
theoretical proposal by Jackeli and Khaliullin [22] that sug-
gested how to exploit the Jeg = % pseudospins in Mott insula-
tors with large SOC. Two lines of intense research followed.
The first one focuses on the square lattice case with the result-

2469-9950/2019/99(6)/064425(18)
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ing Heisenberg interactions among the pseudospins—a situa-
tion appealingly analogous to undoped cuprates. Cupratelike
magnetism was indeed found in perovskite iridates [23] and
certain observations support the idea to extend the analogy
to the doped case [24,25]. Yet bigger excitement was initi-
ated by a proposal that the honeycomb J = % compounds
may be close to the Kitaev limit where Ising-like bond-
dependent interactions lead to a spin-liquid ground state. Such
an exotic effective spin system may naturally arise when
translating the bond-anisotropic interactions of the d orbitals
appearing in Kugel-Khomskii models [26] into the pseu-
dospin space via the SOC-induced spin-orbital entanglement
[19,27].

In the search of materials close to the Kitaev limit, much
attention has been paid to the honeycomb iridates Na,IrOs,
a-LiyIrO3, and the ruthenate «w-RuCl; [28] that is claimed
to show signatures of Kitaev physics in the excitation spec-
tra [29-32]. However, these compounds were found to host
long-range magnetic order instead—zigzag type in Na,IrO3
[33-35] and «@-RuCl; [29,36,37] and spiral type in «-Li,[rO3
[38]. Only very recently, an evidence for a liquid state was
found in a related compound H;Lilr,Og [39]. Even though the
zigzag phase is present in the phase diagram of the originally
proposed Kitaev-Heisenberg model [40], later experiments
on NayIrOs; showed that it gives an inconsistent ordered
moment direction [41] and additional bond-anisotropic and/or
further-neighbor interactions have to be invoked [42—47]. In
the resulting extended Kitaev-Heisenberg models, the highly
anisotropic interactions lead to complex phase behavior (see
Refs. [15,42,43] for examples) or unusual spin excitation
spectra showing, e.g., a breakdown of the magnon picture
even in the long-range ordered phase away from the Kitaev
limit [48] or topological features [49,50].

©2019 American Physical Society
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The (extended) Kitaev-Heisenberg models are not limited
to the honeycomb lattice. A large number of other situations
have been discussed, including triangular [19,51-54] and
kagome [55] lattices and suitable types of three-dimensional
structures such as experimentally realized hyperhoneycomb
[56-60], harmonic honeycomb [57,59,61-63], hyperkagome
[27,64], fcc [65—67], and pyrochlore lattices [68,69], or hy-
pothetical hyperoctagon lattice [70]. Finally, the concept of
Kitaev interactions in pseudospin Jeg = % systems has been
recently extended to d’ compounds such as those containing
Co?* [71,72].

In general, a thorough inspection of an extended Kitaev-
Heisenberg model in terms of spin structures, excitations,
etc. through the parameter space is desired. Apart from the-
oretical interest, this is mostly in order to establish it as
an effective model for a concrete material and to narrow
down the parameter regime. Methodologically, the inspec-
tion is complicated by the new kind of frustration stemming
from the bond dependence of the interactions. Since exotic
features such as spin-liquid ground states and fractionalized
excitations are “around,” simple approaches—for instance,
the Luttinger-Tisza method [73] or linear spin waves—often
have a limited success and one has to resort to unbiased
numerical methods fully incorporating quantum effects. Of
a great value are also exact symmetry properties, such as
dual mappings of the Hamiltonian utilizing sublattice spin
rotations [11,19,69,74,75] that proved surprisingly powerful
when establishing and interpreting the phase diagram.

The aim of this paper is to perform a detailed analysis of
the phase diagram of the extended Kitaev-Heisenberg model
(EKH) relevant for honeycomb materials. Portions of the
phase diagram have been reported before by several studies,
both on the classical level [42,46,76] as well as including the
quantum effects [15,47,77-79]. Here we take a global view of
the phase diagram, trying to understand its trends based on
the competition/cooperation of the interactions and general
symmetry properties. We also analyze the internal structure
of the phases including the ordered moment direction that is
useful when fixing the model parameters based on experimen-
tal data [41,80]. To this end, we build on previous work [80]
and use exact diagonalization combined with ground-state
analysis based on spin-1/2 coherent states and complemented
by cluster mean-field theory. This allows us to determine
the spin structures through the phase diagram, including the
noncollinear ones and estimate the amount of quantum fluc-
tuations. The global analysis revealed two surprising features
that underline the richness of the EKH model and enable a
deeper understanding of its phase behavior: (i) sets of exact
fluctuation-free ground states forming entire manifolds in
the parameter space and (ii) possibility to map part of the
phase space of the EKH model to a model characterized by
a single bond-dependent interaction axis. This way several
models of separate interest “emerge” from the EKH model:
Ising, Kitaev, and compass [11,26] models as well as their
combinations.

The paper is organized as follows: The model and numer-
ical methods are introduced in Secs. II and III, respectively.
Section IV contains the phase diagram of the model along
with a discussion of its phases. Section V analyzes the man-
ifolds of fluctuation-free ground states. Finally, Sec. VI is

devoted to the study of the Ising-Kitaev-compass case and its
links to EKH model.

II. EXTENDED KITAEV-HEISENBERG MODEL
A. Model Hamiltonian

According to the currently available prevailing evidence
for honeycomb materials [15] and following Ref. [80],
we choose to study the nearest-neighbor extended Kitaev-
Heisenberg model [42-44] complemented by third-nearest
neighbor Heisenberg exchange. The nearest-neighbor (NN)
part of the model contains—in addition to the usual Heisen-
berg exchange—all possible anisotropic terms that are al-
lowed by symmetry of the trigonally distorted honeycomb
lattice [44,75]. It is most conveniently expressed in cubic
coordinates x, y, z introduced in Fig. 1(a) that allow to easily
incorporate the discrete rotational C; symmetry. For a bond of
¢ direction, the Hamiltonian contribution reads as

) =7S;-S; + K iS5+ (SIS +S5!S%)
+ T (SFS5 4885 +5] S5 +5787), M

whereas the contributions for the other bond directions are
obtained by a cyclic permutation of the spin components
$¥, §Y, and S°. The J and K terms alone constitute the Kitaev-
Heisenberg model [22,74] that has been subject to extensive
studies [40,74,81-88] and still serves as a prototype model
to capture a departure from the Kitaev physics. In light of
experimental data [41], it has been generally recognized that
further anisotropic terms are needed, leading to the addition
of the I' and I'" terms introduced in Refs. [42—44]. When
studying the phase diagram we keep signs of J and K flexible
and fix the signs I' > 0 and I'" < 0 following the ab initio
calculations as well as the perturbative evaluation of the ef-
fective interactions [43,47]. According to the latter one, small
negative I'" should correspond to a trigonal compression of the

(b)

(c)

FIG. 1. (a) Honeycomb Nalr,Og layer. Iridium ions form a hon-
eycomb lattice with a sodium atom in the middle of each hexagon.
Each iridium atom is surrounded by an octahedron of oxygens; the
neighboring octahedra share an edge. The figure shows also the
definition of cubic x, y, z axes and the bond directions a, b, c. [(b)—
(d)] Sublattices of the two-, four- and six-sublattice transformations
T2, Ta, Te that reveal the points of hidden SU(2) symmetry.
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lattice [43], observed in Na,IrO; [34,35]. Moreover, several
ab initio studies have evaluated the importance of further-
neighbor couplings (see, e.g., Refs. [45,47]). In Ref. [47],
the effective spin Hamiltonians for Na,IrO;, «-RuCls, and
a-LiyIrO; were constructed using a combination of DFT and
cluster exact diagonalization that equally treated interactions
up to third nearest neighbors. Among the further-neighbor
interactions, a significant value of J3 > 0 was found for all
three compounds, which leads us to the complete model
considered here

H= > HI+ D IS:S;. )

(ij)eNN (ij)€3 NN

B. Hidden symmetries of the model

The NN part of the above model (/3 = 0) has rich sym-
metry properties explored in detail in the previous work
[75]. First, it supports a self-dual transformation 7; that
corresponds to a global & rotation of the spins around the
axis perpendicular to the honeycomb plane. Such a trans-
formation fully preserves the form of the Hamiltonian but
replaces the values of the parameters JKT'T' by another set
of values. Second, Ref. [75] has also identified a number
of special parameter combinations—the points of “hidden”
SU(2) symmetry in the parameter space—for which the
NN model maps to ferromagnetic (FM) or antiferromagnetic
(AF) Heisenberg model on the honeycomb lattice. This is
achieved by employing either two-, four-, or six-sublattice
coverings of the honeycomb lattice as depicted in Figs. 1(b)—
1(d) and performing selected sublattice-dependent rotations
of the spins. The neighboring spins that belong to different
sublattices are therefore rotated in a different fashion and
the interaction among those spins takes a modified form, in
certain cases, the simple Heisenberg one. For these partic-
ular cases, the seemingly anisotropic model is thus exactly
equivalent to the Heisenberg model on the honeycomb lat-
tice. By using the same transformation backwards, we can
exploit the known properties of Heisenberg model obtaining
thereby, e.g., the ordering pattern or excitation spectra at
the points of “hidden” SU(2) symmetry. Due to the sub-
lattice structure of the transformation, the simple ordering
patterns of Heisenberg FM or AF transform to more com-
plex ones such as stripy, zigzag, or even noncollinear vortex
pattern.

As a well-known example, we can consider the Kitaev-
Heisenberg model with the parameters satisfying the relation
K = —2J and the four-sublattice covering shown in Fig. 1(c).
Keeping the spins at the sites marked by [J unrotated, and ap-
plying 7 rotations around the x, y, or z axes to the spins at the
sites attached to the [ sites by the a, b, or ¢ bond, respectively,
we obtain the Heisenberg Hamiltonian H = —J 3, S’ - §';
in the rotated spin variables S’. In the notation of Ref. [75],
this transformation is called 7. The other possibilities include
two-sublattice transformation 75, the six-sublattice 7¢, and the
combinations 7174 and 7;76. All these points of “hidden”
SU(2) symmetry summarized in Table I and Fig. 3 of Ref. [75]
provide exact reference points in the parameter space and will
be extensively utilized in the present study.

III. METHODS

To solve the model, we use the standard Lanczos exact
diagonalization (ED) technique employing a finite cluster
[89]. The calculated cluster ground state is subsequently
analyzed utilizing spin-1/2 coherent states [80] as detailed
below. The ED technique is complemented by the cluster
mean-field theory (CMFT). This combination is useful for a
global characterization of the phase diagram—ED gives the
ground-state characteristics such as energies and spin correla-
tions, the analysis based on spin-1/2 coherent states enables
to better assess the ordering patterns and the direction of
magnetic moments, and CMFT supplements this information
by the length of the ordered moments, which is not directly
accessible by ED.

In both cases, we use a hexagonal 24-site cluster with
periodic boundary conditions applied. This cluster has a fully
symmetric shape and supports all the phases with hidden
SU(2) symmetry [75]. It is therefore expected to provide a
fair environment for the competition of the phases, with the
exception of the possible spiral phases that are forced to fit
the periodic boundary conditions and may be thus slightly
suppressed. In this specific case, we have extended our ED
analysis to 32-site clusters.

A. Spin-1/2 coherent states for noncollinear phases

The analysis of the exact ground state of the cluster ob-
tained by ED presents a challenge—the cluster ground state
does not spontaneously break symmetry but instead contains
a linear combination of all the degenerate spin configurations.
To resolve the dominant configuration and obtain the direction
of the pseudospins from the ED ground state, we follow
Ref. [80] and employ spin-1/2 coherent states. Such a state,
polarized in a direction given by spherical angles 6 and ¢ is
given by

10, ¢) = e T e 1), 3)

where we make a standard choice of cubic z direction as the
quantization axis. The cluster spin-coherent state is then a
direct product of coherent states on each site j:

N
W) =T116;. 7). )
j=1

This state can be understood as a classical (fluctuation-free)
spin pattern with the individual spins pointing in the directions
determined by the angles 6; and ¢;. By calculating the overlap
(W|GS) and maximizing its absolute value by varying the
angles, we can identify the classical pattern that best fits the
exact ground state |GS).

For collinear phases (in the case of EKH model, these are
FM, AF, zigzag, and stripy) the cluster spin-coherent state
is captured by a single pair (6, ¢), which makes it easy to
find the moment direction by inspecting the probability map
P(6,¢) = |(¥|GS)|* and finding the maximum. However,
already the analysis of hidden SU(2) points revealed the
existence of several noncollinear “vortex” phases in the phase
diagram of the EKH model [75]. In the general case, the
probability P = |(W|GS)|? has to be maximized with respect
to all 2N angles. For our cluster with N = 24 sites, this poses
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a nontrivial computational problem of global optimization in
48-dimensional space. To this end, we use the particle swarm
method for global optimization, which yields a result further
refined by a local optimization algorithm.

The demanding task can be partly avoided by estimating
in advance the parameter windows where noncollinear phases
can be found. This can be achieved by first finding the optimal
spin configuration among the collinear ones and calculating
the full Hessian matrix of second derivatives (with respect
to all 48 angular parameters) for such a configuration. The
potential instability of the collinear phase can be identified by
analyzing the eigenvalues of this Hessian matrix.

B. Cluster mean-field theory

Similarly to ED, within CMFT we periodically cover the
lattice by copies of a given cluster. The bonds connecting
the cluster copies (external bonds) are treated in a mean-
field approximation, replacing the contributions to the bond
Hamiltonian according to the recipe

Se8? ~ (S¢)S7 4 8¢ (S7) — (se)(s?). 5)

while the internal bonds of the cluster are kept fully quan-
tum [81]. The mean-field approximation generates effective
magnetic fields acting at the outer sites of the cluster and po-
larizing the cluster ground state to be determined by ED. The
polarizing fields depend on the averages (S¢) measured on the
polarized ground state, which leads to a selfconsistent prob-
lem with much higher computational demands than the pure
ED. On the other hand, by explicitly breaking the ground-state
symmetry, the CMFT method allows to directly determine the
ordering pattern and estimate the ordered moment length.

The introduction of the mean-field boundary makes the
sites of the cluster nonequivalent. In combination with
the highly anisotropic bond-dependent interactions, the spin
structures show a tendency towards various forms of artificial
canting. To prevent this, we limit ourselves to the case of
collinear spin structures and follow the approach described
in Ref. [81], where an averaged ordered moment through the
cluster is taken and distributed on the boundary sites following
a particular ordering pattern.

IV. GLOBAL PHASE DIAGRAM

By optimizing the spin configurations using the methods
described in the previous section and evaluating the corre-
sponding probabilities, we are able to construct a detailed
phase diagram of the model. We present the slices through
the phase diagram using a common parametrization for the
main interactions [42], thatis J = cos ¢ sinf, K = sin ¢ sin 9,
I' =cos6 with ¢ € [0,27] and 6 € [0, 7 /2]. This way all
the J, K sign combinations and interaction strength ratios for
positive I' > 0 are explored. The remaining model parameters
I and J; are kept fixed for a given slice. Figure 2(a) shows
the phase diagram for I'' = J5 = 0, which is the special case
of the JKT model, first analyzed in Ref. [42]. We shall now
use this diagram to survey the main properties of the phases
and move on to their evolution with I’ and J5 afterwards. The
reader may also consult Appendix C containing an extensive
set of phase diagram slices for selected I'” values.

(a) vortex

AF

stripy

vortex-b

(b) _ vortex-a

40°
36°
32°
FM-b
28°

FIG. 2. (a) Phase diagram of the extended Kitaev-Heisenberg
model with I'" = J; = 0 using the parametrization J = cos ¢ sin @,
K =singsinf, and I' = cos 8 with ¢ € [0, 2] being the azimuthal
angle and 6 € [0, 7 /2] the radial coordinate measured as a distance
from the center of the circle. Color intensity and contours show
the probabilities of classical spin patterns for the respective phases.
Dashed lines separate distinct regions within one phase. White areas
represent regions where no clear signatures of a long-range ordered
phase were detected using the 24-site cluster. The gray dots indicate
points of (hidden) SU(2) symmetry. The hatched part of the central
region with a large probability of the zigzag pattern shows a tendency
to form a noncollinear spin arrangement. (b) The angle of the ordered
moments to the honeycomb plane for the zigzag phase—in the upper
region, the moment points near the cubic z direction (assuming
zigzags running along a and b bonds), whereas in the central region
it is located between x and y axes. The panel also depicts the in-plane
spin patterns for distinct regions (labeled as a and b) within vortex
and FM phases and the out-of-plane pattern of the AF phase. Further
details can be found in Fig. 9(e) of Appendix C.
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A. Collinear phases of the JKT model

We first focus on the simpler collinear phases which oc-
cupy most of the phase diagram. Two phases, FM and AF,
dominating Fig. 2(a) are directly linked to Heisenberg points.
Though they may seem trivial at the first sight, our inspection
revealed their interesting internal structure due to the complex
interplay of the bond-anisotropic interactions. We start with
the FM phase, which is expected to be most accessible due to
the small amount of quantum fluctuations. In the JK limit (the
outer circle of the diagram), the ordered moments point along
one of the three cubic directions x, y, z selected by virtue
of the “order-from-disorder” mechanism on top of isotropic
classical energy [80,90]. Since the cluster ground state is a
superposition of the six degenerate possibilities, the proba-
bility approaching the value 1/6 near the FM point indicates
vanishing quantum fluctuations. With the presence of the I'
term, the magnetic moment is quickly pushed into the honey-
comb plane, lying either directly within the plane or close to
it [with <10° deviation, see also Fig. 9(e) in Appendix C].
This can be understood by evaluating the classical energy
for the FM phase: Egjass o 3J + K — I' + ['(ny + ny + n,)%,
where the unit vector n = (n,, n,, n;) represents the moment
direction. The honeycomb plane is thus preferred by I inter-
action on a classical level which makes it easy to outweigh
the fluctuation-selected cubic axis. A small I" value of the
order 1072 to 10~! of the dominant JK is typically sufficient
to achieve this with the value dropping even lower near the
FM Heisenberg point. Within the honeycomb plane, moments
point either in the bond direction, or perpendicular to the bond
in two separate regions of the FM phase [see Fig. 2(b)]. In
accord with the intuition, departing from the FM Heisenberg
point, quantum fluctuations intensify, lowering thus the plot-
ted probability.

Linked to the FM phase by means of the four-sublattice
transformation (74 in the notation of Ref. [75]) is the stripy
phase. Its hidden FM nature is manifested by a large probabil-
ity, reaching 1/6 at the hidden SU(2) point K = —2J < 0 that
is an image of the FM Heisenberg point in the 7, mapping.
In contrast to the FM phase, the magnetic moment direction
is tied to the vicinity of the cubic axes throughout the stripy
phase, lifting a bit with increasing I" instead of moving to
the honeycomb plane. This is because the I' interaction is
not compatible with the 7, transformation and acts differently
here.

In the AF phase, the moment direction is classically degen-
erate in the JK limit, and the cubic directions are chosen again
by the “order-from-disorder” mechanism. The addition of the
I anisotropy fixes now the moments in the (111) direction—
perpendicular to the honeycomb plane. This state minimizes
the classical energy including I" contribution: E¢p,e o< —3J —
K +T — I'(n, + ny + n;)*. Similarly to the FM phase, the
fluctuation energy selecting the cubic directions is small and
the change to the (111) direction occurs already at a minute
' of the order 107* to 1072 of the dominant JK with the
critical value of I" decreasing to zero at the AF Heisenberg
point. Going deeper into the AF phase, the probability of the
classical Néel configuration increases with I' steadily, peaking
at 1/2 on a line near the circle center that starts at the K = I'
hidden SU(2) symmetry point. For the (111) AF state, there
are two equivalent configurations of the moments, meaning

that the peaking probability of 50% represents a classical
state without any quantum fluctuations. Indeed, as we later
explicitly demonstrate in Sec. V, terms that would lead to
quantum fluctuations are present but their remarkable cancel-
lation for the particular order causes the highly anisotropic
model to support a fluctuation-free AF state on an entire
manifold of its parameter space. The same AF phase may
thus be represented by fluctuation-free ground states as well
as those with significant quantum fluctuations, depending on
the location in the parameter space.

Analogous to the FM/stripy case, 74 maps the AF Heisen-
berg point to the hidden SU(2) point K = —2J > 0. The top
zigzag region of the phase diagram extends around this point;
in the JK limit, the moment direction coincides again with
one of the cubic directions. Adding further anisotropy with
increasing I', the moments are pushed continuously towards
the honeycomb plane, as shown in Fig. 2(b).

Of a greater experimental relevance is the second zigzag
phase near the center of the phase diagram. It is also linked
to a hidden SU(2) point which, however, occurs at finite
I < 0 [75]. In this phase, the moment direction is located
roughly between the cubic x and y axes, near the direction
found experimentally [41]. We will show later, that it is this
zigzag region that largely expands and dominates the phase
diagram after the inclusion of I and/or J3 coupling terms.
A comprehensive discussion of the moment direction in both
zigzag phases in the context of the experimental data can be
found in Ref. [80].

B. Vortex phase

The vortex phase is a noncollinear phase “emanating” from
the most peculiar hidden SU(2) symmetry point of the model
that is revealed by a six-sublattice spin rotation 7¢ of Ref. [75].
Te maps the ferromagnetic J < 0 Heisenberg model to EKH
model at the parameter point / = 0, K = I" > 0 indicated in
Fig. 2(a). Owing to its hidden FM nature and six degenerate
spin configurations, the optimized probabilities reach 1/6
in the vicinity of this exact vortex point, and continuously
decrease with the departure away from it.

The phase comprises regions with two different most prob-
able classical configurations of moments labeled as vortex-a
and vortex-b in Fig. 2(b). Let us note, however, that these two
patterns have very close probabilities and are continuously
connected, implying a presence of a soft mode oscillating be-
tween them. In partial agreement with the classical treatment
[42], spins are found to lie within or close to the honeycomb
plane. The vortex-b pattern is always planar while in the
vortex-a regions near the boundary with AF or zigzag phase,
the spins start to tilt away from the honeycomb plane in a
staggered AF fashion. The tilt is largest in the right part of
the vortex phase [see Fig. 9(e)] which we interpret as the
proximity effect of the robust AF order with the moments
perpendicular to the honeycomb plane.

A deeper understanding of the internal structure of the vor-
tex phase is possible by utilizing four reference points where
the EKH maps to simpler models. One of them is the vortex
SU(2) point in " = 0 slice. The freedom associated with
the selection of the ordered moment direction in the hidden
FM at this point creates a continuous family of degenerate
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patterns including vortex-a and vortex-b. Another hidden
SU(2) symmetry point but of AF nature is found for IV ~
—0.5 at the opposite edge of the vortex phase [see Fig. 9(j)
of Appendix C]. It is associated with 7,7¢ transformation of
Ref. [75]. For a planar structure, the staggering of the hidden
AF order is compensated by the two-sublattice 7 rotation 7,
such that this point supports the same vortex-a and vortex-b
patterns as for the I'" = 0 hidden FM point associated with
just Ts. However, in contrast to the latter point, the corre-
sponding state has pronounced quantum fluctuations because
of the hidden AF nature. Departing away from the hidden FM
point or the hidden AF point, the degeneracy is lifted and
one of the configurations is chosen as the energetically most
favorable. Here the proximity to the remaining two reference
points decides. As we find in Sec. VI, the point K =T =
—J > 0 (the “meeting” point of four phases) corresponds to a
FM compass model on the honeycomb lattice while at another
nearby point with K > 0,/ =T > 0, and I’ < 0, the model
maps to AF compasslike model with the interaction direction
perpendicular to the bond. These two compass(like) models
prefer patterns vortex-b and vortex-a, respectively, which
qualitatively explains the location of vortex-a,b subphases.

C. Remaining phases of the /KT model

The remaining parts of the phase diagram slice for [V = 0
and J3 = 0 [kept white in Fig. 2(a)] are to a small extent occu-
pied by the two known Kitaev spin liquids associated with the
FM and AF Kitaev points. Here the optimization of spin-1/2
coherent states described in Sec. IIT A finds a large number
of configurations consisting of aligned/contra-aligned pairs
of the nearest-neighbor spins, as appearing in classical S —
oo limit of the Kitaev model [91,92] (see also Appendix A
for several details concerning the behavior of the method in
the presence of Kitaev spin liquids).

However, much bigger portion of the phase diagram is
taken by the white region in the lower central part which
shows a particularly puzzling behavior. Parts of it were sug-
gested earlier to host incommensurate phases [42,78]. The
vertical J = 0 line seems to play a special role as it clearly
separates the middle zigzag as well as the vortex region from
the other phases on the right [see Fig. 2(a) and the detail in
Fig. 3(a)]. The K-I' model corresponding to the J = 0 line
has been recently studied separately and its ground state for
ferromagnetic K was found to bear signatures of a spin liquid
[93,94].

Using the method of Sec. III A for the above region, we
find tendencies to form complex spin structures, though the
probability of such configurations is quite small, hinting to-
wards a possibility of phase(s) without a long-range order. In-
terestingly, the region with a large probability of the collinear
zigzag structure is also partially unstable towards a formation
of a noncollinear spin arrangement—see the hatched pattern
in Fig. 2(a) or 3(a). Although the clusters accessible to ED
are not in general large enough to properly capture potential
spin orderings with large unit cells, we still try to provide a
further analysis based on momentum-space correlations. Here
we utilize two more clusters in ED, a 32-site cluster of a

@@ M=0,J3=0 (c)

FIG. 3. (a) Position of the four selected points 1-4 in the phase
diagram. In addition, the FM Kitaev point is taken as a reference.
[(b)—(h)] (S* qS;) correlations at the selected parameter points calcu-
lated for the 24-site cluster [(b), (c), (f), and (g)] and 32-site clusters
of hexagonal [(d) and (h)] and rectangular shape (e). The nearest-
neighbor correlations in the liquid state are manifested by a wavelike
pattern (b)—such a pattern seems to be present as a “background”
in the other maps [(c)—-(h)] as well. At point 1, the larger 32-site
clusters already support incommensurate correlations [(d) and (e)],
while the 24-site cluster shows zigzaglike correlations (c) though
collinear zigzag is not the most probable configuration anymore.
Incommensurate correlations are visible at the 24-site cluster for
point 3 (g) and merge with the zigzag ones on the K-I" line (f).
Deeper in the white region, the incommensurate wave vector moves
out of the first Brillouin zone (h). All the panels (b)-(h) show the
available g resolution for the given cluster. In (c), the high-symmetry
points in the Brillouin zone are labeled.

hexagonal shape and a rectangular one (4+/3 x 6 in lattice
spacings), in addition to our default 24-site cluster.

Figure 3(a) shows the positions of four parameter points
selected for a comparison: 1 in the unstable zigzag region,
2 on the K-I" boundary, 3 in the expected spiral phase close
to J =0 line, and point 4 deeper in the expected spiral
phase. The FM Kitaev point is added for reference. Plotted
in Figs. 3(b)-3(h) are the maps of the equal-time spin-spin
correlation function (S* ¢54)- It should be emphasized, that the
cluster ground states do not spontaneously break symmetry
and contain, e.g., a linear combination of several ordering
patterns that differ by the direction of the ordering wave vector
and hence the ordered moment direction. The selection of
the spin component of the correlation function then provides
access to various components of this combination. For the
hexagonal clusters, where a rotation by 27 /3 is in effect just
a cyclic permutation among the S*, S¥, and $* components,
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the other correlation functions (S*S7) and (S”,Sy) are merely
27 /3-rotated copies of the maps shown in Fig. 3.

By combining various sets of maps from Fig. 3, several
trends can be illustrated. (i) The wavelike background iden-
tical to momentum-represented nearest-neighbor correlations
of the Kitaev liquid [Fig. 3(b)] is universally present at all
points, less apparently in the case of peaked structures on top
of the background because of an extended color scale range.

(i1) Panels (c)—(e) show the influence of the cluster size and
shape at the parameter point 1 that we demonstrate now to be
in the incommensurate region. For the smallest 24-site cluster,
the correlation map in Fig. 3(c) still includes peaks located
at the M momenta, which corresponds to a zigzag arrange-
ment. However, using the method of Sec. Il A, the zigzag
pattern is found unstable which already hints towards another
type of ordering. This is fully revealed by the larger 32-site
clusters. By providing a denser momentum-space coverage,
they enable the preferred incommensurate state to develop
[Figs. 3(d) and 3(e)]. The difference between Figs. 3(d) and
3(e) is an effect of the cluster shape. The symmetric hexagonal
32-site cluster [panel (d)] supports three degenerate directions
for the ordering wave vector that coexist in the ground state
(two of them visible aside the main maxima near the Brillouin
zone center), while the rectangular shape of the second 32-site
cluster selects only one of those directions [panel (e)].

(iii) Panels (c), (f), and (g) demonstrate, for the 24-site
cluster, the evolution from commensurate correlations [point
1, Fig. 3(c)] to incommensurate ones [point 3, Fig. 3(g)] found
in the white region. At the boundary point 2 with J =0,
the corresponding states show a level crossing and we obtain
the average spin-correlation pattern displayed in Fig. 3(f)
resembling that of the Kitaev point.

(iv) Panels (d) and (h) illustrate, for the symmetric 32-site
cluster, the transfer of the incommensurate wave vector from
the inside of the first Brillouin zone [point 1, Fig. 3(d)] to the
outside [point 4, Fig. 3(h)] when moving in the direction of
positive J. This trend was also obtained by classical Monte
Carlo simulations [43].

In conclusion, the studied region of the phase diagram
shows a complex behavior with the spin correlations indi-
cating tendencies towards various incommensurate orders.
However, the common wavelike background to the spin cor-
relations suggests a presence of strong liquidlike features.

D. Effect of nonzero I and J; parameters

We shall now investigate the evolution of the phases found
in the I'" =J; =0 slice of the phase diagram when the
parameters I'" and J; are varied. As argued in Sec. II, we
limit ourselves to the experimentally most relevant case of
small I'” < 0 and J5 > 0. Additional data to establish a fuller
picture are presented in Appendix C. The observed trends can
be successfully explained either simply by considering the
classical energy or, more fundamentally, correlated with the
positions of the points of special symmetry in the parameter
space, as inspected in Ref. [75] (points of hidden SU(2)
symmetry) and the following Secs. V and VI.

Figures 4(a) and 4(b) shows phase diagrams for two mod-
erate values of I'" < 0. Most notable effect of negative I' is
the large expansion of the vortex phase and mainly of the

(a) I'=-0.1,J3=0

(c) I'=0,J3=0.1

S,
%\\ in-plane

25¢

FIG. 4. Phase diagrams for nonzero values of I and J; rep-
resented by probabilities of optimized collinear and vortex spin
patterns in the ED ground state (left) and, focusing on zigzag
phases, by the angle of the moments to the honeycomb plane (right).
Hatched/white areas in the zigzag phase indicate the instability of the
collinear pattern. Bottom part of (a) also shows the ordered moment
length calculated by CMFT (left) and the angle to the honeycomb
plane in zigzag phases (right). Shown in (b) are projected positions
of a hidden SU(2) point (gray e) and a compasslike point (A).
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central zigzag phase. The former trend can be understood as
a proximity effect of the point where the EKH model maps
to AF compasslike model (to be analyzed in Sec. VI). Its
position is at I'" &~ —0.6 in the chosen parametrization and the
projection to JKT plane is indicated in Fig. 4(b). Though the
difference in I is still quite large, this special point efficiently
enforces the vortexlike correlations of type a so that the vortex
phase not only grows but also becomes dominated by vortex-a
pattern (cf. Appendix C). The expansion of the central zigzag
phase is linked to approaching the hidden SU(2) point that is
an image of the AF Heisenberg point in 7;7; transformation.
This point, having I &~ —0.4 and the projection onto JKT'
plane as indicated in Fig. 4(b), enforces the zigzag order with
the moment direction consistent with experiments and may be
actually regarded as the source of the central zigzag phase.
On the other hand, the top zigzag region related to the SU(2)
point in the IV = 0 plane is suppressed with I'" < 0, to the
extent that it is not even discernible already for I'' = —0.2.

The FM and AF phases develop more complex internal
structure when I'" < 0 is added. This is due to the competition
of the energy contributed by I' and I'’ that are decisive for
the moment direction at a classical level. The anisotropic
part of these contributions is proportional to £(I" + 2I"")(n, +
ny +n;)* for FM and AF, respectively. In the FM phase,
" < 0 creates a new subphase where the moments pushed
originally to the honeycomb plane due to I' > 0 [Fig. 2(b)]
take the direction perpendicular to the honeycomb plane. This
subphase extends near the outer rim of the FM phase where
I" is sufficiently weak. An opposite effect is observed in
the AF phase. Here, in addition, the absence of the moment
confinement by anisotropic classical energy in the case of
[" + 2I"" = 0 leads to an enhancement of quantum fluctuations
and the probability plotted in e.g., Fig. 4(b) therefore drops at
the corresponding circle.

Based on the data presented so far, the probabilities of the
best-fitting classical configurations represent a good measure
of quantum fluctuations in the ground state. To have an
independent quantification and to cross-check our results, we
compare them to a complementary approach, namely CMFT
described in Sec. III B. Its advantage is the ability to estimate
the ordered moment length that we plot in Fig. 4(a). The phase
boundaries of the collinear phases are in a good agreement
with the method based on ED and the moment length reveals
the less fluctuating FM and stripy phases, and the gradual
decrease of quantum fluctuations when going deeper into the
AF phase. The data on the moment angle to the honeycomb
plane show a somewhat larger spread but the trend is identical.

The evolution of the phases with increasing third nearest-
neighbor coupling J; is illustrated in Figs. 4(c) and 4(d).
As expected already at the level of the classical energy, the
antiferromagnetic J3 > 0 coupling further favors zigzag and
AF phases. The stripy and vortex phases of hidden FM nature
as well as the FM phase get quickly suppressed and the two
zigzag regions merge filling the entire left half of the phase
diagram. In both zigzag and AF phases, the third nearest-
neighbor bonds have contra-aligned spins favorable for AF
Js interaction. The energy gain brought by J; therefore does
not visibly shift the zigzag/AF boundary. The two zigzag
regions have incompatible moment directions. When merging
them, the system makes a compromise by pushing the moment

direction to the honeycomb plane so that it can easily flip be-
tween z and (x 4 y)/+/2 directions projected onto honeycomb
plane [cf. Fig. 2(b)]. Near the boundary between the zigzag
subphases where the moment lies in the honeycomb plane,
the quantum fluctuations are significantly suppressed.

We reach the conclusion that both IV < 0 and J3 > 0—
expected to be present in real materials—strongly stabilize
the central zigzag phase that is consistent with experimental
observations in NayIrO; in both the magnetic ordering and
direction of magnetic moment. As for the precise moment
direction (figures in the right column of Fig. 4), the evolution
seems to be dictated by K, I', while I'/, J5 influence mostly
the extent of the phase. We note that one has to distinguish
the real pseudospin direction and the moment direction as
probed by various techniques such as neutron or resonant x-
ray scattering [80]. Based solely on the moment direction with
the experimental data [41] translating to the pseudospin angle
of about 38°-40° [80], it seems that the FM K < O should be
the largest interaction, followed by possibly still large I > 0.
Being in accord with the conclusions of Ref. [80], this also
falls in line with ab initio estimates of dominant ferromagnetic
K and comparable / > 0, ' > 0, I'" < 0, and J5 > 0 [15].

Finally, small hatched/white areas in the zigzag phase
shown in Fig. 4 again indicate the instability of the collinear
zigzag pattern that may be interpreted as a protrusion of
the possible incommensurate phase. They appear at small '
and J3 which together with the link between I'" and trigonal
distortion suggests an explanation for the spiral order in less
distorted a-LiIrO3 compared to Na,IrOs with zigzag order.
This point was analyzed at a basic classical level in Ref. [75].

V. FLUCTUATION-FREE MANIFOLDS

As noticed in Sec. IV A when inspecting the phase diagram
of the JKT model [Fig. 2(a)], the AF phase contains an
unusual line of fluctuation-free ground states located near
the center of the phase diagram. The distance to this line
seems to determine the magnitude of quantum fluctuations
throughout the entire AF phase—the probability of the Néel
state in the ground state increases more or less monotonously
starting from the outer rim and approaching the line radially
inwards. In fact, similar lines are present also for nonzero I'’
slices in a certain I’ range and form thus an entire surface in
the parameter space. This is quite unexpected since at those
parameter points, all the interactions are active and there is
no apparent cancellation leading to the absence of quantum
fluctuations. What is more, a manifold of fluctuation-free
ground states is found also in part of the FM phase away
from the trivially fluctuation-free FM Heisenberg point. This
is demonstrated in Fig. 5(a) for two values of I'" < 0. Below
we address both cases, starting with the simpler FM one.

A. FM phase

A common feature of the fluctuation-free ground states is
the moment direction being perpendicular to the honeycomb
plane, suggesting to rewrite the Hamiltonian into the XYZ
reference frame [Fig. 5(b)] where this perpendicular direction
is singled out. The Hamiltonian contributions for all the bond
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(@) TI'=-01,J3=0

'=-0.2,J3=0

FIG. 5. (a) Lower left quadrant of the phase diagram for ' =
—0.1 and —0.2 showing the FM phase. The color indicates the
difference Py, — P between the probability P of the classical state
in the ED ground state and its maximum value of P,,x = 1/2. The
maximum probability, corresponding to a fluctuation-free ground
state, is reached in the FM subphase with the moments perpendicular
to the honeycomb plane (darker color) at the line given by K +
2T — 2I'" = 0 (dashed). (b) Coordinate frames used to express spin
interactions. (c) Schematic representation of the 7 transformation
on the honeycomb lattice. At each of the six sublattices, a dif-
ferent rotation of spin components is applied. (d) Correspondence
between the bonds and interaction Hamiltonians H®, H®), and H®
for the EKH model and extended Kekulé-Kitaev-Heisenberg model
obtained when performing the 7 transformation. (e¢) The fluctuation-
free line in the AF phase of the JKT" model. The line is determined
by 3/ + K — I' — 2I'" = 0 and crosses the hidden SU(2) symmetric
vortex point (gray e). (f) Shifted line for a case of nonzero I'": the
line no longer enters the AF phase.

directions can be cast to a common form [75]:
MY =Ty (SESY +S/SY) + 78787
+A[(SFST—5T'ST) cos ¢, — (SFST 48] 5Y)sing, ]
— B[ (S} S7+5787) cos by, + (S] S7+57S))sing, ].
(6)

The bond-dependence of the interactions is expressed via
the trigonometric factors containing the angles of the bonds
measured from the Y axis, i.e., ¢, =0, %”, %” for the ¢, a, and
b bonds, respectively. Equation (6) is obtained by inserting
into Eq. (1) the transformation relations

1 1 1
S* N NG SXcos ¢, + S'sing,
1 1 1
Sl=| % 7% A —S5sing, + S'cos ¢, |,
Z 2 1 Z
S —/3 0 - S

)

which represent a conversion from the cubic xyz to XYZ
reference frame for a ¢ bond as well as the necessary cyclic
permutation among xyz (rotation around Z axis), and using the
fact that cos 2¢,, = cos ¢, sin 2¢p, = — sin ¢, for the allowed
values of ¢,,.

The interaction parameters in (6) expressed in terms of the
original J, K, ", and I'’ read as

Jxy =J + 3(K =T —2I), ®)
Jz =7+ LK +2I +4T), ©)
A= {(K+2I -2, (10)
B=(K-T+TI). (11)

Let us now consider a FM state polarized in the Z direction
and inspect the terms that could lead to quantum fluctuations.
As in usual Heisenberg magnets, the Jyy interaction contain-
ing S;"S; and S;° S} does not act on the polarized state. The

above state is an eigenstate of the S operators, the action of
B terms in the Hamiltonian therefore sums up to

—BY | S* ) cosg, +58 Y sing, |, (12

sites y=a,b,c y=a,b,c

which drops out since both }_ cos¢, and }_ sing, are
zero. Only the remaining A terms containing S;"S7 and S;° S

are active. Setting A = 0, all the S;” or §; S terms that could
lead to quantum fluctuations are cut off by zero prefactors
and we are left with an exact eigenstate. The two conditions
for a fluctuation-free FM ground state, i.e., moments being
perpendicular to the honeycomb plane and A = 0 translating
to

K +2r —2I" =0, (13)

are checked in Fig. 5(a). Approaching the line given by
Eq. (13) within the (111) polarized FM phase, the probability
indeed reaches the maximum value of 1/2, reflecting the two
degenerate configurations (moments along Z or —Z) being
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superposed in the cluster ground state. Exactly at this line,
we find a doubly degenerate ground state. Finally, let us
note that the ground state remains fluctuation-free even in the
presence of J3 provided that the (111) polarized FM pattern is
preserved.

B. AF phase

A more complex situation is encountered in the case of
(111) polarized AF phase. Here the fluctuation-free manifold
is attached to the vortex point of hidden SU(2) symmetry
hosting an infinite number of fluctuation-free states. The (111)
polarized AF state is one of them, the others being e.g., the
vortex-a and vortex-b configurations shown in Fig. 2(b). The
connection to the SU(2) vortex point suggests a special role of
the Ty transformation which we discuss in more detail here.

The 7g transformation is a six-sublattice mapping that
rotates the spins according to the recipe:

(S¥, 8", 87) = (5%, 8, §9),
(¥, 87, 87) = (=8, —§*, —§%),
(¥, 87,87y = (8, §%, §Y),
(¥, 87, 87) = (—S%, —§%, —8),
(S¥, 8", 89) = (5%, 8%, 8),
(¥, 87, §7) = (=8, —S", —S%).

sublattice 1:
sublattice 2:

sublattice 3:

(14)
sublattice 4:

sublattice 5:
sublattice 6:

For a better understanding, the transformation is depicted in
Fig. 5(c). On sites 1, 3, and 5 marked by a square symbol,
the spins are rotated around the (111) axis, on sites 2, 4, and
6 marked by a circle, the mapping consists of 7 rotations
around axes lying in the honeycomb plane. This in effect
changes the (111) polarized AF pattern into (111) polarized
FM one, making a first step towards the understanding of the
AF fluctuation-free line.

The second step involves the transformation of the Hamil-
tonian. Performing the 74 spin rotations, we find that the re-
sulting model is similar to EKH in the sense that three types of
bond interactions of the form of Eq. (1) appear, H*) = H@,
HY =HP, and H@ = H©, with the parameters modified
according to

(J, K, T, T)kekuie = (=T, = =K + T, =J, =T").  (15)

However, the assignment of ¥ to the bonds is not simply
by the bond direction anymore. Instead, as shown in Fig. 5(d),
a network of benzene-like rings governed by alternating
H® and H@ is formed. They are interconnected by bonds
possessing the H™ type of interactions. This way, the T
transformation maps the EKH model to an extended variant
of Kekulé-Kitaev model [95].

We are now in position to combine the result of T¢ transfor-
mation with the argumentation of Sec. V A. Since the transfor-
mation led to (111) polarized FM pattern and in the new model
each site is a member of three bonds governed by H®, H®),
and H®, the cancellation of the terms leading to quantum
fluctuations proceeds exactly the same way. Substituting the
parameters in Eq. (13) according to (15), we thus arrive at the
condition for the fluctuation-free AF state:

3J+K—T —2I" =0. (16)

As demonstrated in Fig. 5(e), this line coincides with the
region where the probability of Néel state peaks at 1/2. For
a negative I'/, the line quickly gets out of the AF phase. How-
ever, going in the positive I’ direction, the fluctuation-free
line gets even deeper into the AF phase (cf. Appendix C). At
the special point J =T =T" > 0, K = 0 on the fluctuation-
free manifold, the model even reduces to AF Ising model
with the (111) Ising axis, as can be seen from Egs. (6)—(11).
Unlike in the previous FM case, the addition of J3 spoils the
fluctuation-free nature of the ground state since the J3 interac-
tion generates terms of A type under the 7T transformation.

V1. ISING-KITAEV-COMPASS MODEL

In this section, we address yet another feature of the model
that enables further insights into its phase behavior. Namely,
we find points in the parameter space where the four interac-
tions JKT'T' can be combined into a single one, characterized
by a single interacting spin component (interaction axis) that
depends on the bond direction. This way, the model in Eq. (6)
may realize combinations of Ising, Kitaev, or compass model
on the honeycomb lattice.

A. Compass point in the phase diagram

Inspecting the JKT' phase diagram, we find a degenerate
point, in which several phases seem to meet: vortex, ferro-
magnet, and both zigzag phases. Writing the interaction as
H=> STH;;S;, we find that the Hamiltonian matrices in
this parameter point K =T = —J > 0, ['' = 0 have a sym-
metrical block shape:

J+K T T 0 0 0
H=| 1T J rv|=|l0 -k k|, a7
r r J 0 K -K
J I T -K 0
H=|I" J+k T'|=l0 o o], «s
r o J K 0 -K
J T T K K 0
H=|r J T |=|k -k ol @9
' ' J+K 0 0 0

The matrices can be diagonalized by a change of basis to the
rotating coordinate frame %,,¥,,%,,y € {a, b, ¢}, where %,
axis points in the bond direction, y, is perpendicular to the
bond direction and lies in the honeycomb plane, and Z,, points
out of the honeycomb plane—see Fig. 6(a) for a sketch of
this coordinate system. After the change of basis, all three
interaction matrices have the same form for all bond directions
a, b, c:

2K 0 0
H=] o o0 o], (20)
0 0 0

064425-10



157

KITAEV-LIKE HONEYCOMB MAGNETS: GLOBAL PHASE ...

PHYSICAL REVIEW B 99, 064425 (2019)

(@) (b)

n-rotated Kitaev

-100 | "compass"

Kitaev
L L

-140 I L I I
-1 -0.75 -05 -025 O

r

025 05 075 1

FIG. 6. (a) Rotating coordinate system %,,y,,Z, on a honey-
comb lattice: color distinguishes three bond types a, b, c. (b) The
direction of the interaction axis for each bond. All of them are at
an angle ¢ with the Ising (111) direction shown in black. [(c) and
(d)] Ising-Kitaev-compass parameter line in the phase diagram and
the corresponding values of the I'" parameter. The Ising point ({J)
emerges for positive I/, while the m-rotated Kitaev point (o) and
the perpendicular “compass” point (A) are found for negative I
values. The true compass point (A) appears for I'' = 0. (e) The angle
¥ of the interaction axis to the (111) direction depending on the
position on the parameter line. ¢ = /2 is assumed. The Kitaev
point (e) is connected to the w-rotated Kitaev point (o) by the 7;
dual transformation [75]—a 7 rotation around the (111) axis.

which represents FM interaction in the bond direction, con-
cisely written as

H= Z —2K(S; - rij)(S; - rij), 3y

(ij)eNN

where the unit vector r;; points from site i to site j. This form
of interaction is known in the literature as the 120° honeycomb
compass model [11,96-98]. Similar to the Kitaev model, it
features frustration due to competing interactions for the three
bond directions. However, the exact ground state is not known

in this case and its nature is in fact not clear, as several past
works came to inconsistent conclusions. One study found a
Néel state [96], others suggested a stabilization of a dimer
pattern [97], a superposition of dimer coverings [98], or a
quantu