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Abstract

The habilitation thesis is devoted to recent developments on boundary
value problems for nonlinear elliptic equations with a Hardy potential in a
measure framework. The presence of the Hardy potential which is singular
on the boundary of the domain under consideration and the involvement of
measures in the analysis yield substantial difficulties and lead to disclose the
novelty of the research. New aspects are displayed not only on employed
methods but also on observed novel phenomena.

The thesis consists of five chapters. The first chapter addresses the
main topics covered in the thesis and presents our contributions, which are
collected from our recent works, including results on the existence, nonexis-
tence, uniqueness, a priori estimates and qualitative properties of solutions,
a full characterization of isolated boundary singularities, removable singu-
larities. The major features of the problems under investigation depend
essentially on the expression of the nonlinear term in equations. Therefore,
typical models are successively considered throughout the last four chapters
in order to reveal different phenomena. In particular, chapter 2 deals with
absorption nonlinear terms and chapter 3 treats source nonlinear terms.
Chapter 4 is devoted to an extension of results in the previous chapters to
more general equations and systems. Finally chapter 5 focuses on the case
where nonlinear terms depend on both solutions and their gradient.






CHAPTER 1

Introduction

Section 1.1 of this chapter is devoted to an overview on boundary value
problems for linear and nonlinear elliptic equations involving the classical
Laplace operator in function settings and in measure frameworks. We also
discuss the role of measures and point out essential differences between the
linear case and nonlinear case in measure frameworks. In Section 1.2, we
give the motivation for the study of singular operators which are the Laplace
operator perturbed by Hardy potentials. Then we address the main prob-
lems involving these operators in this thesis. The interaction between Hardy
potentials and measures leads to interesting features of the problems and re-
veals new phenomena. We present briefly our main contributions, including
results extracted from our joint paper with Moshe Marcus [106], with Kon-
stantinos Gkikas [78, 80] and on our single-author work [119], as well as
accompanying comments and comparisons with previous in the literature.
This may help the reader to grasp the main results more easily and to follow
the subsequent sections more smoothly. The detailed statements of these
results are provided in Section 1.3 of the chapter for the convenience of the
reader. Finally, in Section 1.4, we discuss related and open problems which
have recently attracted a great deal of attention.

The thesis is not a self-contained text despite of our effort to make
it accessible to researchers and students with different backgrounds. We
assume that the reader is familiar with basic notions in functional analysis
and measure theory which can be found in standard textbooks, for instance
[34, 64, 63, 1, 76]. However, at some places, relevant concepts and ideas
from these fields are recalled and explained in order the make the exposition
of the main results clearer.

1.1. Overview on boundary value problems

In this section, we first list basic notations that are used frequently
throughout the thesis. The reader is referred to the standard textbooks
[1, 34, 63, 76, 128, 116, 139, 140] for more properties of these notations.
Then we recall well known results for boundary value problems for linear and
nonlinear equations involving the classical Laplace operator. These results,
as well as the proofs, can be found in excellent references [116, 138, 139].

Basic notations.

e Assume (2 is a domain (namely a connected, open nonempty subset)
in RV (N > 1). Let C(Q) be the space of continuous functions on Q. We
denote by C*¥(Q) the space of functions k times continuously differentiable
on Q (for integer k > 1) and C°°(Q) = Np>1C*(2). Let C.(Q) be the space
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2 1. INTRODUCTION

of continuous functions on © with compact support in Q. Put C¥(Q) =
Ck(Q) N C(Q) and CX(Q) = C®(Q) N C.(Q).

e Let ¢ € C(2) be a positive weight function. Denote by L*(, ¢), 1 <
K < 00) the weighted Lebesgue space of functions v satisfying [, [v|"¢dz <
00. This space is endowed with the norm

loll e o) ( JACS qsda:)

When ¢ = 1, these spaces become the usual Lebesgue spaces L"(2). We
denote by LlOC(Q) the space of functions v such that v € L®(Q) for any
compact subset Q' C Q.

e For 1 < k < o0, the weighted Sobolev space W™ (£, ¢) is defined by

W™R(Q, ¢) = {v € L*(Q,¢) : DPv e L*(Q,¢) for every |5] < m}.

This space is endowed with the norm

[vllwmn@e = > 1Dl
|8]1<m

We denote by H'(Q, ) = WH2(Q,¢). When ¢ = 1, these spaces become
the usual Sobolev spaces W™"(€2). We denote by Wm”(Q) the space of
functions v such that v € W™ (') for any compact subset ' C Q.

e A Borel measure on 2 is called a Radon measure if it is bounded on
compact sets of Q. Let (2, ¢) be the space of Radon measures 7 on {2
satisfying [ ¢d|7| < co and MT(Q,¢) be the positive cone of M(L, ¢).
Denote by 2(092) the space of bounded Radon measures on 9 and by
M (09Q) the positive cone of M(IN). The space M(, ¢) and the space
M(0N) are respectively endowed with the norms

Il == / g7,
[9]

- / dJv].
o0

e Denote by L (Q,¢), 1 < k < oo, the weak Lebesgue space (or
Marcinkiewicz space) with weight ¢. The subscript w is an abbreviation
of “weak”. See the definition of weak Lebesgue spaces in subsection 1.3.1.

e Denote d(x) = dist(z,d) where 9 is the boundary of Q. When
¢ = 6% with § > —1, we have the spaces L"(Q,d%), W™(Q, %), M(Q, §%)
and L (Q,0%).

e A sequence {€2,} is a C? exhaustion of Q if {Q,} is uniformly of class
C? and for every n, Q, C Q,,1 and U,€, = €.

e Throughout the thesis, c,cy,co, C,C1,C’ denote positive constants
which may vary from line to line. We write C' = C(a,b) to emphasize
the dependence of C on the data a, b.

e The notation f ~ h means that there exist positive constants cq, ¢y
such that c1h < f < c2h.

e For any a,b € R, we write a A b = min{a, b} and a V b = max{a,b}.

e For k > 1, we denote by " the conjugate exponent, i.e. k' = £5.

e For a set F in RY, denote by xg the indicator function of E.
e For z € RN, denote by d, the Dirac measure concentrated at x.
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e Denote by dS the surface element on 0f).
e For z € 0, denote by n, the outer unit normal vector at z. We denote

by 8% the derivative in the outer normal direction on 0f).

Ou Ou )
Oz’ Oxn /"

e The gradient of u is Vu = (

1.1.1. Function settings. Nonlinear elliptic equations have been one
of the most developed subject in the area of partial differential equations
(PDESs) not only because of their great interest to other fields within math-
ematics such as calculus of variations, harmonic analysis, measure theory,
differential geometry, fluid dynamics, probability theory, but also because of
their applications in physics, engineering, and other applied scientific disci-
plines. The simplest second order PDE is the Laplace equation

—Au=0 inQ (1.1.1)
where  is a domain in the Euclidean space RY (2 < N € N) and A

2

In (1.1.1) and throughout the present thesis, we write the Laplace operator
with ‘minus sign’ because the operator —A is positive. In the context of this
habilitation thesis, unless otherwise stated, 2 is a C? bounded domain (see
the definition of C? domains in Gilbarg and Trugdinger [76]). A function
u € C?(R) satisfying equation (1.1.1) is called harmonic.

Roughly speaking, a boundary value problem for (1.1.1) is a problem of
finding an harmonic function v in €2 which satisfies certain auxiliary bound-
ary conditions on some part of the boundary 0f2 in some sense. There is a
huge literature on boundary value problems for (1.1.1), and for more gen-
eral elliptic equations, in which one of the earliest well-known works is the
Dirichlet problem which asks if we can find an harmonic function u in
with a prescribed boundary value v = h on 9f2, where h is a given function
defined on 0€2. The history of such Dirichlet problem is remarkable and led
to an extensive development of methods in PDEs in function settings (see a
survey by Brezis and Browder [35]).

Another important equation is the Poisson equation which arises in many
varied physical situations

denotes the Laplace operator (or Laplacian) defined by Au = >

—Au=7 1in ), (1.1.2)
where 7 is a given datum. The Dirichlet problem associated the Poisson

equation is

—Au=rT1 in Q,
{ (1.1.3)

u=v on 0f),

where v is a given boundary datum. It is classical that if the data 7 and v are
smooth enough then problem (1.1.3) admits a unique classical solution u €
C?(2) N C(Q) (see for example [76, Theorem 4.3]) and hence the equation
and the boundary value condition in (1.1.3) are understood in the pointwise
sense. By multiplying the equation in (1.1.3) by ¢ € C2(Q), where

C2(Q) ={p € C* Q) : ¢ =0 on IN}

and then using the integration by parts, we obtain the formula

—/QuAgZ)dx:/QTqﬁdx—/aQ ugﬁds, (1.1.4)
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where n is the outer normal unit vector to 0f2, a% denotes the derivative
in the outer normal direction on 0€2 and dS denotes the surface element on
09). When 7 and v are not regular, one faces a difficulty stemming from the
fact that (1.1.3) does not admit any classical solution. However we observe
that functions satisfying (1.1.4) may exist, which leads to the definition of
weak solutions. More precisely, Brezis [33] defined weak solutions to (1.1.3)
with integrable data as follows:

Assume 7 € L'(Q,6) and v € L'(99), a function u is a weak solution of
(1.1.3) if u € LY(Q) and u satisfies (1.1.4) for all ¢ € C3(Q). Here § is the
distance function to the boundary 0f2.

It is known, by the classical approximation method, that for any 7 €
LY(Q,6) and v € L'(09), there exists a unique weak solution u of (1.1.3)
(see [116, Proposition 1.1.3]).

Let G%: Q x Q\ {(z,2) : z € Q} — R, be the Green kernel (or Green
function) associated to the operator —A and P? : Q x 9Q — R, be the
Poisson kernel associated to —A, i.e.

Q
Pz, y) = —aain(a:,y) Vo € Q,y € 0.
More properties and sharp estimates of Green kernel and Poisson kernel can
be found in [132, 63, 31, 128, 139).

For any 7 € L'(Q,8) and v € L'(99), the unique weak solution to

(1.1.3) can be represented by

/GQ T, y)T dy+/ Pz, 9)v(y)dS(y). (1.1.5)

The theory of linear problem (1.1.3) forms a basis for the investigation
of the Dirichlet problem

{—Au+f(u)zr in €,

u=rv on 09, (1.1.6)

where f: R — R is a given function, 7 and v are given data. The equation
in (1.1.6) consists of the linear part Au and the nonlinear part f(u). This
problem has been studied by many authors in various function settings (see,
for example, Brezis and Strauss [33, 40], Marcus and Véron [116], Quittner
and Souplet [127, 128] and Drabek and Milota [51] and references therein).
Weak solutions of problem (1.1.6) are defined Brezis and Strauss as follows:

Assume 7 € LY(Q,6) and v € LY(99), a function u is a weak solution of
(1.1.6) if u € LY (), f(u) € L'(Q,6) and u satisfies

—/qubdac—i—/f(u)qux:/qudx— ; gd) vdS V¢ € Ci(Q). (1.1.7)
Q

Notice that for any ¢ € C3(Q), |¢| < ¢, therefore ¢7 € L1(2). Conse-
quently, L(€, §) is the largest function space for the data.

When f: R — R is a continuous, nondecreasing function with f(0) =0
(in this case it is called absorption nonlinear term), the solvability of (1.1.6)
for any 7 € L'(Q2,0) and v € L*(99Q) is essentially due to Brezis and Strauss
[40] and was demonstrated by Marcus and Véron in [116, Proposition 2.1.2].
It is worth emphasizing that this result holds true for a quite large class
of absorption terms since it does not require any additional condition on
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f. Therefore, in this regard, linear problem (1.1.3) and nonlinear problem
(1.1.6) in L! setting share a similarity.

1.1.2. Involvement of measures.

Thomas-Fermi equation. A motivation for the study of semilinear ellip-
tic equations in measure frameworks stems from the Thomas-Fermi theory
(see Lieb [95] and Bénilan and Brezis[20]). The theory was invented by
L. H. Thomas and E. Fermi in order to describe the electron density o(z),
r € R? and the ground state energy for a system (e.g. a molecule) consisting
of k nuclei of charges m; > 0 and fixed locations A; € R3 (1 <i < k) and ¢
electrons. The Thomas-Fermi energy functional for the system is

1
5(9)23/ diw—/ ng:r+/ / 7Q(x>g(y)dxdy+U
5 Jmr3 R3 2 Jgs Jrs |x—y

A:={0>0:0€e LYR? DL%(R?’), / odx = (},
R3

on

where V(z) = Ele mi|lz — A;]7! and U(z) = Zf,j:l mimj|A; — A7 T
is noticed that o — £(p) is convex. The Thomas-Fermi energy is defined by

ETF = Qigig(g). (1.1.8)

The Euler-Lagrange equation, which is also call the Thomas-Fermi equation,
is
03 = (u—\)". (1.1.9)
where —\ is called the Lagrange multiplier or chemical potential and
o(z)
u(xz) =V(x) — / dy.
(z) = V(z) P
It is known that there is a minimizer p for (1.1.8) if and only if £ < M :=

Zle m;. The minimizer is unique, denoted by o’*, and satisfies (1.1.9)
for some A > 0. Conversely, any positive solution of (1.1.9) is a minimizer
of (1.1.8). In the neutral case, i.e. ¢ = M, one has o > 0 and A = 0,

therefore (1.1.9) becomes g§ = u. By applying A on both sides, one obtains
a semilinear equation

k
— Autdrus =4n Y md, (1.1.10)
i=1
where 04, denotes the Dirac measure concentrated at A;. It can be seen
that the left-hand side of this equation consists of a linear part Au and a
3
nonlinear part which is expressed by w2, while the right-hand side is the
sum of Dirac measures concentrated at the points A;.

Interior measure data. Motivated by the investigation on equation (1.1.10),
Bénilan and Brezis [20] considered a more general equation

—Au+uflu=7 inQ (1.1.11)

where € is a domain in RY, p > 1 and 7 is a Radon measure on €. Equation

(1.1.10) is a particular case of (1.1.11) with N = 3 and p = 3. The analysis of

this equation reveals that the theory in L' setting previously established by
Brezis and Strauss [40] cannot be easily extended to a measure framework
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and new striking phenomena appear due to the nonlinear nature of the
problem. Therefore, dealing with a measure framework would provide a deep
insight about the problem. In particular, Bénilan and Brezis [20] showed
that the value 1~ is a critical exponent for the existence of equation (1.1.11)
with zero Dirichlet boundary condition v = 0. More precisely, they proved
thatif 1 <p < % then the problem has a unique solution, while if p > %
then there is no solution with u = d4 for any A € Q). Many developments
have been achieved since the work of Bénilan and Brezis [20], including
Véron [136] and Brezis and Oswald [39] for a complete classification of
solutions with an isolated singularity, Vazquez and Véron [134, 135] for
more general nonlinearities, Brezis and Véron [41] for removable isolated
singularities, Baras and Pierre [14, 15] for removability results in terms of
Bessel capacities, Vazquez and Véron [133] and Friedman and Véron [70]
for isolated singularities of quasilinear equations.

Boundary measure data. Similar problems with boundary measures have
been also studied with important motivation coming from the probability
theory. Boundary value problems with measure data for linear and semilin-
ear equations are respectively related to Markov processes called diffusions
and superdiffusions. A diffusion is a model of a random motion of a single
particle and is characterized by a second order elliptic differential operator,
including the Laplacian. A superdiffusion, which describes a random evo-
lution of a cloud of particles, is closely related to semilinear equations. For
further discussions about the importance of measure boundary data in the
study of linear and semilinear equations in connection with diffusions and
superdiffusions, the reader is referred to excellent books of Dynkin [57, 58].

The role of boundary measures can be seen in particular from the rep-
resentation theorem for harmonic function. More precisely, given a positive
harmonic function in €2, by Herglotz-Doob theorem [116, theorem 1.4.1],
there exists a unique measure v € 9MM™(9N) such that

= Qﬂf 1% . i
W)_/mp (2, 9)dv(y) (11.12)

holds. Such measure v is called boundary measure of u and it is attained as
the limit of the Sobolev trace of the solution w in each surface parallel to
0. More precisely, let {€2,} be a C? exhaustion of Q and denote by u|sq,
the Sobolev boundary trace of u on 0€2,. Then there exists a nonnegative
bounded Radon measure v on 052 independent of the choice of the exhaustion
such that the sequence of measures {u|gn,dS} converges weakly to v. The
above result shows that in order to completely characterize the boundary
behavior of harmonic functions, it is insufficient to deal only with function
settings and hence measures have to be involved in the analysis.

1.1.3. Measure frameworks.
Linear equations. The results for linear equations in function settings

can be extended to measure frameworks in which the definition of weak
solutions to (1.1.3) is modified as follows:
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Assume 7 € M(2,9) and v € M(IN). A function u of (1.1.3) is a
solution of (1.1.3) if

- / uA¢dx = / pdT — @du, Vo € C2(9). (1.1.13)
Q Q o0 On

As explained in L' setting, for any ¢ € C2(f2), one has |¢| < ¢d, and hence

the first term on the right-hand side of (1.1.13) is finite. This also explains

why (€, ) is the largest possible measure space one can work on. The

second term on the right-hand side is finite because g—ﬁ is bounded.

It is known that, for any 7 € 9(Q,0) and v € M(0N), there exists a
unique solution of (1.1.3) and the solution can be represented by the Green
kernel acting on 7 and the Poisson kernel acting on v (see [116, Theorem
1.2.2)), i.e.

1N$):L/(fw$dﬁdﬂy)+ PO, y)dv(y). (1.1.14)
Q o0

In particular, given a measure v € 9(0f2), the harmonic solution with
boundary condition u = v is given by

= Qx % . .
um»—AQP<,ym<w (1.1.15)

Absorption nonlinearities. Over the last decades, boundary value
problems for semilinear equations in measure frameworks have been inten-
sively investigated both in probabilistic approaches and analytic methods
with the aim of bringing into light and describing several aspects of nonlin-
ear phenomena. The pioneering work on the Dirichlet problem with measure
boundary data for semilinear elliptic equations with an absorption term

—Au+ f(u)=0 inQ, (1.1.16)

where f : R — R is a nondecreasing, continuous function with f(0) = 0,
is due to Gmira and Véron [82]. They introduced the definition of weak
solutions of

{ —Au+ f(u) =0 in §, (1.1.17)

u=v on 0f),

in spirit of Brezis [33] as follows:

Assume v € M(0N). A function u is a weak solution of (1.1.17) if
u € LYQ), f(u) € LY(,6) and u satisfies

0 _
—/uA¢dx+/ f(u)pdr = — 99 1 Vo € CE(Q). (1.1.18)
Q Q o0 On

The notion of weak solutions is well defined. Indeed, for any ¢ € C3(Q),
one has A¢ € L>(Q) and hence uA¢ € L*(Q). Therefore the first term on
the left-hand side of (1.1.18) is finite. The second term on the left-hand side
of (1.1.18) is also finite due to the fact that |¢| < ¢ and f(u) € LY(Q,0).
It can be also seen that the term on the right-hand side of (1.1.18) is also
finite because g—ﬁ is bounded on 02 and v is a bounded Radon measure on
0.

A highlighting feature is that, in contrast to the L' case where the
existence holds true for every L' boundary datum, the Dirichlet problem
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(1.1.17) is not solvable for every measure datum in general. More precisely,
Gmira and Véron [82] showed that if f satisfies

/100(f(t) (=N L < oo, (1.1.19)

then problem (1.1.17) has a unique weak solution. This result was demon-
strated by employing a classical approximation method, in combination with
Marcinkiewicz estimates on Green kernel and Martin kernel and Vitali con-
vergence theorem. Condition (1.1.19) is sharp and the value % appearing
in (1.1.19) is a critical exponent for the existence of a solution to (1.1.17).
When f(u) = |ulP~tu with p > 1, equation (1.1.16) becomes

—Au+uflu=0 inQ, (1.1.20)
and condition (1.1.19) is interpreted as 1 < p < %, which is the subcritical

range. Hence in this range, for any v € M(0€2), problem
{ ~Au+|uflu=0 inQ,

(1.1.21)
u=v on 052,

admits a unique weak solution in this case. In the supercritical range, namely
p > L, it was shown (see [82]) that there is no weak solution of (1.1.21)
if v is a Dirac measure concentrated at a point on 9¢). Furthermore, when
p > %, any nonnegative solution u € C(Q\ {0}) of (1.1.20) vanishing on
00N\ {0} is identically zero, i.e. isolated boundary singularities are removable.

The topic has reached to its full flowering through a series of celebrated
papers by Marcus and Véron [109, 111, 112, 113, 114, 115, 99, 116] and
many other works (see for examples [37, 30, 120, 29, 22| and references
therein). Taking into account the construction of the boundary measure
of positive harmonic functions, Marcus and Véron introduced a notion of
boundary trace [116, Definition 1.3.6] in order to describe the boundary
behavior of solutions to equation (1.1.16).

DEFINITION 1.1 (m-boundary trace). Let u € VVllof(Q) for some k > 1.
We say that u possesses an m-boundary trace on 0f) if there exists a bounded
Radon measure v on 952 such that, for every C? exhaustion {Q,} of Q and

every ¢ € C(Q),

lim ulaq,, pdS = odv.
n=00 JaQ, [Y)

Here u|pq, denotes the Sobolev trace of u on 9,. The m-boundary trace
of u is denoted by tr(u).

It is known from [116, Proposition 1.3.7] that every positive harmonic
function v in 2 admits a positive m-boundary trace v € M(92), which in
fact coincides the boundary measure given by (1.1.15).

A first step to study the notion of m-boundary trace is to deal with
moderate solutions of (1.1.16), namely weak solutions of (1.1.16) which are
bounded by positive harmonic functions (see [116, Definition 3.1.1]). The
equivalence between the notion of m-boundary trace and the concept of mod-
erate solutions was established by Marcus and Véron [116, Theorem 3.1.2].
Moreover, these notions are equivalent to the condition f(u) € L(€,4).
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Afterwards, Marcus and Véron generalized the notion of m-boundary
trace to a notion called rough boundary trace and pointed out that, un-
der some additional assumptions on f, every positive solution of (1.1.16)
possesses a rough boundary trace given by a positive outer regular Borel
measure on Jf2 (see [115, Theorem 1.1] or [116, Theorem 3.1.8, Theorem
3.1.12 and Definition 3.1.14]). Conversely, they showed that the solvability
for (1.1.17) holds true when v is a positive outer regular Borel measure which
may be infinite on subsets of 9Q (see [116, Theorem 3.3.1]). In particular,
if f(u) = |u|P~'u then, in the subcritical range p < %, for any positive
outer regular Borel measure v, problem (1.1.21) admits a unique positive so-
lution (see [115, Theorem 1.6]). Also, in the subcritical range, Marcus and
Véron [111, 115] characterized completely boundary isolated singularities
of nonnegative solutions of (1.1.20). It means that if u € C'(Q\ {0}) is a non-
negative solution of (1.1.20) vanishing on 92\ {0}, then either u = ug, the
solution of (1.1.21) with v = kdg for some k > 0 (weakly singular solutions),
or u = limy_, o0 ug (strongly singular solution).

The supercritical case is more challenging and was treated by many au-
thors using various techniques. The removability result due to Gmira-Véron
has been significantly extended, either by using probabilistic approach by
Le Gall [92], [93], Dynkin and Kuznetsov [59], [60], under the restriction
N+1

1 < p < 2, or by employing purely analytic methods by Marcus and

Véron [112, 113, 114] in the whole range ¥+ < p. The key ingredient

N-1
in analyzing the problem is the Bessel capacity Cz , in (N — 1)-dimension,
p7
where p’ = ]%. Among the most interesting results, it is worth mention-

ing that problem (1.1.21) is solvable with v € 9T (9Q) if and only if v is
absolutely continuous with respect to the C': ,-capacity. Furthermore, if
p7

E C 08 is compact and u € C(Q\ E) is a solution of (1.1.20) vanishing on
90\ E, then u is necessary zero if and only if C2 ,(E) = 0. A complete
p)

characterization of positive solutions of (1.1.20) has been developed by Mse-
lati [117] when p = 2, by Dynkin [57, 58] for % < p <2, and finally by
Marcus [99] for the whole supercritical range p > {41

Source nonlinearities. An important PDE with a source term is the

Lane-Endem equation
—Au=u" in Q, (1.1.22)

where p > 1, which was named after astrophysicists Jonathan Homer Lane
and Robert Emden. This equation was introduced in 1869 by Home Lane
[89] in the study of the temperature and the density of mass on the surface
of the Sun and has received special attention because it can be used to
describes polytropes in hydrostatic equilibrium as simple models of a star. A
systematic survey on the this equation from the physical and mathematical
point of view was presented in [42, 17]. A great number of remarkable
works have been carried out in various directions by many mathematicians,
including Lions [96], Brezis and Nirenberg [38], Gidas, Ni and Nirenberg
[73], Gidas and Spruck [74, 75], Baras and Pierre [14, 15] and Kalton and
Verbitsky [86], Polacik, Quittner and Souplet [125], Quittner and Souplet
[127, 128].
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It is worth mentioning that a universal pointwise estimate for nonneg-
ative solutions of (1.1.22) was obtained by Polacik, Quittner and Souplet
[125, Theorem 2.3] for 1 < p < % by using a rescaling argument, a key
doubling property and Liouville-type results.

The Dirichlet problem with measure boundary data

{ —Au=uP in Q,

"y on 0, (1.1.23)

was first studied by Bidault-Véron and Vivier in [31] where estimates involv-
ing classical Green and Poisson kernels for the Laplacian were established
to obtain an existence result in the subcritical range, i.e. 1 <p < % Af-
terwards, Bidaut-Véron and Yarur [32] reconsidered this type of problem in
a more general setting and gave a necessary and sufficient condition for the
existence of solutions. Chen et al. [43] investigated the Dirichlet problem
with a more general source term by using the Schauder fixed point theorem
in combination with weighted Marcinkiewicz estimates. Recently, Bidaut-
Véron et al. [28] provided new criteria expressed in terms of boundary
capacities for the existence of weak solutions to problem (1.1.23).

A remarkable feature of the Dirichlet problem (1.1.23) is that, not only
the value of exponent p, but also the total mass of the boundary datum v
plays an important role in deriving the existence and non-existence result.
More precisely, when 1 < p < %, there exists a threshold value p* such
that problem (1.1.23) admits a solution if [[v[lsnan) < p*, and no solution if
[¥llonaq) > p* (see [31]).

It is worth mentioning that existence results for scalar equations were
extended to the Lane-Emden system

—Au=vP 4+ 1 in Q,
—Av=uP+7 inQ, (1.1.24)
u=v, V=71 on 052,

where 7,7 are measures in () and v, are measures on 0{). Various ex-
istence and non-existence results, as well as a priori estimates, for solu-
tions of (1.1.24) were established in [32]. See also the celebrated paper of
Pol4cik, Quittner and Souplet [125] and the books of Quittner and Souplet
[127, 128] for related results.

Gradient-dependent nonlinearities. Equations with a nonlinear
term depending on the gradient of solutions (or the convection) arise in
various models of optimal stochastic control with state constrains. A typi-
cal equation is

—Au+ |Vul/f=0 in Q, (1.1.25)

with ¢ > 1, which is also a particular case of Hamilton-Jacobi-Bellman equa-
tions. Existence, a priori estimates and qualitative properties of solutions to
this equation, as well as more general class of equations, were discussed in
Lions [97] and Lasry and Lions [90]. The Dirichlet problem with measure
data

{_Au+f(\Vu!) =0  inQ, (1.1.26)

U =v on 0f)
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where f: Ry — R, is a continuous, nondecreasing function with f(0) =0,
was first studied in our joint work with Véron [120]. Under the subcriticality
integral condition on f given by

/ FOE N dt < 400,
1

we obtained the existence of a positive solution to (1.1.26). When f is of
power type, namely f(|Vu|) = |Vul? with 1 < ¢ < 2, the subcriticality
integral condition reads as 1 < g < % It was showed that % is the
critical exponent for the solvability of (1.1.26) and a complete description of
the structure of solutions with an isolated singularity on 9€) was provided.
Moreover, the existence of a solution to the Dirichlet problem with boundary

datum given by a Borel measure in the subcritical case, i.e. 1 < ¢ < %,
and a removability result in the supercritical case, i.e. % < q < 2, were

also established.

These results were then extended in our joint paper with Marcus [105] to
the Dirichlet problem for a much more intricate equations with a nonlinear
term depending on both solutions and their gradient

{ Au+ f(u,|Vul) =0 in €, (1.1.27)

u=rv on 02

Two model cases f(u,|Vu|) = wP + |Vul? and f(u,|Vu|) = uP|Vul? were
carefully studied in [105].

It is worth mentioning that equations with a gradient-dependent non-
linear term have been studied in various directions. We refer to Ghergu and
Radulescu [71, 72] for singular elliptic equations with convection term and
zero Dirichlet condition, Alarcén, Garcia-Melidn [5, 6] for Keller-Osserman
type estimates and Liouville type theorems, Aghajani, Cowan and Lui [2,
3, 4] for singular solutions, Bidaut-Véron, Garcia-Huidobro and Véron [25,
26, 27] for a priori estimates on singular solutions.

1.2. Elliptic equations with a Hardy potential

In this section, we first explain the role of Hardy potentials and measures
in the investigation. Then we address the main problems regarding elliptic
equations with a Hardy potential in the thesis and depict briefly the main
results collected from our papers [106, 119, 78, 79, 80]. The detailed
statements of these results will be provided in Section 1.3.

1.2.1. The role of Hardy potentials. Schrédinger operators of the
form Ly = A + V, where V is a potential, have been intensively investi-
gated by numerous mathematicians because of their applications in non-
relativistic quantum mechanics, geometry, spectral and scattering theory,
and integrable systems (see for example [129, 131]). The behavior of the
potential V has a significant effect on properties of Ly such as spectral prop-
erties and the existence of the associated Green kernel and Martin kernel.

The Coulombian potential V (z) = p|z|™!, u € R, appears in the Thomas-
Fermi-Dirac-von Weizsécker theory [18, 19]. The case where V' is an inverse
square potential, i.e. V(x) = ul|z|~2, is called Leray-Hardy potential and
has been studied in connection with semilinear elliptic equations by Guerch
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and Véron [83], Cirstea [47], Dupaigne [55], Dédvila and Dupaigne [49, 50],
Du and Wei [53], Chen and Véron [44].

When singular potentials, which blow up on the boundary 02, were
involved, in most of the cases, they were assumed to satisfy, e.g. |V (z)| <
cd(x)?7¢ for some € > 0 small or more generally 6V € L'(Q) (see [141, 122,
123]), which exclude the case where V behaves like 62 on certain part of
Q. The case where

V()] < C3(z)2 (1.2.1)

is of great interest and a theory of linear Schrodinger equation Lyu = 0 on
manifolds was successfully and systematically developed by Ancona [7, 8].
The particular potential V (x) = ud(x) 2 has received special attention and
it is called Hardy potential because of the close link to the Hardy inequality

2
CH(Q)/@de/ |Vo|?de Vo € HY (), (1.2.2)
Q Q

where Cy(€2) denotes the best constant in Hardy inequality (also called
Hardy constant) given by

, Jo IVe|?dz
Cu(Q):= inf =227 %0 1.2.3
(@) peHL@\{0} Jo(p/0)%dz (1.23)

In spirit of [69], Hardy inequality (1.2.2) can be interpreted as a form of
uncertainty principle. This means if the function ¢ in (1.2.2) is localized
close to the boundary (i.e. the term on the left-hand side of (1.2.2) is large)
then its momentum becomes large (i.e. the left-hand side of (1.2.2) is large).
The exponent —2 appearing in the power 62 plays a crucial role because it
keeps inequality (1.2.2) scaling invariant.

Inequality (1.2.2) in one dimensional case with Hardy constant Cg(€2) =
% was discovered by Hardy [84, 85]. Moreover, he pointed out that the
Hardy constant is not attained. This inequality was then extended to Lip-
schitz domains in RY by Necas [118], Opic and Kufner [121] and was re-
visited by Brezis and Marcus [36]. It is classical that Cy () € (0, ] and
Cu(Q) = 1 if Q is convex (see [103, Theorem 11]) or if —A§ > 0 in the sense
of distributions (see [16, Theorem A]). Moreover, the infimum in (1.2.3) is
achieved if and only if Cy(Q) < 1.

For 1 € R, denote by L, the Laplace operator perturbed by a Hardy
potential
Il
52’
where 0(x) = dist(x, 092). Notice that the Hardy potential blows up on 912.
The energy functional associated to the operator L, is given by

1 %

Bue) =3 | (I96F =5 o, pemj@. (129

L,=A+ (1.2.4)

We see that if ;1 < Cp(Q)(< 1) then the energy functional is bounded from
below and important spectral properties of —L,, can be derived, which plays
an important role in the study of linear and semilinear equations involving
—L,, in a variational framework.
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Therefore, the first and important step in the investigation of boundary
value problem for equations involving Schrédinger operators Ly satisfying
(1.2.1) is to understand the operator L, with the restriction p < %.

1.2.2. The role of measures. Similarly to the free potential case, i.e.
u = 0, a heuristic strategy in the study of linear and nonlinear equations
involving Hardy potentials is first to treat them in a function setting and
then to extend the scope of the theory to a measure framework.

In function settings, the Dirichlet problems for linear and nonlinear equa-
tions involving Hardy potentials share a similarity. More precisely, the linear
problem admits a unique solution for any L' data and nonlinear problem is
solvable for any L' data with a large class of nonlinear terms. This can be
seen in [77, Proposition 3.2] and [106, Corollary C1].

However, beyond the similarity, there are sharp distinctions between
linear phenomena and nonlinear phenomena which have not been well un-
derstood until the involvement of measures in the analysis. The extension
from a function setting to a measure framework appears to be an appro-
priate approach to reveal and interpret these distinctions. The first one is
that, in contrast to the linear case where the solvability is valid for any
bounded Radon measure data (see [106, Proposition I]), in the nonlinear
case, the existence depends essentially on the nonlinear term and/or the
total mass of the boundary data and it is possible to construct bounded
measures (for example Dirac measures) for which the nonexistence occurs
(see [106, Theorem F]). Moreover, the multiplicity result may hold if the
total mass of the boundary data is small enough. The second distinction
is that, unlike the linear case where any positive solution of homogeneous
linear equations can be uniquely represented via a positive bounded mea-
sure on Jf2, in the nonlinear case, there are positive solutions of nonlinear
equations whose boundary behavior is given by a Borel measure which may
take infinite values on subsets of 9€). These results will be discussed in the
next subsections (see also [106, 119, 77]).

1.2.3. Introduction of main problems. In this thesis, we are inter-
ested in boundary value problems for nonlinear elliptic equations involving
operator L, (defined in (1.2.4)) of the form

— Lyu= g(u,|Vul) =0 in €, (1.2.6)

where g is nondecreasing with respect to u and/or |Vu|. These equations
consist of two competing effects: the diffusion driven by the linear operator
L,, and the reaction term expressed by the nonlinear term g(u, |Vul). We
will focus on the range u € (0, %] in which interesting properties of —L,, are
exploitable (see the explanation in subsection 1.3.1). The nonlinear term
g(u, |Vul) is called absorption (resp. source) if the ‘plus sign’ (resp. ‘minus
sign’) appears in (1.2.6). Typical models are g(u) = |[ulP~ u, g(|Vu|) =
IVul?, g(u,|Vu|) = uP + |Vul? and g(u,|Vu|) = uP|Vul?.

Aim. The aim of the thesis is to present recent developments on nonlinear
equation (1.2.6). In particular, the following problems are addressed.

(1) The boundary trace problem: We aim to show that any positive so-
lution u of (1.2.6) can be uniquely characterized by a positive measure on
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the boundary 9€). Roughly speaking, such a measure, if exists, is called the
boundary trace of w. This result is not only an extension of the Represen-
tation theorem for harmonic functions to solutions of nonlinear equations,
but also reveal new phenomena in the nonlinear case.

(2) The Dirichlet problem with measures for (1.2.6): Given a measure
v defined on the boundary 02, we look for a solution to equation (1.2.6)
satisfying boundary condition 4 = v in some sense. We also discuss various
necessary and sufficient conditions for the existence of solutions to (1.2.6).
Furthermore, we consider the questions of non-existence, uniqueness and
multiplicity in particular cases.

(3) Isolated boundary singularities: We investigate the case where the
boundary data concentrate only at a point on the boundary. More precisely,
we aim to give a complete description of the set of solutions to equation
(1.2.6) vanishing on 02\ {y} for y € 9. This result will provide the exact
asymptotic behavior of such solutions near the isolated boundary singulari-
ties.

(4) Removable boundary singularities: Assume F C 9Q and u € C(Q\F)
is a nonnegative solution of (1.2.6) in €2 vanishing on 0Q\ F'. We will look for
conditions on the set F' and the nonlinear term g under which the ‘singular
set’ ' can be removable, i.e. u is identically zero. In particular, this result
shows the nonexistence of singular solutions when the nonlinear term grows
‘fast’.

Features. The above problems have the following main features.

e The presence of the Hardy potential which blows up on the boundary
0 has an essential effect on the boundary behavior of solutions to (1.2.6).
Consequently, the boundary conditions cannot be imposed arbitrarily and
the Dirichlet problem for (1.2.6) cannot be handled by the classical tech-
niques.

e In general, universal estimates (for example the Keller-Osserman esti-
mate [87]) do not hold for positive solutions of (1.2.6).

e The expression of the nonlinear term g plays a crucial role in the study
of the solvability for boundary value problems for (1.2.6). In particular, the
absorption case and the source case are sharply different in the sense that
in the absorption case, the existence and uniqueness do not depend on the
total mass of the boundary data, while in the source case, the existence
relies not only the concentration but also on the total mass of the boundary
data and the uniqueness breaks down.

e When the nonlinear term g depends on the gradient of solutions, equa-
tion (1.2.6) becomes non-variational, it means that this equation cannot be
solved by using variational methods. Furthermore, the dependence of ¢ on
the gradient Vu causes the lack of monotonicity, which can be seen from an
easy observation that the inequality u(z) < v(z) does not imply any relation
between |Vu(z)| and |Vu(z)|; therefore approaches based on the monotonic-
ity are invalid. In addition, the competition between u? and |Vu|? generates
the complication of the study.

e In general, equation (1.2.6) is not scaling invariant (or in other words,
equation (1.2.6) does not admit any similarity transformation), i.e. if u is
a solution of (1.2.6) then the function v(z) = £*u(¢’z), for £ > 0, o, B € R,
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does not solve (1.2.6). Consequently, standard arguments relying on the
scaling invariance property are not applicable.

e The boundary data are given by measures on the boundary 02, which
makes solutions (if exist) significantly less regular. Therefore, the standard
approximation arguments are invalid or may be valid only under some ad-
ditional conditions on the nonlinear term g.

The interaction of the above features yields substantial difficulties and
leads to disclose new types of results. Therefore a new approach with subtle
analysis is required in the investigation.

1.2.4. Brief description of our contributions. This subsection serves
as a summary of the main results in the thesis and provides a comparison
with previous results. This might help the reader grasp the gist of the main
results. The reader who is interested in the detailed statements and the
proofs is referred to Section 1.3 and Chapters 2—5.

Boundary trace problem. We consider the boundary trace problem
for equation (1.2.6). To this purpose, we first investigate the boundary
behavior of L, -harmonic functions in 2, i.e. solutions of the equation

—L,u=0 in(, (1.2.7)

which in turn indicates possible boundary behavior of solutions to corre-
sponding semilinear equations. Based on that, we introduce a notion of
normalized p-boundary trace expressed by a bounded measure on the bound-
ary (see Definition 1.3). This notion is new (compared with the notion of
m-boundary trace when p = 0 in Definition 1.1) because it depicts clearly
how a function admitting a normalized u-boundary trace behaves on every
surface parallel to the boundary 0€2. Moreover, it is pointed out that this
notion is equivalent to the concept of moderate solutions of (1.2.6), namely
solutions which are dominated by a positive L,-harmonic function. In par-
allel, another notion of boundary trace defined by mean of weak convergence
of measures is introduced by Gkikas and Véron [77]. We then show that
these notions of boundary trace are equivalent (see subsection 1.3.2). Fur-
thermore, it is worth mentioning that any positive solution (not necessarily
moderate) admits a boundary trace given by a Borel measure on 92 which
may be infinite on compact subsets of I (see [77, Theorem F)).

Dirichlet problem. We investigate the Dirichlet problem
{—Luu:lzg(u,|Vu|) =0 in Q,

u=v on 99, (1.2.8)

where v is a given measure on 99, p € (0, 1] and g is a nondecreasing func-
tion with respect to u and/or |Vu|. Since the analysis depends essentially
on the expression of the nonlinear term, typical models are considered sepa-
rately, for which we showed that if the nonlinear term g does not grow ‘too
fast’ with respect to u and/or |Vu|, then for any bounded Radon measure
v on 0, problem (1.2.8) possesses a solution.

Absorption case. Let us illustrate the above-mentioned fact by consid-
ering the absorption case, namely the equation (1.2.8) with plus sign. The
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following exponent is deeply involved in the analysis

o= %(1 + /T —1p). (1.2.9)
This exponent comes from the construction of a special solution of (1.2.7) in
the half space RY which is singular at the origin 0 and vanishes on ORY \ {0}
(Actually this solution plays a similar role as the Poisson kernel of —A in
the half space). Notice that, since p € (0,%], a € [3,1).
When g : R — R is a nondecreasing, continuous function depending only
on solutions u with ¢(0) = 0, we show that the condition

/ (g(t) + |g(—=t))t 17 Prdt < oo, (1.2.10)
1
with
N+«
= 1.2.11

is a sufficient condition for the existence of (1.2.8) (see Theorem 1.10 and
[77, Theorem 3.3]). A typical model is g(u) = |u[P~!u with p > 1 and
(1.2.10) is satisfied if and only if 1 < p < p,. For this model, p, is called
a critical exponent for (1.2.8). We say that p is in the subcritical range if
p < pyu, otherwise we say that p is in the supercritical range.

When g : Ry — R, is a nondecreasing, continuous function depending
only on |Vu| with g(0) = 0, we show that the condition

o
/ gttt < oo, (1.2.12)
1
with
N+«
= 1.2.1
qN N + o — 17 ( 3)

is a sufficient condition for the existence of (1.2.8) (see [79, Theorem B]).
A typical model is g(|Vu|) = |Vu|? with 1 < ¢ < 2 and (1.2.12) is satisfied
if and only if 1 < ¢ < g,. For this model, g, is called a critical exponent for
(1.2.8). We say that g is in the subcritical range if ¢ < g,,, otherwise we say
that ¢ is in the supercritical range.

When ¢ : Ry x Ry — Ry is a nondecreasing, continuous function de-
pending on both solutions u and the gradient |Vu| with g(0,0) = 0, we point
out that (see [80, Theorem 1.3]) the sufficient condition for the existence of
(1.2.8) can be nicely expressed by a combination of condition (1.2.10) and
condition (1.2.12) as

o0 Pp
/ gt ta )t~ 17Pudt < oo, (1.2.14)
1

There are two typical models that are worth highlighting.
e The first one is g(u, |Vu|) = v 4+ |[Vu|? with p > 1 and 1 < ¢ < 2 and
(1.2.14) is satisfied if

1<p<p, and 1<qg<gq, (1.2.15)

For this model, we say that (p, ¢) is in the subcritical range if (1.2.15) holds,
otherwise we say that (p,q) is in the supercritical range.
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e The second model is g(u, |Vu|) = vP|Vu|? with p > 0,0 < ¢ < 2 and
p+q>1and (1.2.14) is satisfied if

(N+a—-2)p+(N+a—-1)g<N+oa. (1.2.16)

For this model, we say that (p, q) is in the subcritical range if (1.2.16) holds,
otherwise we say that (p, q) is in the supercritical range.

Sharp solvability results in the typical models can be summarized in the
following table *.

Absorption case Existence, uniqueness Non-existence
in subcritical range in supercritical range
g(u) = ’u‘p—lu P <Dpu D= Dy
g(IVul) = [Vu| q < qu g < q <2
g(u, |Vul) = uP + |Vul? p <puand ¢ <q, p > py or
Gu=<q<2
9(u, [Vul) = u?|Vul? (N+a—2)p+ (N+a-2)p+
(N+a—-1)¢g<N+a|(N+a—-2)p> N+«

Table 1: Absorption case

The above table shows that, in the subcritical range, for any bounded bound-
ary measure v, problem (1.2.8) with plus sign admits a unique solution.
Moreover, this solution is bounded from above by the solution to the corre-
sponding linear problem

{ —L,u=0 in €,

U="v on Of).

(1.2.17)

The proof of the existence result relies on the approximation method, mak-
ing use of sub and super solutions theorem, delicate estimates of Green
kernel and Martin kernel in weak Lebesgue spaces and Vitali convergence
theorem. The condition (1.2.14) allows to show that the sequence of ap-
proximate nonlinear terms is convergent. The existence result for the case
when g depends on both w and |Vu| is new, even in the case 4 = 0. The
uniqueness in case the nonlinear term depends only on « is based on Kato
type inequalities which are achieved due to the monotonicity. The question
of uniqueness has remained open for a while, even when p = 0, in case the
gradient |Vu| is involved in the analysis due to the lack of monotonicity. In
[105], we obtain the uniqueness for the case g(u, |Vu|) = uP + |Vul|? and
1 = 0. One of the main thrusts of our thesis is to obtain the uniqueness
in the case g(u,|Vu|) = «P|[Vu|? and 0 < p < I in which the interplay
between uP and |Vul|? drastically complicates the situation. Our existence
and uniqueness results cover well known results in case 4 = 0 and provide a
full understanding in the case 0 < u < %.

Also in the subcritical range, we provide a complete classification of
solutions of (1.2.6) with an isolated boundary singularity. In particular, we
show that there are actually two types of solutions with an isolated boundary
singularity at a point y € 02: the weakly singular solutions, i.e. solutions
ugs, of (1.2.8) with plus sign and v = kd, with & > 0 and J, being the Dirac

IThe cases g(u) = |ul’~'u and g(|Vu|) = |Vu|? are particular cases of g(u, |Vu|) =
uP|Vul|? with ¢ = 0 and p = 0 respectively, however we include these cases in the table for
the sake of completeness.
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mass concentrated at y, and the strongly singular solution us.s, which is the
limit toes, = limg o0 Ups, (see Theorem 1.17 and Theorem 1.18).

In the supercritical range, we prove that boundary singularities are re-
mouwable. Tt means if F is a compact subset of 9€) which has a zero capacity
in certain sense and u € C'(Q\ E) is a nonnegative solution of (1.2.6) with
plus sign such that w vanishes on 92 \ E, then u is identically zero (see
Theorem 1.19 and Theorem 1.20).

Source case. Next we consider the source case, i.e. equation (1.2.6) with
minus sign. Phenomena occurring in this case are sharply different from
those in the absorption case. A striking distinction is that the existence for
(1.2.8) holds if the norm of v is small and does not hold if the norm of v is
large (see Theorem 1.12 and Theorem 1.21). Moreover, in contrast to the
absorption case, in the source case, solutions (if exist) are bounded from
below by the solution of (1.2.17). The method used to prove the existence
in the source case is different from that in the absorption case due to the
nature of the nonlinear term. In fact, when g(u) = u”, we use the sup and
super solutions method combined with 3-G estimates to show the existence
of the minimal solution. This can be done thanks to the monotonicity of
the nonlinear term. In a more general case, or in case g depends also on
the gradient |Vu|, this method is invalid (due to the lack of monotonicity),
hence we employ the Schauder fixed point theorem to show the existence
under the smallness assumption on the boundary data.

The existence result in the typical models are summarized in the follow-
ing table 2 in which |v[|lsn(aq) denotes the norm of the boundary measure
datum v.

Source case Existence Non-existence
in subcritical range in supercritical range
g(u) = uP p < py and p < pu, IVllonon) > p*
¥ llama0) < p* or p > py
9(|Vul|) = |Vul? q < g, and Not known yet
[7[[an(a0) small
g(u,|Vul|) = uP + |Vu|? p < py and Not known yet
q < g, and
[7[[an(an) small
g(u,|Vul|) = uP|Vul? (N+a—-2)p+ Not known yet
(N+a—-1)g<N+a
and [|v||on(aq) small

Table 2: Source case

From Table 2, we see that, in the source case, non-existence result holds
for the model g(u) = uP if the norm of v is large enough and has not been
known yet in other typical models.

We obtain various necessary and sufficient conditions in terms of sharp
estimates on Green kernel and Martin kernel (see Theorem 1.13 for the case
g(u) = uP). We also establish criteria expressed in terms of capacities for the

2The cases g(u) = [u[’~'u and g(|Vu|) = [Vu|? are particular cases of g(u, |Vu|) =
uP|Vul? with ¢ = 0 and p = 0 respectively, however we include these cases in the table for
the sake of completeness.
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existence of (1.2.8) (see Theorem 1.14 for the case g(u) = uP and Theorem
1.22 for the case g depends on u and |Vul). Our results for the case where
g depends only on u extend those in [31, 32, 28] for u = 0, and the results
for the case where g depends on |Vu| are new even for y = 0.

1.3. Detailed statement of main results

In this section, we first discuss important ingredients for the investi-
gation. Then we provide the detailed statement of our recent results on
the boundary value problems for linear and nonlinear equations involving
operator L, which were established in our papers [106, 119, 78, 79, 80].

1.3.1. Ingredients. Main ingredients in the study of boundary value
problems with measure data for equations (1.2.7) and (1.2.6) include eigen
pair of —L,, and the Green kernel and the Martin kernel of —L,,.

First eigenvalue and eigenfunction. The eigenvalue problem associated
to —L, is
[ Jo(IVel? — &¢?)da
M penl@\(0) oy p2da
If p < 1 then by [36, Remark 3.2], problem (1.3.1) admits a positive
minimizer ¢, in H} () and hence A, is the first eigenvalue of —L,, in Hg(€2).
The function ¢,, normalized by fﬂ(wz/52)daz = 1, is the corresponding
positive eigenfunction and satisfies

(1.3.1)

—Lup, = Aoy in €.
Moreover, by [66] (see also [108, Lemmas 5,1, 5.2] and [50, Lemma 7] for
an alternative proof), ¢, ~ 6 in €2, where a is given in (1.2.9). It is noted
that, since p € (0,1], a € [3,1).

If o = § then there is no minimizer of (1.3.1) in H} (), but there exists
a nonnegative function p1 € HZIOC(Q) such that _Li@i = )\%goi in  in the
sense of distributions. Again by [66], ¢ 1 52 in Q.

We observe from (1.2.3) and (1.3.1) that A\, > 0if u < Cg(2), A, = 0if
1= Cpg(Q) < 1 while A, <0 when p > Cp (). It is not known if A, >0
when 1 = Cy(Q) = 1. However, if Q is convex or if —A§ > 0 in the sense of
distributions — in these cases Cp(€2) = 1 — then )\% > 0 (see [36, Thereom
I1]) and [16, Theorem A with k =1 and p = 2]).

Green kernel and Martin kernel. The positivity of the first eigenvalue
Ay plays a crucial role in derivation of the existence of Green kernel and
Martin kernel. From the above observation, we see that this property does
not hold for arbitrary p € (0, i] Therefore, in order to go further in the
study of the Green kernel and Martin kernel, we assume that

1
w e (0, Z] and A, > 0. (1.3.2)

Notice that this assumption (1.3.2) is fulfilled when p € (0,Cy(2)). Through-
out the thesis, unless otherwise stated, we assume that (1.3.2) holds.



20 1. INTRODUCTION

We say that w is L,-harmonic (resp. L,-subharmonic, L,-superharmonic)
in Qifue L} (Q) and

loc
—L,u =0 (resp. — Lyu <0,—L,u > 0)

in the sense of distributions in §2, namely
—/ uLypdr = (resp. <, >)0, Vo e CF(Q).
Q

Under assumption (1.3.2), ¢, is a positive L,-superharmonic function
in Q. Therefore, a classical result of Ancona [8] and a result of Gkikas
and Véron [77, Section 2] (for the case = 1) imply that for every y € 01,
there exists a positive L,-harmonic function in £ which vanishes on 02\ {y}
and is unique up to a constant. This function is denoted by Kf}(, y) with
normalization Kf}(mo,y) = 1 where z¢ € () is a fixed reference point. The
function (z,y) — Kf}(az,y), (x,y) € Q x 09, is called the L,-Martin kernel
in € relative to x¢g. We emphasize that the role of the Martin kernel is
similar to that of the Poisson kernel in case p = 0. However, unlike the
Poisson kernel which has a finite mass, the Martin kernel K f}(, y) may have
zero or infinite mass at y. In particular, if u € (0,Cy(€2)), then the mass
of Kf}(, y) at y is zero and hence the Poisson kernel does not exist in this
case.

Furthermore, by [8] and [77, Theorem 2.33] (for = 1), there is a one-
to-one correspondence between the set of positive L,-harmonic functions
and the set of positive bounded Radon measures on 0{2. More precisely, we
have:

THEOREM 1.2 (Representation Theorem). For every v € Mt (9Q) the
function

Kf}[z/](w) = /BQ Kf}(:];,y)du(y) Vo e Q (1.3.3)

is L,-harmonic in Q. Conversely, for every positive L,-harmonic function

w in Q there exists a unique measure v € M (IN) such that u = Kf}[u] in
Q.

The measure v such that u = Kf}[u] is called the L,-boundary measure
of u. If 4 =0, v becomes the m-boundary trace of u (see the definition of
m-boundary trace in Definition 1.1). However, when p € (0,Cg(2)), it can
be proved that, for every v € MT(9N), the m-boundary trace of Ki} [v] is
Zero.

Let Gf} be the Green kernel for the operator —L, in € x  defined by

o0
Gla,y) = /0 Hy(z,y,t)dt
where H), is the heat kernel associated with —L,. By [66, Theorem 4.11],
for every x,y € 0, © # vy,
G2 a,y) ~ 2y (1A 8(2)6(y) | — y122). (1.34)

This estimate leads to the observation that a measure 7 € 9™ (2, 6%) if and
only if Gf} [7] is finite a.e. in Q (see [106, page 9]) where Gf} is the Green
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operator acting on 7 defined by
Q Q
Gllrl(w) == [ Gl iy,

From the following relation between Green kernel and Martin kernel

Gz, 2)

K = li V€ Q,y € 00
w(@y) = lim 2w, 2) r € Qye o,
and estimate (1.3.4), we deduce
Q a 2—-N-2
K, (2,y) ~ §(z)x — y| ¢ Vx e Q,ye o (1.3.5)

Estimates in weak Lebesgue spaces. Let us first recall the definition of
weak Lebesgue spaces (or Marcinkiewicz spaces). See the paper of Bénilan,
Brezis and Crandall [21] for more details of these spaces.

Let © > 1, ' = 27 and ¢ be a positive weight function. We set

Li(Q,6) = {u € Ljpe(Q) : |lullpx 0,0 < o0}

where
1

ull s (0,0) = inf{c € [0,00] : / |u|pdr < c</ gbdm) ’ , V Borel E C Q}
E E

The space Lf (2, ¢) is called the weak Lebesgue space with exponent x (or
Marcinkiewicz space) with the norm |.[[zx (4. The subscript w in the
notation stands for ‘weak’. The relation between the Lebesgue space norm
and the weak Lebesgue space norm is given in [21, Lemma A.2(ii)]. In
particular, for any 1 <r < k < oo and u € L, (), there exists C(r,x) > 0
such that for any Borel subset E of 2

1—r
[ s < Cmlullgio ([ o) "
FE E

We notice that L®(Q,¢) C L5 (Q,¢) C L"(Q,¢) for all 1 < r < k. Weak
Lebesgue spaces play an important role because they provide optimal esti-
mates in the study of nonlinear elliptic equations in a measure framework.
Sharp estimates on Green kernel and Martin kernel in weak Lebesgue
spaces were obtained in [106, Proposition 2.8] and [78, Proposition 2.4]. By
using estimates (1.3.4) and (1.3.5), together with a key lemma in Bidaut-
Véron and Vivier [31, Lemma 2.4], we show that (see [78, Proposition 2.4])
there exists a constant ¢ = ¢(N, u, 2) such that
IGLIIN prse, — <clltllansm) V7 €MD, 6, (1.3.6)

Ly P72 (Q,6)

Q
o < . .3.
[len [V]HLiV]Ys-Z—z e = Vo) Vv € M(0NQ) (1.3.7)
The above estimates indicate that the value Nﬁgfz would be a critical ex-

ponent for semilinear equations with the nonlinear term depending on solu-
tions.

When the nonlinear term depends on the gradient of solutions, the es-
timates on the gradient of the Green kernel and Martin kernel also play an
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important role in the analysis. More precisely, we prove that there exists a
positive constant ¢ = ¢(N, p, ) such that

||V‘fof[|TH||L1%(Q . < |I7llmey VT € M(Q,0%), (1.3.8)
IIVKE[\V\]IILﬂggl(QM) < cl[vllmoe) Vv € M(09), (1.3.9)
where
VGIrl(e) = | V.Gie.nir()
VK, [V](z) = - vafz(SU,Z)dV(Z).
Estimates (1.3.8) and (1.3.9) indicate that the value N]igfl would be a

critical exponent for semilinear equations with the nonlinear term depending
on the gradient of solutions.

1.3.2. Notions of p-boundary trace. One of the first attempt in
the study of boundary value problems for linear and nonlinear equations
involving operator L, was carried out by Bandle, Moroz and Reichel [11]
who investigated L,-sub and superharmonic functions and obtained the ex-
istence and nonexistence of large solutions, i.e. solutions blowing up on the
boundary 9€2. Further research related to large solutions is due to Bandle
and Pozio [12, 13] and Du and Wei [52]. However, there are other types of
solutions which may not singular on the whole boundary 9€2. Therefore, in
order to characterize the boundary behavior of such solutions to equations
with a Hardy potential, we need a new tool.

Normalized boundary trace. An interesting observation emerging from
estimate (1.3.5) and (1.3.3) is that there exists Sy > 0 small enough such
that for any v € MT(9N) and any S € (0, By), there holds

K [v]dS ~ B ||v]|ann),
2

where dS denotes the surface element on ¥g := {x € Q : §(x) = }. This,
together with the fact o < 1, implies that the m-boundary trace (see Def-
inition 1.1) of Kf}[u] is zero for any v € 9MT(9N). Therefore, the notion
of m-boundary trace (see Definition 1.1) is no longer an appropriate tool
to describe the boundary behavior of Ki} [v]. Taking into account of the
Representation theorem (see Theorem 1.2), we see that this notion does not
play a role in the study of L,-harmonic functions. Therefore, we introduce
a new notion (see [106, Definition 1.2]) as follows:

DEFINITION 1.3. Assume 0 < p < Cy(92). A function u € VV;’Z(Q)
with some r > 1 possesses a normalized p-boundary trace if there exists a

measure v € M(JN) such that

lim g1 — K[v]|dS = 1.3.1
tim /2[,'“ 211][ds = 0. (1.3.10)

where dS denotes the surface element on ¥3. The normalized p-boundary
trace will be denoted by trj,(u).



1.3. DETAILED STATEMENT OF MAIN RESULTS 23

The terminology ‘normalized’ comes from the term B*~! in (1.3.10).
Roughly speaking, the difference between the function v and K,[v] on ¥z
has to be normalized by the weight 3“1 = §(z)*~! for x € X4 so that it
tends to zero. The weight 3%~! is also ‘propositional’ to the volume of the
surface Yg. The term on the left-hand side of (1.3.10) can be understood
as the ‘average’ of the difference between v and K,[v] near the boundary.

This notion is well-defined, i.e. if v and v/ satisfy (1.3.10) then v =/
(see the remark after [106, Definition 1.2]). The condition u € VVliZ(Q)
ensures the meaning of u on ¥g as the Sobolev trace of u on ¥g. The
restriction 0 < p < Cy(Q) in [106] is imposed to guarantee that the first
eigenfunction ¢, of —L, is a positive L, -superharmonic in 2. The notion
was extended to the range p < 1 by Marcus and Moroz in [104] due the fact
that there exist local L, -superharmonic functions in a neighborhood of 9f2.
The notion is new even in the case 4 = 0 and enables us to measure how
close a function is in comparison with the Martin kernel near the boundary.

An important feature of this notion is that it allows to derive trZ(G{f [T]) =

0 for any 7 € M(Q2,0%) and trZ(KS[V]) = v for any v € M(0N).

Boundary trace defined in a dynamic way. In parallel, Gkikas and
Véron [77] introduced another notion of boundary trace which is defined
using the weak convergence of measures. Let D € 2 and xg € D be a fixed
reference point. If h € C(0D) then the following problem

~L,u=0 in D,
{ (1.3.11)

u=~h ondD,

admits a unique solution which allows to define the L, -harmonic measure
o

wp on 9D by

u(zg) = /BD h(y)dwpy (y). (1.3.12)

Let {Q,} be a C? exhaustion of Q. For each n, let wgy. be the Lf}"—harmonic
measure on 0€,.

DEFINITION 1.4. Let p € (0,%]. We say that a function u possesses a

p-boundary trace if there exists a measure v € 9(9€) such that for any C?
exhaustion {Q,} of Q, there holds

lim pu dwy. :/ pdv Yo € C(Q). (1.3.13)
o0

The p-boundary trace of u is denoted by tr,(u) and we write tr,(u) = v.

The advantage of this notion is that it does not require to determine the
normalization factor in the definition, however it does not provide informa-
tion on the boundary behavior of functions near 0f).

Equivalence of the notions of y-boundary trace. We show (see [78])
that the normalized pu-boundary trace in Definition 1.3 and the p-boundary
trace in Definition 1.4 are actually equivalent. This is achieved thanks to the
following result (see Section 2, especially Proposition 2.5 and Proposition
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2.6 in [77])
{tr;(Gf}[T]) = trM(Gf}[T]) =0 VY7 eM,o%),
trZ(Kf}[u]) = trM(Ki}[V]) =v VYveMOoN).
Thanks to this result, these notions can be used interchangeably. In the

sequel, we employ the notion of y-boundary trace given in Definition 1.4 in
the study of linear equations and nonlinear equations.

1.3.3. Linear equations. In this subsection, we consider nonhomoge-
neous linear equations of the form
—Lyu=71 in{) (1.3.14)
with 7 € 9MM(,0%). The boundary value problem for (1.3.14) with pu-
boundary trace is formulated as
—Lyu=7 inQ
(1.3.15)
tr,(u) = v,
where v € M(0N).

DEFINITION 1.5. Assume 7 € M(£2, %) and v € M(0N).
(i) A function u is a solution of (1.3.14) if u € L} (Q) and u satisfies
(1.3.14) in the sense of distributions in {2, namely

—/uL#ngda::/(;SdT Vo € C(Q).
Q Q

(ii) A function w is a solution of (1.3.15) if u is a solution of (1.3.14) and
tr,(u) = v.

Our main results regarding this problem provides a full understanding
of equation (1.3.14) and problem (1.3.15), as listed below.

THEOREM 1.6. (i) For any v € IMM(IN), the function u = Kf}[v] is the
unique solution of problem (1.3.15) with T = 0. If u is a nonnegative L,,-
harmonic function and tr,(u) =0 then u = 0.

(it) For any 7 € IM(Q, §%), the function u = Gf} [7] is the unique solution
of (1.3.15) with v = 0. In particular, trM(Gﬁ[T]) = 0.

(iii) Let u be a positive L, -subharmonic function. Ifu is dominated by an
L,,-superharmonic function then L,u € MT(Q,8%) and u has a p-boundary
trace. In this case tr,(u) = 0 if and only if u = 0.

(iv) Let u be a positive L, -superharmonic function. Then there exist
v € MH(OQ) and T € M(, §%) such that

u=G[r] + KZ[v]. (1.3.16)

In particular, w is an L,-potential (i.e., u does not dominate any positive
L,,-harmonic function) if and only if tr,(u) = 0.

(v) For every v € M(IN) and T € M(Q, %), problem (1.3.15) admits a
unique solution. The solution is given by (1.3.16).

(vi) u is a solution of of (1.3.15) if and only if u € L(Q, %) and

—/QuLud)dx:/qudT—/QKS[V]LHgZ)dx Vo € X(Q). (1.3.17)
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where X,,() is the space of admissible test functions defined by

X, (Q):={p€ HL.(Q): 5% € H'(Q,5**), Lup € L(Q,6~Y)}.
(1.3.18)

Let us comment on the formula (1.3.17). Since u € L'(£2,6%) and L, ¢ €
L>®(£,67), it follows that uL,¢ € L'(Q2), hence the term on the left-hand
side of (1.3.17) is finite. Next, since ¢ € X,(Q2), by [77, Lemma 3.1], we
have |¢| < ¢0%, and hence the first term on the right-hand side of (1.3.17)
is finite. Finally, since Kf}[u] € LY(Q,0%) (see [78, Proposition 2.4]) and
L,¢ € L>(Q,07%), the the second term on the right-hand side of (1.3.17)
is finite.

Theorem 1.6 was obtained in our joint work with Marcus [105, Propo-
sition L] in case p € (0,Cg(2)), dealing with the notion of normalized
p-boundary trace and the space of test functions

Y, (Q) :=={C € C*(Q) : L, € L™®(Q,57%), (€ L™(Q,6 %)}

instead of X,,(£2), and then was extended in our joint work with Gkikas [78,
Section 2] to the case p € (0, 1], dealing with the notion of y-boundary trace.
The above results generalize those for Laplacian in measure frameworks (see
[116]).

The theory for linear equation (1.3.14) forms a basis for the study of
nonlinear equation (1.2.6). The boundary value problem for (1.2.6) with a
given p-boundary trace is formulated as

{ —Lyu+ g(u,|Vul) =0 in Q,

() = v (1.3.19)

Let us give the definition of weak solutions of equation (1.2.6) and prob-
lem (1.3.19).

DEFINITION 1.7. (i) A function u is a weak solution of (1.2.6) if u €
(Q), g(u, |Vu|) € L} () and u satisfies (1.2.6) in the sense of distribu-

loc

Ll

'loc ;
tions in §2, namely

—/ uly,pdr + / g(u, |Vul)pdz =0 V¢ € C°(Q).
Q Q

(ii) Let v € M(0N). A function u is a weak solution to of (1.3.19) if u
is a weak solution of (1.2.6) and tr,(u) = v.

In the spirit of Theorem 1.6, it is interesting to ask if every weak solution
of (1.3.19) satisfies the decomposition

Q _ Q .
uxG,lg(u, [Vu))] = K;[v] inQ (1.3.20)
and the weak formula

—/QuLuqﬁde’:t/Qg(u,|Vu|)¢)d$:—/gzKﬁ[l/]Luqbdx Vo € Xu(Q).

(1.3.21)
The answer to this question is positive. We will discuss it the typical
models successively.
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1.3.4. Absorption term. In case g(u,|Vu|) = |u[P7lu, with p > 1,
and the plus sign occurs in (1.2.6), equation (1.2.6) and problem (1.3.19)
become

~Lyu+uflu=0 inQ (1.3.22)
and

—Lyu+uP'u=0 inQ
{ el (1.3.23)

tr,(u) = v,
where v € M(0N).

As in the the case p = 0, the first step to analyze the u-boundary trace
of solutions to (1.3.22) is to deal with moderate solutions of (1.3.22).

DEFINITION 1.8. A function u is a moderate solution of (1.3.22) if |u| < wv
where v is a positive L,-harmonic function.

Our next theorem describes the relation between the concept of u-
boundary trace and the notion of moderate solutions of (1.3.22).

THEOREM 1.9. Assume p > 1 and let u be a positive solution of (1.3.22).
Then the following statements are equivalent.

(i) u is a L,-moderate solution of (1.3.22).

(ii) w admits a p-boundary trace v € MT(IQ). It means u is a solution of
(1.3.23).

(i1i) w € LP(§2,6%) and (1.3.20) holds with g(u, |Vu|) = uP and the plus sign,
where v = tr,(u).

Furthermore, a positive function u is a solution of (1.3.23) if and only
if u e LP(Q,6%) and (1.3.21) holds with g(u, |Vu|) = uP and the plus sign.

This theorem is a combination of [106, Proof of Theorem A] and [77,
Proof of Proposition 3.5] and covers the previous results for the case =0
in [116, Section 2.1]. The proof is based on Theorem 1.6, Representation
Theorem 1.2 and an approximation process.

A remarkable distinction in the study of nonlinear problem (1.3.23) in
comparison with that of linear problem (1.3.15) is that problem (1.3.23) is
solvable for any v € M(0N) only if the nonlinear term does not grow ‘too
fast’. More precisely, we show that the exponent p, given in (1.2.11) is a
critical exponent for the existence of solutions to (1.3.23) in the sense that
if 1 < p < p, then problem (1.3.23) has a unique solution for every measure
v € MT(9Q) while, if p > p, then the problem has no solution if v is a
Dirac measure. This is reflected in the following theorem.

THEOREM 1.10. Assume p > 1.

(i) Ezistence, uniqueness and stability. If 1 < p < p, then for every
v € M(ON) (1.3.23) admits a unique positive solution.

(i) Non-existence. If p > p,, then for every k > 0 and y € 0N, there is
no positive solution of (1.3.23) with p-boundary trace kd,, where 6, denotes
the Dirac measure concentrated at y.

It is noticed that for any v € L'(99), problem (1.3.23) admits a unique
solution.

We proved Theorem 1.10 for p € (0,Cpy(£2)) in connection with nor-
malized p-boundary trace (see [106, Theorem E and Theorem F]). The
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results were extended by Marcus and Moroz [104] to the case p < % for
arbitrary domains, without any requirement on the positivity of the first
eigenvalue A, due to the key observation that there exists a positive local
L,,-superharmonic function in the whole range p < i.

In parallel, Gkikas and Véron considered the semilinear equations with a
class of more general absorption terms g(u) where g : R — R is a continuous,
nondecreasing function with g(0) = 0, under assumption (1.3.2). They

pointed out in [77, Theorem 3.3] that, under the condition

/loo(g(t) + |g(=t))t 1 Prdt < oo, (1.3.24)

for every v € M(0N) there exists a unique weak solution of (1.3.19) with
nonlinear term g(u). Clearly, when g(u) = |u|P~u, with p > 1, condition
(1.3.24) is translated as 1 < p < p, and the existence result by Gkikas
and Véron covers statement (i) of Theorem 1.10. In particular, the result
asserts that for any k > 0, there exists a unique solution wugs, of (1.3.23)
with v = kd,. It was also showed that the function uss, := limy o0 ugs, 18
a solution to the equation in (1.3.22) which vanishes on 02\ {y} and admits
a strong singularity at y. When p > p,, they provided a necessary and
sufficient condition expressed in terms of Besov capacities for the existence
of a solution to (1.3.23), which includes statement (ii) of Theorem 1.10 as a
concrete case.

1.3.5. Source term. We are also interested in semilinear elliptic equa-
tions with a source term

—Lyu=g(u) in§ (1.3.25)
and the associated boundary value problem

—L,u=g(u) inQ
{ b, () = v (1.3.26)

where g : Ry — Ry is a continuous, nondecreasing function with ¢(0) =
0. When dealing with (1.3.25) and (1.3.26), one encounters the following
difficulties. The first one stems from the lack of a universal upper bound for
solutions of (1.3.25). The second difficulty is that Kf}[v] is a subsolution of
(1.3.26) and therefore it is no longer an upper bound, but a lower bound for
solutions of (1.3.26).

We also show that weak solutions of (1.3.26) can be represented as in
(1.3.20), namely they can be decomposed as the sum of two terms: the action
of Green operator on the nonlinearity and the action of the Martin kernel
on the boundary datum. Equivalently, it also means that weak solutions
satisfy an integral formulation weakfor-ugradu (See [119, Theorem A] for
1 € (0,Cu(Q)) and [78, Proposition A] for p € (0,%] and more general
results involving also interior measure data).

A counterpart of Theorem 1.9 is also obtained for (1.3.25) and (1.3.26)
(see [77, Proposition A]). Based on this, together with weak Lebesgue space
estimate on Green kernel and Martin kernel and the Schauder fixed point
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theorem, we show that the value p, given in (1.2.11) is also a critical ex-
ponent for the existence of (1.3.26), as stated below (see [119, Theorem H
and Theorem IJ).

THEOREM 1.11. (i) Subcritical case. Assume that
o
Ap := / g(t)t™17Prdt < oo, (1.3.27)
1

and 0 < g(t) < AtPr 4+ 6 for all t € [0,1] with some p1 > 1,A1 > 0,0 > 0.
There exist 89 > 0 and pg > 0 such that for any 0 € (0,6p) and v €
IM*(0Q) such that |[v|omoan) < po, problem (1.3.26) admits a nonnegative
weak solution.

(ii) Sublinear case. Assume that

0<g(t)<AgtP>+6 Vt>0 (1.3.28)

for some pa € (0,1], Ao > 0 and 6 > 0. In (1.3.28), if po = 1 we assume
in addition that A is small enough. Then for any v € IMT(9), (1.3.26)
admits a nonnegative weak solution.

When g(u) = uP, we obtain a deeper analysis of the existence and non-
existence phenomena. Indeed, we prove (see [119, Theorem D and Theorem
G]) the existence of a threshold value for the existence of solutions to

{ —Lyu=vP in Q,

tr () = o (1.3.29)

where p > 0 is a parameter and v € MT(9Q) with [|[v||sm@ao) = 1.

THEOREM 1.12. Let p > 1 and v € MH(9Q) with ||v||mpa) = 1.
L. Subcritical case: p € (1,p,). There exists p* € (0,00) such that the
followings hold.

(i) If p € (0, p*] then problem (1.3.29) admits a minimal positive weak
solution w,, .
(ii) If p > p* then (1.3.29) does not admit any positive solution.

IL. Supercritical case: p > p,. For every p > 0 and y € 052, there is no
positive weak solution of (1.3.29) with v = 6,, where 0, is the Dirac mass
concentrated at y € OS).

Theorem 1.12 shows a sharp difference between the absorption case and
the source case. More clearly, in the source case, the existence depends not
only on the concentration of the boundary datum but also on its norm. It
was proved later on in our recent paper [23] that the multiplicity occurs
when p € (0, p*) and the uniqueness happens when p = p*.

We also established various necessary and sufficient conditions in terms
of estimates on Green kernel (see [78, Theorem B|) for the existence for the

Dirichlet problem with interior measure data and boundary measure data
—Lyu=v’+or in ),
(1.3.30)

tr,(u) = pv.

Existence results are stated in the following theorem.
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THEOREM 1.13. Let 7 € MH(Q,5%), v € MT(IN) and p > 0.
(i) Assume 0 < p < p,. Then there exists a constant C > 0 such that

Qe Q .
G, K, V] < CK,[v] ae inQ, (1.3.31)

GG [rlP] < CG[r]  ae. in Q. (1.3.32)
(i) If (1.3.31) and (1.3.32) hold then problem (1.3.30) admits a weak
solution u satisfying

Gﬁ[m’] + Kf} [pr] <u < C(Gﬁ[m’] + Kf} [pv]) a.e. in Q (1.3.33)

for c > 0 and p > 0 small enough if p > 1, for any o > 0 and p > 0 if
0<p<l

(iv) If p > 1 and (1.3.30) admits a weak solution then (1.3.31) and
(1.3.32) hold with constant C' = 1%'

(v) Assume 0 < p < p,. Then there exists a constant C > 0 such that
for any weak solution u of (1.3.30) there holds

Q ) Q Q a :
G, lot] + K, [pv] <u < C(G,[o7] + K,/ [pv] +0%) a.e. in Q. (1.3.34)

In order to deal with (1.3.30) in the supercritical case, i.e. p > p,, we
make use of interior capacities and boundary capacities which are recalled
below. For 0 < 6 < 3 < N, set

1
N, =
080 Y) = P el — 1, 6(2), 6 )}

V(z,y) € QxQz #y,

(1.3.35)

Nmm@:/MWwW@,WEWWU (1.3.36)
Fora>—-1,0<60<8 <QN and s > 1, define CapaNgﬁys by

Capt, o (F) ::inf{ /Q 56 dz: 6 >0, Noglo®) zXE}, (1.3.37)

for any Borel set E C . Here g denotes the indicator function of E.

Next we recall the capacity Capgfs2 introduced in [28] which is used to
deal with boundary measures. Let 6§ € (0, N — 1) and denote by By the
Bessel kernel in RV~ with order 6. For s > 1, define

CapBe’s(F) = inf {/ 0°dy: ¢ >0, Bg*xogp> XF} (1.3.38)
RN-1

for any Borel set F ¢ RVN~1. Since Q is a bounded smooth domain in RY,
there exist open sets Oy, ..., Oy, in RY, diffeomorphisms T; : O; — Bi(0)
and compact sets K, ..., K, in 092 such that

(i) K, CO;,1<i<mand 90 C Ug’;lKi,

(ii) T;(0; N 02) = B1(0) N {JIN = 0}, T;(0;,NQ) = B1(0)N {JZN > 0},

(iii) For any x € O;NQ, there exists y € O;NIN such that 6(z) = |z —yl.
We then define the Capgg—capacity of a compact set F' C 02 by

Capgfz(F) = Z CapBe’s(Ti(F N K;)), (1.3.39)
i=1

where Tj(F N K;) = Ti(F N K;) x {xy = 0}.
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Let a>—1,0<60 <8 <N and s > 1 and assume that —1 + s'(1+6 —
B) <a< —1+¢(N+6—p). Then the above capacities are equivalent

Capfy, , o(E) = Capﬁ oot S(E) for any Borel E C 09).

The interested reader is referred to in [78, Section 3.3] for more properties of
of such capacities. Using these capacities, we give a criteria for the existence
of solutions.

THEOREM 1.14. Let 7 € M (Q,6%) and v € MT(9N). Assume p > 1.
Then the following statements are equivalent.
(i) There ezists C' > 0 such that the following inequalities hold

/E(SO‘dT < C’C’apl(\lp;;z);,(E) for all Borel set E C €, (1.3.40)
v(F) < CCap??a+%7p,(F) for all Borel set F' C 0. (1.3.41)

(i) There exists a positive constant C such that (1.3.31) and (1.3.32)
hold.

(11i) Problem (1.3.30) has a positive weak solution for o > 0 and p > 0
small enough.

We remark that capacities are a very useful tool which provides a finer
topology than Borel measures. When 1 < p < p,,, we have

. 1o .
suelgfz Cap (r+ ) ,({€}) >0 and zlenan Cap??ajw%l’p,({z}) >0

hence the Theorem 1.14 covers Theorem 1.13 (i)-(iii).
It is worth mentioning that we also extend existence results for scalar
equations to systems of the form
—Lyu=c¢€g(v)+or in Q,
—Lyv=c€g(u)+o7 in €, (1.3.42)
try(u) = pv, tr,(v) = pv
where g and § are nondecreasing, continuous functions in R with ¢(0) =

g(0)=0,e=41,0>0,6 >0, p>0, p>0. The reader is referred to our
paper [78] for various existence results for (1.3.42).

1.3.6. Gradient-dependent nonlinearities. In this subsection, we
consider the Dirichlet problem for equation (1.2.6) with g : Ry x Ry — Ry
being nondecreasing and locally Lipschitz in its two variables with ¢(0,0) =
0. We recall that the nonlinearity g(u,|Vul) is called absorption (resp.
source) if the plus sign (resp. minus sign) appears in (1.2.6). Two prototype
models to keep in mind are g(u, |Vu|) = vP+|Vu|? and g(u, |Vu|) = u?|Vul?.

First we are interested in the Dirichlet problem in the absorption case

—Lyu+ g(u,|Vul) =0 in Q,
try,(u) = v.
Weak solutions of (1.3.43) are defined in Definition 1.7.
The case where g depends only on |Vu| was studied in our joint paper

with Gkikas [79] where we showed that the value ¢, given in (1.2.13) is a
critical value for the existence of (1.3.43). Several results were established for

(1.3.43)
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the Dirichlet problem, including uniqueness and full description of isolated
boundary trace in the case 1 < ¢ < g, and a removability result in the case
Qu < q<2.

Coming back to problem (1.3.43), the existence of a weak solution holds
under an integral condition on g (see [80, Theorem 1.3]).

THEOREM 1.15. Assume g satisfies (1.2.14). Then for any v € M (9NQ),
problem (1.3.43) admits a positive weak solution 0 < u <K, [v] in Q.

The proof is a highly nontrivial adaptation of that in the case where g
depends only on u or |Vul, relying on sub and super solutions method, the
Schauder fixed point theorem and the Vitali convergence theorem.

Two typical models are g(u, |Vu|) = uP+|Vu|? and g(u, |Vu|) = uP|Vu|?.
The subcritical range and supercritical range for (p, ¢) are defined in (1.2.15)
and (1.2.16).

Next we show that the uniqueness holds in the cases g(u, |Vu|) = u? +
|[Vu|? and g(u, |Vu|) = vP|Vu|?. As a matter of fact, the uniqueness is a
direct consequence of the following comparison principle (see [80, Theorem
1.5 and Theorem B.1]). This result is novel even in the case u = 0.

THEOREM 1.16. Assume g(u, |Vul) = u? + |Vu|? with p,q satisfying
(1.2.15) or g(u, |Vu|) = uP|Vu|? with p,q satisfying (1.2.16) and ¢ > 1. Let
v; € MH(ON), ¢ = 1,2, and u; be a nonnegative solution of (1.3.43) with
v=v;. If 1 < vy then up < ug in Q.

The proof is based on a regularity result, the maximum principle, esti-
mates on the gradient of subsolutions of a nonhomogeneous linear equation.
Assume the origin 0 € 92 and let dg be the Dirac measure concentrated
at 0. It is known from Theorem 1.15 that for any k > 0, there exists a
unique solution u&k of (1.3.43) with v = kdp. It is natural to ask what the

limg o0 ug’ i could be. The answer is given in the next theorem where a

complete description of isolated singularities at 0 is established.
We first consider the case g(u, |Vu|) = uP + |Vu|?. In this case, set

q
Mp,q = Max {p, 2_(1} . (1.3.44)
THEOREM 1.17. Assume g(u, |Vu|) = uP + |Vul|? with p and q satisfying
(1.2.15).
I. WEAK SINGULARITY. For any k > 0, let ugzk be the solution of
(1.3.43) with v = kdg. Then there exists a constant ¢ = ¢(N, u, Q) > 0 such
that

(@) < ckd(x)® >N vz e (1.3.45)
and

IVuiy(z)] < ckd(z)* > N2 vz e Q. (1.3.46)

Moreover

Q
ug ()
—a—— = k. 1.3.4

03250 KO(z,0) (1.3.47)

Furthermore the mapping k — u&k 1S increasing.
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II. STRONG SINGULARITY. Put uf,, = limj o0 u(?,k. Then, ugl, is a
solution of

u=0 on 002\ {0}. (1.3.48)

Then there exists a constant ¢ = ¢(N, u,p,q,Q2) > 0 such that

{ —L,u+ g(u,|Vu|) =0 in €,

__2 2
1o (x)¥x| meaTT < u&oo(x) < cd(x)*x| mra-t VreQ,  (1.3.49)

_72 —
Vg oo (@)] < () Ha| mra ™" Yz e Q. (1.3.50)
Moreover
2
Qgi;n_m |x\mp»r1u(?,oo(x) = w(o), (1.3.51)

z N-1
m_UGSJr

locally uniformly on upper hemisphere Sffl = Rf NSN. Here Rf ={z=

(21, ....,2n) = (', zn) : 2x > 0} and SN is the unit sphere in RYN. The
function w is the unique positive solution of

—Lyw —UNpgw~+ J(w, Vw)=0 in SY1
.- (1.3.52)
w=0 on 05,
where
2 2
,Cw:A'w—l—Lw, l :—< +2—N),
g (en-0)? N Mp,g \Mp,q
q
2 \2 2
(( )32+|5P> , if p< o, (s,6) €Ry xRV
Mp.q 2—q
q
_ 2 \2 2
0= e ()2 4leP) . o p=gl O eR, xRY
Mp g 2—q
s, if p> ﬁ (5,6) € Ry x RV,
(1.3.53)

The above theorem shows that there is a competition between two terms

u? and [Vu|?. In particular, if p > 31 then u” is the dominant term,

otherwise |Vu|? is the dominant term. Moreover, it is observed that the
q

equation is not scaling invariant, unless p = Pt

Isolated boundary singularities in the case g(u, |Vu|) = u?|Vul? are de-
picted in the next theorem (see [80, Theorem 1.6]). We notice that, unlike
the case of sum, in this case of product, the equation is scaling invariant

and the blowup rate is explicitly determined by the exponent pi;zl.

THEOREM 1.18. Assume g(u, |Vu|) = uP|Vu|? with ¢ > 1 and p and q
satisfying (1.2.16).

I. WEAK SINGULARITY. For any k > 0, let ugk be the solution of
(1.3.43) with v = kdg. Then (1.3.45)— (1.3.47) hold. Furthermore the map-
ping k — u&k 1S 1ncreasing.

II. STRONG SINGULARITY. Put uf, := limp_ o uf,. Then uf is a
solution of (1.3.48). There exists a constant ¢ = c(N,/’L,p,q, Q) > 0 such
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that

2— 2
¢16(2) 2 P < uf o () < o8(x)a| T Ve eQ, (1.3.54)

IVl (2)] < e6(z) M| T vz e Q. (1.3.55)

0,00
Moreover
2
lim  e|re Tl (2) = w(o), (1.3.56)

Q35z—0
s N-1
2y =0 €SY

Ta]

locally uniformly on upper hemisphere S_]X_l = ]Rf N SN=1 where w is the
unique solution of problem (1.3.52) with

2—¢q 2p+q
Lw w+(eN'0)2w’ N,p,q p+q—1<p+q—1 )7
q
2—q \?2, 2)? N
N L
J(s,&) =s <<p+q—1) 5 +‘§|> (5,€) € Ry x RY.

(1.3.57)

In the supercritical range, an important ingredient in the study is Bessel
capacities. First we recall below some notations concerning Besov spaces
and Bessel spaces (see, e.g., [1, 98, 130]). For 0 > 0, 1 < k < 00, we
denote by W*(R?) the Sobolev space over RZ. If o is not an integer the
Besov space B7*(R%) coincides with W#(R%). When o is an integer we
denote A, f := f(z+y)+ f(x —y) —2f(x). The Besov space is defined by

Agyf

BYF(RY) := {f € L5(RY) : -
[yl

e L8(R? x Rd)} ,

with norm

1
f 1,k :— < f K& +// . dxdy .
” HB H HL Ry Rd ’y|,€+d

Then we have
B™H(RY) = {f e wmLr(RY) . D f € BY(RY) VO € N4, |6] = m — 1} ,

with norm

|D2A9& yf 1"
fllBms = | | fII5rme1s + g // . dxdy
H H H ||W 1 dyRd |y|f$+d

|0|=m—1

For s € R, the Bessel kernel of order s is defined by G4(¢) = F~1(1 +
|.12)"2F(€), where F is the Fourier transform of moderate distributions in
RY. The Bessel space L .(R9) is defined by

LS,H(Rd) ={f=Gs*xg:g¢€ L”(Rd)},

with norm

[z = llgller = [1G—s * fllL-
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It is known that if 1 < k < 0o and s > 0, L, ,(R?) = W**(R9) if s € N and
Ls (R = B*F(R?) if s ¢ N, always with equivalent norms. The Bessel
capacity is defined for compact subsets K C R? by

CELK) = mf{||f]5. .. f € S'®RY, f > xx}. (1.3.58)

It is extended to open sets and then Borel sets by the fact that it is an outer
measure.
Let v € M (9Q). We say that v is absolutely continuous with respect

to the Bessel capacity CEZ if
CEZ(E) =0=v(E)=0 for all Borel set E.

A necessary condition expressed by Bessel capacities for the existence of
a solution to (1.3.43) is obtained from [80, Theorem B.5 and Theorem 1.7].

THEOREM 1.19. Let v € M (9Q) and assume that problem (1.3.43) has
a nonnegative solution u € C%(Q).
I. Assume g(u, |Vul|) = uP 4+ |Vu|? with (p,q) is in the supercritz’cal range.
(i) If p > p, then v is absolutely continuous with respect to C 1+a e

(it) If q, < q < 2 then the followings occur.
(a) If ¢ # a+1 then v is absolutely continuous with respect to C’a+1

—a,q’”

(b) If g = a+ 1 then for any € € (0, mln{a—i-l (a+1) - (l—a)}) then
-1

e+l—a, +1

I1. Assume g(u,|Vu|) = uP|Vul|? with (p,q) is in the supercritical range.

i) If ¢ # o + en v is absolutely continuous with respect to the capacity
) 1 1th s absolutel ti ith t to th 23
]RNfl
L—at 5 (p+a)'
1) q=o+ en for any € € manz—i— , - -« en v
i) I 1 th 0, mi 1, W=D th

-1

v s absolutely continuous with respect to CRY

Here (p + q)" denotes the conjugate exponent of p + q.

18 absolutely continuous with respect to CRY

l—at ey 1 (ptatl)”
Define the weight function W by
1
() it < g,
W(z) = ) 1 (1.3.59)
d(z)2|Ino(x)| if p= T

We note that, by [77, Propositions 2.17-2.18], for any h € C(0f2) there
exists a unique L,-harmonic function u, € C(2) N L1(£2, §%) such that

A C)
€N, x—E W(ﬂ?)
We note that (1.3.60) can be viewed as the boundary condition in the Hardy
potential case. If = 0 then a = 1 and W(z) = 1, hence (1.3.60) becomes
the boundary condition in the classical sense.
We obtain a removability result in the supercritical range (see [80, The-
orem B.6 and Theorem 1.8]).

THEOREM 1.20. Let E be a compact subset of 052.
I. Assume g(u, |Vu|) = uP + |Vul? with (p,q) is in the supercritical range.
Suppose

=h(¢)  VEe . (1.3.60)
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(Z) RvaLla /(E) =0 pr 2 p,u)
or(zz)CaH (E)=0ifq.<q<2andq#a+1.

a?q

or (iii) C 6+1 o (E) =0, for some e € (0,min{ar+1, (W +1) —(1-a)})
ifg=a+1. -
Then any nonnegative solution u € C*(Q) N C(Q\ E) of equation
—Lyu+g(u,|Vul) =0 in Q (1.3.61)
satisfying
1
20, 2¢ W (z)

1s identically zero.

=0 VE€On\E, (1.3.62)

II. Assume g(u,|Vu|) = uP|Vul? with (p,q) is in the supercritical range.
Suppose

(Z) CiRNa_"l_DLJFl q (p+q)’ (E) =0 @fq 7& o+ 17
— : (N-1)a
or (ii) C’1 ot +§+l,(p+a+1)’(E) =0, for some e € (0, min{a+1, 75~ —

(I-a)}), ifqg=a+1. B
Then any nonnegative solution u € C*(Q) N C(Q\ E) of equation (1.3.61)
satisfying (1.3.62) is identically zero.

The results stated in Theorems 1.19 and 1.20 are novel, even for y = 0.
Next we are interested in the boundary value problem for equations with
source term of the form

—L,yu—g(u,|Vul) =0 in Q,
tr,(u) = pv,

where p is a positive parameter and v € M*(IN) with [|v]logan) = 1. Weak
solutions of (1.3.63) are defined in Definition 1.7.

The source case is different from the absorption case in an essential
way. This can be seen in the following result which guarantees the existence
of a weak solution under a smallness assumption on the total mass of the
boundary data.

(1.3.63)

THEOREM 1.21. Let v € MM (0N) with ||[v|lonon) = 1. Assume g satisfies
(1.2.14) and

glas,bt) < k(aP +b9)g(s,t) V(a,b,s,t) € RY, (1.3.64)

for some p > 1, ¢ > 1, k > 0. Then there exists po > 0 depending on
N, 1, Q, k,p, G such that for any p € (0, pg), problem (1.3.63) admits a posi-
tive weak solution u > pK,[v] in €.

It is easy to see that if g(u, |Vu|) = u? + |Vul|? or g(u, |Vu|) = uP|Vul?
then (1.3.64) holds. Therefore Theorem 1.21 holds true for these typical
models.

Sufficient conditions for the existence for the Dirichlet problem in two
typical models with (p, ¢) being in supercritical range are expressed in terms
of capacities (see (1.3.37) and (1.3.39)). We note that the capacities used for
this case are different from the Bessel capacities employed in the absorption
case (see (1.3.58)).
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THEOREM 1.22.
I. Assume g(u,|Vu|) = uP + |Vu|? with p > 1 and N(f&lq < q < o
Assume one of the following conditions holds:

(i) There exists a constant C > 0 such that for every Borel set E C 0f).

v(B) < Cmin{Capy%, | ass |, (B), Cap’y o (E)} (1.3.65)

(ii) There ezists a positive constant C' > 0
Nga,g[(sa(p+1)N2a72 [I/]p] < CNQQQ[V] < o0 a.e. in

(1.3.66)
N2a_171[5(a71)q+aN2a_171[V]q] < CNQQ_Ll[V] < o0 a.e. in .

Then there exists po = po(N, p, p,q,C, Q) > 0 such that for any p € (0, po),
problem (1.3.63) admits a weak solution u.

IT. Assume g(u,|Vu|) = wP|Vu|? withp >0, q>0,p+qg>1and g <
Lrat(=ap  Aseume one of the following conditions holds.

[0}
(i) There exists a constant C' > 0 such that

v(E) < C’Cap??aJr (E) for every Borel set 2 C 0%). (1.3.67)

=4 (ptq)!
Here (p + q)" denotes the conjugate exponent of p + q.
(ii) There ezists a positive constant C' > 0 such that

Nga,Ll[5ap+(°‘_1)q+aN2a,171[V]p+q] < CNagg—11[V] <00 a.e. in Q.
(1.3.68)
Then there exists po = po(N, p, p, q, C, Q) > 0 such that for any p € (0, pp),
problem (1.3.63) admits a weak solution u.

1.4. Related and open problems

We notice that because of the broadness of the topics regarding boundary
value problems for nonlinear equations with a Hardy potential, the results
presented above are a modest contribution to the recent developments and
are due to the our interest. The topics have received much attention and
many new results have been recently published. Some related interesting
results and open problems are listed below.

Multplicity and uniqueness. As pointed out before in Theorem 1.12,
when 1 < p < p,, there exists a threshold value p* > 0 such that problem
(1.3.29) admits a minimal positive solution for p € (0, p*] and admits no
positive weak solution for p > p*. In [23], we carried out a deeper analysis
on (1.3.29) and proved the multiplicity for p € (0, p*) and the uniqueness
for p = p*, which complements the results in [119]. More precisely, the
structure of the solution set of problem (1.3.29) is described as follows.

Subcritical case: p € (1,p,). There exists p* € (0,00) such that the follow-
ings hold.

(i) If p € (0, p*) then problem (1.3.26) admits two positive solutions,
including the minimal positive solution.
(ii) If p = p* then problem (1.3.26) admits a unique positive solution.
(iii) If p > p* then (1.3.29) does not admit any positive solution.
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Supercritical case: p > p,. For every p > 0 and z € 0§, there is no
positive weak solution of (1.3.29) with v = ¢,, where §, is the Dirac mass
concentrated at y € 0S).

The multiplicity for systems were also derived in [23] for measure data
with small total mass. However, this result provides partial understanding
of solution set of systems and needs to be improved.

Schrédinger equations with potential blowing up on boundary.
Let Q ¢ RY (N > 3) be a C? bounded domain and F C 99 be a k
dimensional C2 submanifold, 0 < k£ < N — 1. Denote

0(z) :=dist(x,00), O0p(x):=dist(zx, F)

and put
V(z) = Vp(x) :=6p(z)"2, zc.

Boundary value problems for semilinear equations with Schrédinger operator
Ly := A+ uV, p € R, in the special cases k = N and & = 0 have been
extensively investigated. In particular, the case k = N — 1, FF = 9 and
V(z) = d(x)~2 is well understood, as shown in this thesis, while the case
k =0, F = {0} with the origin 0 € 9Q and V(z) = |z|~2 was treated by
Chen and Véron [45]. It is also worth mentioning that the case of more
strongly singular potential V(z) = §(z)™ with a > 2 was considered by Du
and Wei in [54]. The case 1 < k < N —2 had remained open until our work
in [107]. In fact, we considered the case where F is a C? submanifold of
dimension 0 < k < N — 2 without boundary and established the solvability
for solutions to the equation — Ly u+g(u) = 0 in © with prescribed boundary
data. The reader is referred to the work of Fall and Mahmoudi [65] for Hardy
type estimates and estimate of the first eigenfunction.

Recently, Marcus published papers [100, 101] in which he considered the
potential V such that |V (z)| < ad(x)~2 for all z €  and under additional
conditions, he obtained estimates on Green kernel, Martin kernel, as well as
sub and super harmonic functions. Moreover, large solutions of semilinear
equations are studied in [102].

Schrodinger equations with potential blowing up on a subset
of the domain Another interesting case is that

V(x) = pds(z) 2, (1.4.1)

where ¥ is a compact, C? submanifold in  with dimension k with 0 < k <
N —2 and dx(x) = dist(z, ). The special case ¥ = {0} C Q was treated by
Guerch and Véron [83], Chen and Véron [44], Chen and Zhou [46], Cirstea
[47] and references therein. The case V satisfies (1.4.1) was considered in
a series of papers of Davila and Dupaigne [49, 50, 55| where linear and
nonlinear equations involving Ly = A + V with source term was studied.
Recently, a complete study on the Green kernel and Martin kernel was given
in our joint paper with Gkikas [81] which provides a basis in dealing with
boundary value problems for linear equations regarding Ly in a different
framework. In this direction, the analysis of semilinear equations involving
Ly and absorption term is more challenging and still open.
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CHAPTER 2

Moderate solutions of semilinear elliptic equations
with a Hardy potential

This chapter is based on our join paper with Moshe Marcus [106] on
boundary value problems for semilinear elliptic equations with an absorption
term and a Hardy potential. In this chapter, we introduce a notion of
normalized boundary trace and develop a theory of linear equations, which
in turn provides a basis for the study of semilinear equations.
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Abstract

Let £ be a bounded smooth domain in RV . We study positive solutions of equation (E) —L,u+u? =0in Q where L, = A+ (é—’“ s

0 < u, g>1and §(x) = dist(x, d2). A positive solution of (E) is moderate if it is dominated by an L -harmonic function. If
i < Cpy (S2) (the Hardy constant for §2) every positive L, -harmonic function can be represented in terms of a finite measure on 02
via the Martin representation theorem. However the classical measure boundary trace of any such solution is zero. We introduce a
notion of normalized boundary trace by which we obtain a complete classification of the positive moderate solutions of (E) in the
subcritical case, 1 < g < gy, ¢. (The critical value depends only on N and .) For ¢ > gy there exists no moderate solution with
an isolated singularity on the boundary. The normalized boundary trace and associated boundary value problems are also discussed
in detail for the linear operator L. These results form the basis for the study of the nonlinear problem.

© 2015 Elsevier Masson SAS. All rights reserved.

MSC: 35]60; 35175; 35110
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1. Introduction

In this paper, we investigate boundary value problem with measure data for the following equation
—Au- B +u?=0 (1.1)
u— putul= .

in a C? bounded domain 2, where q > 1, p € R and §(x) = dist (x, d2). This problem is naturally linked to the
theory of linear Schrédinger equations —LY u = 0 where LY := A 4 V and the potential V satisfies | V| < ¢5~2. Such
equations have been studied in numerous papers (see [1,2] and the references therein).
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Put
lad
82°

(2) of the equation — L, u = 0 is called an L -harmonic function. Similarly, if

Ly=A+ 1.2)

: 1
Asolutionu € L,

—L,u>0 or —L,u<O0

we say that u is L, -superharmonic or L, -subharmonic respectively. If ;1 = 0 we shall just use the terms harmonic,
superharmonic, subharmonic.

Some problems involving equations (1.1) and (1.2) with u < 1/4 were studied by Bandle, Moroz and Reichel [4].
They derived estimates of local L, -subharmonic and superharmonic functions and applied these results to study con-
ditions for existence or nonexistence of large solutions of (1.1). They also showed that the classical Keller—Osserman
estimate [ 14,24 remains valid for (1.1).

The condition u < }‘ is related to Hardy’s inequality. Denote by Cy(2) the best constant in Hardy’s inequality,
ie.,

Vu|’d
Ch(Q) = inf Jo|Vul*dx

. 13
Hl @) Jo/8)%dx -

By Marcus, Mizel and Pinchover [17], Cx(£2) € (0, %] and Cy(Q2) = 41_1 when 2 is convex. Furthermore the infimum
is achieved if and only if Cy(2) < 1/4. By Brezis and Marcus [7], for every 1 < 1/4 there exists a unique number
Ay,1 such that

pe inf Jo(Vul> = xy ju?)dx
Hl© Jo(u/8)%dx

and the infimum is achieved. Thus A, ; is an eigenvalue of —L, and, by [7, Lemma 2.1], it is a simple eigenvalue.

We denote by ¢, 1 the corresponding positive eigenfunction normalized by fQ ((pi,1 /8%)dx =1.

The mapping [1/4, 00) 3 u > A, 1 is strictly decreasing. Therefore if © < Cy(2) then 4,1 > 0. Consequently, in
this case, ¢, 1 is a positive supersolution of —L . This fact and a classical result of Ancona [2] imply that for every
y € 9, there exists a positive L,,-harmonic function in £ which vanishes on 9€2\ {y} and is unique up to a constant.
Denote this function by K iz(~, y), normalized by setting it equal to 1 at a fixed reference point x¢ € 2. The function

(x,y) — Kl?(x, ¥), (x,y) € Q x 0L, is the L,,-Martin kernel in  relative to xo. Further, by [2]:

Representation Theorem. For every v € M (3Q) the function

K2 [v](x) :=/Kf}(x,y)dv(y) VxeQ (1.4)
a0
is L,-harmonic, i.e., LMKS[V] = 0. Conversely, for every positive L, -harmonic function u there exists a unique
measure v € MT(9Q) such that u =K [v].

This theorem implies that — in the present case — the L -Martin boundary of  coincides with the Euclidean
boundary. (For the general definition of Martin boundary see, e.g. [1]. However this notion will not be used here
beyond the representation theorem stated above.) The measure v such that u = Kff[v] is called the L, -boundary
measure of u. If =0, v is equivalent to the classical measure boundary trace of u (see Definition 1.1). But if
0 < ;< Cy(R), it can be shown that, for every v € 9T (3L2), the measure boundary trace of Kff[v] is zero (see
Corollary 2.11 below).

In the case u =0, the boundary value problem

—Au+u?'u=0 inQ
u=v onaif (1.5)
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where ¢ > 1 and v is either a finite measure or a positive (possibly unbounded) measure, has been studied by numerous
authors. Following Brezis [6], if v is a finite measure, a weak solution of (1.5) is defined as follows: u is a solution of
the problem if # and §|u|? are integrable in €2 and
g—1 _ 9z 2&
(—ulA¢ + ul" ut)dx = — a—dv V¢ e Cy(2) (1.6)
n
Q a0

where n is the outer unit normal on 9€2. Brezis proved that, if a solution exists then it is unique. Gmira and Véron [13]

showed that there exists a critical exponent, g, := INV—i'{ such that if 1 < g < ¢., (1.6) has a weak solution for every
finite measure v but, if ¢ > g, there exists no positive solution with isolated point singularity.

Marcus and Véron [20] proved that every positive solution of the equation
—Au+u?=0 1.7

possesses a boundary trace given by a positive measure v, not necessarily bounded. In the subcritical case the blow-up
set of the trace is a closed set. Furthermore they showed that, in this case, for every such positive measure v, the
boundary value problem (1.5) has a unique solution.

In the case ¢ =2, N =2 this result was previously proved by Le Gall [15] using a probabilistic definition of the
boundary trace.

In the superecritical case the problem turned out to be much more challenging. It was studied by several authors
using various techniques. The problem was studied by Le Gall, Dynkin, Kuznetsov, Mselati a.0. employing mainly
probabilistic methods. Consequently the results applied only to 1 < ¢ < 2. In parallel it was studied by Marcus and
Veron employing purely analytic methods that were not subject to the restriction ¢ < 2. A complete classification of
the positive solutions of (1.5) in terms of their behavior at the boundary was provided by Mselati [18] for ¢ = 2, by
Dynkin [11] for g, < ¢ <2 and finally by Marcus [16] for every g > g.. For details and related results we refer the
reader to [23,22,21,3,10] and the references therein.

In the case of equation (1.1) one is faced by the problem that, according to the classical definition of measure
boundary trace, every positive L, -harmonic function has measure boundary trace zero. Therefore, in order to classify
the positive solutions of (1.1) in terms of their behavior at the boundary, it is necessary to introduce a different
notion of trace. As in the study of (1.7), we first consider the question of boundary trace for positive L ,-harmonic or
superharmonic functions.

We recall the classical definition of measure boundary trace.

Definition 1.1. (i) A sequence {D,} is a C? exhaustion of € if for every n, D, is of class C%, D, C Dy and
Up Dy, = Q. If the domains are uniformly of class C?we say that {D,} is a uniform C? exhaustion.

(ii) Let u € W[L’Cp (2) for some p > 1. We say that u possesses a measure boundary trace on 9% if there exists a
finite measure v on 9S2 such that, for every uniform C? exhaustion {D,} and every ¢ € C(%Q),

lim /ulap,lwdSszdv.
n—0o0
aD, 0

Here u|p, denotes the Sobolev trace. The measure boundary trace of u is denoted by tr (u).

For 8 > 0, denote

Qe={xeQ:6(x)<B}, Dg={xeQ:0(x)> B}, Tg={xeQ:5(x)=p}.

1 1
=—x./-—pu. 1.8
ay =k (1.8)

It can be shown (see Corollary 2.11 below) that the classical measure boundary trace of Kﬁ[v] is zero but there
exist constants Cy, C such that, for every v € M(3€2),

Put
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1
= [ EwI0a, < €2 1o kanaay (1.9)
Zp

for all B € (0, Bo) where By > 0 depends only on 2. In view of this we introduce the following definition of trace.

Definition 1.2. A positive function u possesses a normalized boundary trace if there exists a measure v € M (IRQ)

such that
. 1 Q
ginoﬂT lu — K/ [v]ldSy =0. (1.10)
Zp

The normalized boundary trace will be denoted by tr*(u).

Remark. The notion of normalized boundary trace is well defined. Indeed, suppose that v and v’ satisfy (1.10). Put v =
(Kff[v —'])4 then v is a nonnegative L ,-subharmonic function, v < K[v + V'] and tr*(v) = 0. By Proposition 2.14,
v=0,ie., ]Kff[v — ] < 0. By interchanging the roles of v and v/, we deduce that Kff[v’ —v]<0.Thusv=v".

Denote by GS the Green function of —L, in 2 and, for every positive Radon measure 7 in €2, put

G211 = [ 620 ndr ().
Q

Denote by M ¢ (), f a positive Borel function in 2, the space of Radon measures 7 on 2 satisfying fQ fd|t| < o0
and by zm}(sz) the positive cone of this space.

If T is a positive measure such that fo[r](x) < oo for some x € Q2 then 7 € Mo (2) and Gf}[r] is finite every-
where in Q. The underlying reason for this is the behavior of the Green function at the boundary: for every g > 0
there exists cg such that

6518()6)0’* <G2(x.y) <cpd () VxeQpp, yeDg.

For details see Section 2.2 below.
We begin with the study of the linear boundary value problem,

—Lyju=t inQ
tr*(u) =v, (1.11)

where v e MT(AQ) and 7 € Dﬁgﬁx + (£2). As usual we look for solutions u € L }U -(£2) and the equation is understood
in the sense of distributions. The representation theorem implies that if 7 = 0 the problem has a unique solution,
u= Kf} [v].

We list below our main results regarding this problem.

Proposition 1.

(i) If u is a non-negative L, -harmonic function and tr*(u) =0 then u = 0.
(i) Ifre smg:g () then Gf}[r] has normalized trace zero. Thus fo[r] is a solution of (1.11) with v =0.
(iii) Let u be a positive L -subharmonic function. If u is dominated by an L, -superharmonic function then L u €
9)?2;+ (R2) and u has a normalized boundary trace. In this case tr*(u) = 0 if and only if u = 0.

(iv) Let u be a positive L -superharmonic function. Then there exist v € MTOQ) and T € img; + (8) such that
_nQ Q
u_GM[r]—i-Ku[v]. (1.12)

In particular, u is an L, -potential (i.e., u does not dominate any positive L -harmonic function) if and only if
tr*(u) =0.
(v) Foreveryv e M (0Q) and T € 93?;2+ (R2), problem (1.11) has a unique solution. The solution is given by (1.12).
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Next we study the nonlinear boundary value problem,
—Lyu+u?=0 inQ
tr*(u) =v (1.13)
where v € MT(9Q).

Definition 1.3. (i) A positive solution of (1.1) is L -moderate if it is dominated by an L -harmonic function.

(i1) A positive function u € L?U () is a (weak) solution of (1.13) if it satisfies the equation (in the sense of distribu-

tions) and has normalized boundary trace v.

Definition 1.4. Put
X(RQ)={¢e C*(Q): 8% Lt € L®(Q), 7% ¢ € L (Q)}.
A function ¢ € X (2) is called an admissible test function for (1.13).

Following are our main results concerning the nonlinear problem (1.13). Theorems A—D apply to arbitrary exponent
q>1.

Theorem A. Assume that 0 < u < Cg(2), g > 1. Let u be a positive solution of (1.1). Then the following statements
are equivalent:

(i) u is L,,-moderate.

(ii) u admits a normalized boundary trace v € 9T (3. In other words, u is a solution of (1.13).

(iii) u € L, (Q) and

u+ G =K [v] (1.14)

where v = tr*(u).
Furthermore, a positive function u is a solution of (1.13) if and only if u/8% € L' (), §*+u? € L' (Q) and

/(—uLug +u‘1§)dx=—/KfZ[v]LH§dx Y € X(Q). (1.15)
Q Q

Theorem B. Assume 0 < u < Cy(R2), g > 1.
1. UNIQUENESS. For every v € I (3Q), there exists at most one positive solution of (1.13).

1I. MONOTONICITY. Assume v; € MT(0RQ), i =1, 2. Let uy, be the unique solution of (1.13) with v replaced by v;,
i=1,2.Ifvi < v then uy, <u,,.

III. A-PRIORI ESTIMATE. There exists a positive constant ¢ = c(N, ., Q) such that every positive solution u of (1.13)
satisfies,

”u”L;—a, () + ”u“L'§a+ () =c ||V||9n(asz)- (1.16)

Theorem C. Assume 0 < < C(R), ¢ > 1. If v € MT(0Q) and K} [v] € Lie, (Q) then there exisis a unique
solution of the boundary value problem (1.13).

Corollary C1. For every positive function f € L' (3S2) (1.13) with v = f admits a unique positive solution.

Theorem D. Assume 0 < u < Cy(K2), g > 1. If u is a positive solution of (1.13) then

u(x)

Jim Kf}[\)](x) =1 non-tangentially, v-a.e. on 02. (1.17)
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Let

N + oy
=— 1.18
qu,c N—l—a ( )
In the next two results we show, among other things, that g, . is the critical exponent for (1.13). This means that,
if 1 <g < g, then problem (1.13) has a unique solution for every measure v € M+ (L) but, if g > qu.c then the
problem has no solution for some measures v, e.g. Dirac measure.
In Theorem E we consider the subcritical case 1 < ¢ < g . and in Theorem F the supercritical case.

Theorem E. Assume 0 < u < Cy(Q2) and 1 < g < qu.c. Then:
I. EXISTENCE AND UNIQUENESS. For every v € M+ (dQ) (1.13) admits a unique positive solution u,.

II. STABILITY. If {v,} is a sequence of measures in M (3Q) weakly convergent to v € M (IQ) then Uy, —> Uy in
L} . (Q) andin LY., ().

111. LOCAL BEHAVIOR. Let v = k8y, where k > 0 and 8y is the Dirac measure concentrated at y € 2. Then, under
the assumptions of Theorem E, the unique solution of (1.13), denoted by uys,, satisfies

u
im e (1.19)
=y K2 (x,y)

Remark. Note that in part III we have ‘uniform convergence’ not just ‘non-tangential convergence’ as in Theorem D.

Theorem F. Assume 0 < u < Cy(2) and q > qy,.c. Then for every k > 0 and y € 3K, there is no positive solution of
(1.1) with normalized boundary trace k3.

In the first part of the paper we study properties of positive L, -harmonic functions and the boundary value problem
(1.11). In the second part, these results are applied to a study of the corresponding boundary value problem for the
nonlinear equation (1.1). These results yield a complete classification of the positive moderate solutions of (1.1) in the
subcritical case. They also provide a framework for the study of positive solutions of (1.1) that may blow up at some
parts of the boundary. The existence of such solutions in the subcritical case has been studied (by different methods)
in [5]. The boundary trace for positive non-moderate solutions and corresponding boundary value problems will be
treated in a forthcoming paper.

The main ingredients used in this paper are: the Representation Theorem previously stated and other basic results
of potential theory (see [1]), a sharp estimate of the Green kernel of —L, due to Filippas, Moschini and Tertikas [9],
estimates for convolutions in weak L? spaces (see [23, Section 2.3.2]) and the comparison principle obtained in [4].

2. The linear equation

Throughout this paper we assume that 0 < u < Cy(2).
2.1. Some potential theoretic results

We denote by Ms« (2), o € R, the space of Radon measures t on €2 satisfying fQ 8%(x)d|t| < oo and by 97{;; ()
the positive cone of Ms« (). When o = 0, we use the notation M(2) and IMT(Q). We also denote by M(3RQ) the

space of finite Radon measures on 32 and by 9 (32) the positive cone of M(IL).
Let D be a C% domain such that D € Q and h € L!(32). Denote by S,.(D, h) the solution of the problem

{ —L,u =0 in D .1

u=nh on dD.

Lemma 2.1. Let u be L ,-superharmonic in Q2 and D be a C? domain such that D € Q. Then u > Su(D,u) a.e. in D.
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Proof. Since u is L,,-superharmonic in 2, there exists T € 9T (2) such that —L,u = 7. Let v be the solution of

(2.2)

—Lyv=r1 in D
v=0 on dD

andputw=S,(D,u). Thenw>0andulp=v+w=>v. O

Lemma 2.2. Let u be a nonnegative L -superharmonic and {D,} be a C 2 exhaustion of Q. Then
i:= lim S, (Dy,,u)
n—o0o
exists and is the largest L -harmonic function dominated by u.
Proof. By Lemma 2.1, S, (D,,u) < ulp,, hence the sequence {S,(D,,u)} is decreasing. Consequently, i exists

and is an L, -harmonic function dominated by u. Next, if v is an L, -harmonic function dominated by u then v <
S, (Dy, u) for every n € N. Letting n — oo yields v <#. O

Definition 2.3. A nonnegative L ,-superharmonic function is called an L -potential if its largest L ,-harmonic mino-
rant is zero.

As a consequence of Lemma 2.2, we obtain

Lemma 2.4. Let u), be a nonnegative L, -superharmonic function in Q. If for some C 2 exhaustion {D,} of 2,

1im S, (Dy,up) =0, 2.3)

then u, is an L -potential in Q. Conversely, if u, is an L -potential, then (2.3) holds for every C 2 exhaustion { D)}
of Q.

For easy reference we quote below the Riesz decomposition theorem (see [1]).

Theorem 2.5. Every nonnegative L -superharmonic function u in Q can be written in a unique way in the form
u=up+uy where uy is an L, -potential and uy, is a nonnegative L, -harmonic function in Q.

The next result is a consequence of the Fatou convergence theorem [ 1, Theorem 1.8] and the following well-known
fact: if a function satisfies the local Harnack inequality, fine convergence at the boundary (in the sense of [1]) implies
non-tangential convergence.

Theorem 2.6. Let u, be a positive Ly -potential and u be a positive L, -harmonic function. Assume that ul—f satisfies
the Harnack inequality. Then

. Up (x) ,
lim —— =0 non-tangentially, v-a.e. on 92
x—=y u(x)
where v is the L, -boundary measure of u.
2.2. The action of the Green and Martin kernels on spaces of measures

From [2], for every y € 0%, there exists a positive L, -harmonic function in & which vanishes on Q2 \ {y}. When
normalized, this function is unique. We choose a fixed reference point xg in 2 and denote by K fz y this L, -harmonic
function, normalized by Kfz y (x9) = 1. The function K ;SZ(" y) = Kfﬁ y(~) is the L, -Martin kernel in 2, normalized
at xq.

For v € 91(02) denote

K7 [vl(x) = / K2 (x, y)dv(y).
IR
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In what follows the notation f ~ g means: there exists a positive constant ¢ such that ¢~ f < g < ¢f in the domain
of the two functions or in a specified subset of this domain. Of course, in the latter case, the constant depends on the
subset.

Let fo be the Green kernel for the operator L, in 2 x €. Fix a point xo € €. It is well known that the function

X > fo(x, x0) behaves like the first eigenfunction ¢, (x) near the boundary, i.e., Gf}(-, x0) ~ @1 in Qg, (0 <

B < 8(x0)).
By [19, Lemmas 5,1, 5.2] (see also [8, Lemma 7] for an alternative proof)
¢TI < gp1 () < e8(x) 24)
Thus, if 0 < 8 < §(x0),
clglé(x)"‘+ < fo(x,xo) <cgd(x)* Vx e Qg. 2.5)
Therefore, if t € Mset () then

Glrl(x) ::/Gf}(x,y)dr(y) <00 ae.in Q.
Q
Indeed, by (2.5) and the symmetry of the Green kernel, for every x € 2, the integral over Qs(x)2 is finite. For
Y € Ds(x)/4, Gf} (x,y) <clx— y|2*N . Therefore the integral is finite over this set as well. Inequality (2.5) also implies

that, if 7 is a positive Radon measure in 2 and fo[r](x) < oo for some point x € 2 then t € Mot () and (fo[r] is
finite everywhere in 2.
By [9, Theorem 4.11], for every x, y € Q, x # y,

G2, y) ~min{lx = y 7Y 80" e -y 2.6)
Since
GS(x.2)
K&(x,y):=lim =2 VxeQ
O = Gt

it follows from (2.6) that

K, y) ~ 80 x —y N VreQ,yeiQ. 2.7
Let G = Gg and P9 = POQ denote the Green and Poisson kernels of —A in €. Then, by (2.7)
KQ X, S _ 200 _ 200
p Y 8 [l — v\ Py (22 28
3(x)*= lx =y \ 8(x) 3(x)

Denote L5 ($2; 7),1 < p <00, T € MT(RQ), the weak L? space defined as follows: a measurable function f in Q
belongs to this space if there exists a constant ¢ such that

Af(a;T) =1t({xeQ:|f(x)|>a})<ca” P, Va>D0. 2.9)
The function A f is called the distribution function of f (relative to 7). For p > 1, denote

LP(€2; ) = { f Borel measurable : supa’i s (a; 7) < oo}

a>0
and
1
1£15p gy = (SUPAPA pa; )7 (2.10)
a>0

This expression is not a norm, but for p > 1, it is equivalent to the norm

(wall =su M tw C 2, w measurable , 0 < t(w) (2.11)

h@n =TSP Ty ' ’ : :

More precisely,
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p
10 @ = 1 lagi@in = 5 =7 1 N @y 2.12)
Notice that, for every o > —1,
LP(Q2;8%x) C L5 () Vrell, p).
For every x € €2, denote by n, the outward unit normal vector to d€2 at x.
The following is a well-known geometric property of C2 domains.

Proposition 2.7. There exists Bo > O such that

(i) For every point x € §ﬂ0, there exists a unique point ox € 02 such that |x — oy| = §(x). This implies x =
oy —8(x)ng,.

(ii) The mappings x + &(x) and x +— o, belong to Cz(ﬁﬁo) and Cl(ﬁﬁo) respectively. Furthermore,
limx_m(x) VS(.X) = —N,.

By combining (2.6), (2.7) and [23, Lemma 2.3.2], we obtain

Proposition 2.8. There exist constants c¢; depending only on N, |, B, Q2 such that,

HG,?[t]II N4p <cilitlom. YreM ), > -1, (2.13)
L7 (2.88)

IGRIe]]|  wasp <ciltlmge, @, VY7€Mpur(Q), B> 20, (2.14)
Ly % (@.8Po+)

HK,‘Z[V]H N+p <alvimaog ., YveM@R), B> -1 (2.15)
Ly~ @08

Proof. We assume that 7 is positive; otherwise we replace 7 by |z|. We consider 7 as a positive measure in RV by
extending t by zero outside of 2. For a € (0, N), denote I',(x) = lx|a=N, By [23, inequality (2.3.17)],

ICq*zll nip <clitllony VB> max{-1,—a} (2.16)
Ly~ (2.6P)

where ¢ =c(N, a, B, diam(R2)). By (2.6),
G (x,y) < emin{la(x — ), 8% 8(1)* T (x — )}
Hence, by (2.16),

G2zl was <clTaxt| wep
L 2 (2,68 L2 (9.8)

<ltllon VB>-—1,

|G wis <c|To * @) win
N2« N-=2«a
Ly (R8P Ly 77 (Q.8)

=clitlione, @ VB> —2a-.

Next we extend v by zero outside d<2 and observe that, by (2.7), Kliz (x,y) <cl'i4o_(x—y).Hence ]Kff[v] <clye_*
v and by (2.16),

HK;Z[V]” N+B <c ”FIJra_ * v” N+B <c ”VHEIR(BQ) Vﬂ >—L a
LN (.68 Ly (@0

Corollary 2.9. Let B > —1.
(i) If {v,} C M (3Q) converges weakly to v € INT(IQ) then {Kﬁ[un]} converges to Kf}[v] in Lgﬁ (R2) for every p
N+8
N—l—a_" _
(i) If {T,} C IMT(Q) converges weakly (relative to Co(2)) to T € MT(Q) then {(sz[r,,]} converges to Gf}[r] in
N+B
N-2*

such that 1 < p <

L(I;ﬁ (R2) for every p such that 1 < p <

Proof. We prove the first statement. The second is proved in a similar way.
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Since K‘? (x,.) € C(dR) for every x € 2, {Kf}[vn]} converges to Kff[v] every where in 2. By Holder inequality

and (2.15), we deduce that {(Kﬁ[v,,])p} is equi-integrable w.r.t. 8Pdx for any 1 <p< Nivltﬂa

K [va] — KZ[v] in LY (Q). O

—. By Vitali’s theorem,

2.3. Estimates related to the normalized trace
Proposition 2.10. There exist positive constants C1, Ca such that, for every p € (0, Bo),

C1B% < / K2(x, y)dSy < C2* Vy €. (2.17)
Zp

The constants Cy1, Co depend on N, 2, u but not on y.
Furthermore, for every ry > 0,

1 o
;Ln})ﬂT / K3(x,y)dS; =0 VyeaQ. (2.18)
£5\By ()

For ry fixed, the rate of convergence is independent of y.

Proof. By (2.7),
1

o
Zp\Bry ()
This implies (2.18).
For the next estimate it is convenient to assume that the coordinates are placed so that y = 0 and the tangent
hyperplane to 9 at 0 is xy = 0 with the x, axis pointing into the domain. For x € RY put x’ = (xy, --- , xy_1). Pick
ro € (0, Bo) sufficiently small (depending only on the C? characteristic of ) so that

K (x,y)dS, < cpro. (2.19)

1

5<|x/|2 +38(0)H) < |x[* Vx € 2N By, (0).
Then, if x € XN B, (0) =: 28,0,

1 /

FWT+ ) < Ixl.

This inequality and (2.7) imply,

/ K2 (x,0)dS, < cop*™* / (| + p)**-~Nds,
Eﬁyo E,gv()
< / (12| + gy ~Ndx'

[x"|<ro

ro
<op™ /(r +B)*dt
0

o0
<ep | 7% dr = @ B
20[+ — 1
1
Thus, for 8 < rg,
2
Fo f K5 (x,00dS, < =T (2.20)

28,0
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Estimates (2.19) and (2.20) imply the second estimate in (2.17). The first estimate in (2.17) follows from (2.8). O
Since (2.17) holds uniformly w.r. to y € 92, an application of Fubini’s yields the following.

Corollary 2.11. For every v € M (3RQ),
Q

K2[v]

8(x)*-

€1 IVl < limint / ’
Zp
. K [v]
< hmsup/ de <(C ||U||9;n(39) (221)
B—0 2 8(x)e-
B

with C1,Ca as in (2.17).

Proposition 2.12. If T € Mser () then
tr*(G2r]) =0 (2.22)
and, for 0 < B < Bo,
1
ﬁc(,

/Gf}[t]de SC/5a+d|T|, (2.23)
Py Q
where c is a constant depending on ., Q.

Proof. We may assume that 7 > 0. Denote v := Gf}[r]. We start with the proof of (2.23).
By Fubini’s theorem and (2.6),

/ vas, <c( / / I — yP NS, dr(y)

g Q ZgNBg (y)
2

+p f f e = y PN, 67 (1)d (1) = 1(B) + Da(B).

Q E,‘x\Bg )

Note that, if x € Xg and |x — y| < /2 then /2 < §(y) < 38/2. Therefore

L(B) <c / lx — )ilz_"‘+_1\'5135x/zS(y)O‘+ dr(y)
ZﬁﬂB% (y) Q

B2
< / rrree N N=2gy / 8™ dt(y)
0 Q

<cfB* /<3(y)"+ dr(y)
Q

and

o0
L(B) < c2p™ / rPe NN 2y / B(* dr =chp* / By dr.
B2 Q Q

This implies (2.23).
Given € € (0, ||T||9:rt§a+ (@) and B; € (0, Bo) put 7 = T X by, and 7, = t — 11. Pick B1 = B1(€) such that
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/ S(y)*+dt <e. (2.24)
Qp,

Thus the choice of B depends on the rate at which fgﬁ 8%+ dt tends to zero as § — 0.
Put v; = fo[r,-]. Then, for 0 < 8 < B1/2,

/ vidS, <c3p / 5%+ (y)di (y).
Eﬂ Q
Thus,
. 1
/;li)‘l}) o / v1dS, =0. (2.25)

Zp
On the other hand, by (2.23) and (2.24),

/v2 dSy <ce VB < fo. (2.26)
Zp

ﬂd,
This implies that tr*(v) =0. O

It is well-known that u is an L,-potential if and only if there exists a positive measure 7 in €2 such that u =
Gﬁ[r] (see e.g. [1, Theorem 12]). The estimate (2.6) implies that if (fo[r] = 00 then t € Mot (). Therefore as a
consequence of the previous proposition:

Corollary 2.13. A positive L,-superharmonic function u is a potential if and only if tr* (u) = 0.

Remark. Let D € Q be a C? domain and denote by Glﬁ) and PIP the Green and Poisson kernels of L, in D. (To avoid
misunderstanding we point out that, in the formula defining L, §(x) denotes, as before, the distance from x to 9€2,
not to 3D.) As every positive L, harmonic function has measure boundary trace zero, there is no Poisson kernel for
L, in Q. However, L, has a Poisson kernel in every C? domain D strictly contained in §2. This follows from the fact
that the Green kernel sz exists and behaves like GOD .

Proposition 2.14. Let w be a non-negative L -subharmonic function. If w is dominated by an L, -superharmonic
function then L, w € 93”(;; . () and w has a normalized boundary trace v € MMT(AQ). If, in addition, tr*(w) = 0 then
w =0.

Proof. The first assumption implies that there exists a positive Radon measure A in €2 such that —L w = —A.
First assume that A € Mges (). Then v :=w + Gf}[k] is a non-negative L,-harmonic function and consequently,

by the representation theorem, v = Kf}[u] for some v € MT(9R). By Proposition 2.12, tr*(w) = v. If v =0 then

v =0 and therefore w = 0. Now let us drop the assumption on A.
Let vg be the unique solution of the boundary value problem,

—L,vg=—Ag in Dg, Uﬂ:hﬁ on dDg

where Ag is the restriction of A to Dg and hg is the restriction of w to dDg. (The uniqueness follows from [4,
Lemma 2.3].) The uniqueness implies that vg = w|p,. By assumption there exists a positive L, -superharmonic
function, say V, such that w < V. Hence

D D D,
w+ G gl =P,  [hg] <P, [V 0sp,] < V.

This implies that fo[k] =limg_¢ Gfﬁ [Ag] < co. For fixed x € , fo(x, y) ~ 8(y)*+. Therefore the finiteness of
(fo [A] implies that A € Mo+ (2). By the first part of the proof w has a normalized trace. O

Remark. See Proposition 2.20 below for a complementary result.
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2.4. Test functions

Denote

X(Q)={t € C}(Q):8° Lt € L®(RQ), 8% ¢ € L®(Q)}.
Proposition 2.15. For any ¢ € X(2), §“-|V¢| € L*().

Proof. Let ¢ € X () then there exist a positive constant ¢ and a function f € L°(€2) such that |{| < 1§+ and
_L/L; =48 /.

Take arbitrary point x, € Qp, and put dy = lé(x*), Vi = ix*, C«(y) =¢(dyy) fory € d]—*Qd*. Note thatif x € By, (x,)

then y = di*x € By (y4) and 1 < dist (y, a(d‘—*szd*)) <3.1In Bi(ys),

o B
" dist(y, 0(1Qa,))?

2—a_ . 1 _
G =i dist (7, 0(7-Qa,)) ™ £ (dey).
*
By local estimate for elliptic equations [12, Theorem 8.32], there exists a positive constant ¢ = c2 (N, ) such that
2—a_ . 1 _
max |V¢,| < col max [¢| + max (dy “dist(y, 0(—a,)) "% | f (dy)]].
By () Bi(y:) Bi(y:) dy
This implies
i IVE (6] < 36 00)™ + 1| f 1l ooy 8 (x)* 70,
where c3 = c3(N, i, c1). Therefore
IVE ()] < ead()™ ™" Vx € Qg
where c4 = ca(N, i, c1, | fll poo(gy). Thus 7% |V € L%(). O

Definition 2.16. Let x¢ € Q2 and denote ﬁ (x0) = min(By, %8 (x0)). We say that Gf} is a proper regularization of Gﬁ
relative to xo if G(x) = G2 (xo, x) for x € [TFT G2 eCH)NC(Q) and G >0 in Q. Similarly § is a proper
regularization of § relative to xq if g(x) =4§(x) forx € §/§(x0)’ Se C%(Q) and §>0in Q.

Remark. Using (2.6) and (2.4), it is easily verified that the functions ¢ 1, Gf}[n] (for n € L*®°(RQ)), CN}IS2 and 8%+
belong to X (€2). Moreover, using Proposition 2.15, one obtains,

CeX(Q) and heCHQ) = hi e X(Q).

In the proofs of the next two propositions we use the following construction. Let D € 2 be a C? domain. The Green
function for —L, in D is denoted by G f . (To avoid misunderstanding we point out that, in the formula defining L,
8(x) denotes, as before, the distance from x to 92, not to dD.) Given xo € 2 we construct a family of functions

G(xo) = {G’gﬁ 0< B < %5(}«))} such that, for each 8, Gﬁﬂ is a proper regularization of G,?ﬁ (x0, -) in Dg and G(x¢)
has the following properties:
13 ~Dp 2.\ ~PB ~Dp, _ ~Dp _
e Forevery B € (0, 58(x0)), G," € C*(Dg), G," >0and G," (x) = G," (x0, x) for x € Dg \ Dﬂ(xo)'
e The sequences {G,Lzﬂ} and {LMGIIL)’S} converge to Gf} and LHGS respectively, as § — 0, a.e. in Q.

~D, ~D, . .. .
Ghﬂ +|Ly GM“3 | HLOO(D ) < M,, where M, is a positive constant independent of .
8

G(xo) will be called a uniform regularization of {Gﬁ)"x }.
For any function & € C2(8Q), we say that h is an admissible extension of h relative to xo in Q if ﬁ(x) =h(o(x))

forx € Q,  and heC(Q).
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2.5. Nonhomogeneous linear equations
Here we discuss the boundary value problem (1.11) in 2.

Lemma 2.17. Let u € L}

loc

L=t 2.27)

(R2) be a positive solution (in the sense of distributions) of equation

in Q where T is a non-negative Radon measure.
If T € Msar () then

—/Gﬁ[r]Lﬂgdxz‘/;dr Ve € X(Q). (2.28)
Q Q

Proof. We may assume that 7 is positive. By Proposition 2.12, tr*(GfZ[r]) = 0. Therefore, given ¢ > 0, there exists
B=pB) < %,30 such that,

17 /GQ[I]dSX <e and /sawf <& VBe(0, Bl (2.29)

Let

1(B) :=/G§f[r1LM;dx+/;dr.
Dg Dg

To prove (2.28) we show that
lim [ =0. 2.30
ﬂl_)H}) 8) (2.30)

Put
T1 :ZXDE‘L’, %3 ::XQET
and, for 0 < 8 < E
I(B) ::/sz[rk]Lugdx-i-/{drk, k=1,2.
Dg Dg
As [¢] < 8% and |Ly¢| < g, (2.29) implies,
|L(B)| <ce VBe(,P). 231
For every 8 € (0, B),
AGY ¢
_fGE[ﬁ]Lde:/(dfl+/ﬁ§d5x—/62[fl]aid5x.
on

on
Dg Dg Zp Zp

Thus

AG[1] 9
11<ﬂ)=—/ gnt' cdsx+/G§[n]£dsx =:111(B) + [12(B).

g g
By Proposition 2.15 and (2.29),
[L2(B)| <ce YBe(0,p). (2.32)
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Next we estimate /1 1(8) for B € (0, B/2). By Fubini,

d
(B =— f o f G2(x, )T (1)L (1)dS,

Eﬁ Dﬂ
9GS (x,
=f/f#;(x>dsxdn<y).
nX

DB Py
For every y € Dy the function x — fo(x, ) is Ly -harmonic in €. By local elliptic estimates, for every § € Xg,

sup  [ViGR(e, | <™ sup  GR(x,y).
x€Bg 4 () x€Bga(§)

By Harnack’s inequality,

Q / : Q
sup G (x,y)<c inf G;(x,y).
x€Bg(§) " xeBgp)

The constants ¢, ¢’ are independent of 8 € (0, /2), y € Dg and & € Xg. Therefore we obtain,
V.G (x, y)| < CB™'Gj(x.y) Vx € T, Yy e D, VB e (0,B/2). (2.33)
Hence,
|11,1(/3)|scﬂ”/@ﬁ[nuudsx.
g
As |2(x)] < ¢8(x)*+ it follows that,
1 Q
|Il.1(,8)|fcﬂ7 Gﬂ[ﬂ]dsx.
zp
Therefore, by (2.29),
1B <C's VB e(0,B/2). (2.34)
Finally (2.30) follows from (2.31), (2.32) and (2.34). O
Theorem 2.18. Let v € M (9Q) and T € Mger (Q). Then:
(i) Problem (1.11) has a unique solution. The solution is given by
u=Gr]+ K] (2.35)
(ii) There exists a positive constant ¢ = c¢(N, u, Q) such that

Il , (@ = cliThone, @+ IVlaman)- (2.36)

(iii) u is a solution of (1.11) if and only if u € L;,M () and

—/uLM;dx = /{dr - /Kf}[u]L#gdx Ve € X(Q). (2.37)
Q

Q Q

Proof. (i) Proposition 2.12 implies that (2.35) is a solution of (1.11).

If u and u’ are two solutions of (1.11) then v := (u — u’) is a nonnegative L, -subharmonic function such that
tr*(v) =0and v < Zfo[lfl] which is a positive L -superharmonic function. By Proposition 2.14, v = 0 and hence
u <u' in Q. Similarly '’ < u, so that u = u’.

(i) In view of (2.14) and (2.15), (2.36) is an immediate consequence of (2.35).
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(iii) Let u be the solution of (1.11). By (2.36), u € L;—a, (2) and by Lemma 2.17 and (2.35), u satisfies (2.37).

Conversely, suppose that u € L é,a_ (€2) and satisfies (2.37). We show that u is a solution of (1.11) or, equivalently,
of (2.35).

By (2.37) with ¢ € C2°(2), u is a solution (in the sense of distributions) of the equation in (1.11). It remains to
show that tr*(u) =v. Put U = u — fo[r] — Kff[v] and note that, as —L,u =7, U is L,-harmonic.

Let z € Q and let G(z) be a uniform regularization of {GS’S 0< B < %ﬁ(z)} (see Section 2.4). Then, for every

D
BGM“3 (z,x)

B e(0.18@). G\ e C3(Dp). Recall that G’ (x) = G,," (z. x). Therefore, as “94.C = % (2, x), x € Tp, we

obtain
—fU(x)LHG,’f“(x)dx:/U(x)P,?ﬁ(z,x)dsx:U(z). (2.38)
Dg Zp

The second equality is a consequence of the fact that U is L, -harmonic. But L Méllfﬁ x)—L Méff(z, x) pointwise and

the sequence {L Méfﬂ } is bounded by a constant M,. We observe that U € L'(Q); in fact by assumption u € L é,a_ ()
and therefore, by Proposition 2.8, U € L1, (). Consequently, by (2.38),

U@)=— / U(x)LMfo(z, x)dx.
Q

Since Gﬁ (z,-) € X(R2), by (2.37) the right hand side vanishes. Thus U vanishes in €2, i.e., u satisfies (2.35). O

Corollary 2.19. Let u be a positive L,, superharmonic function. Then there exist v € MT(3Q) and T € zmst 4+ ()
such that (1.12) holds.

Proof. By the Riesz decomposition theorem u can be written in the form u = u,, + u;, where u, is an L, -potential
and uy, is a non-negative L, -harmonic function. Therefore there exists v € MM+ (0R) such that uy, = Kff[u]. Since u

is an L, -potential there exists a positive Radon measure 7 such that u, = fo[r] (see e.g. [1, Theorem 12]). This
necessarily implies that 7 € Mt (). O

Proposition 2.20. Let w be a non-negative L -subharmonic function. If w has a normalized boundary trace then it
is dominated by an L, -harmonic function.

Proof. There exist a positive Radon measure 7 in  and a measure v € 9T () such that
—Lyw=-1 inQ, tr'(w)=v.
Let ug be the solution of
—Lyu=-1g inDg, u=K[v] onZg
where 15 := TXDy- Then,
up+ Gl gl = K21,
Letting 8 — 0 we obtain,
Gl <K [v].
Hence 7 € Dﬁg; + (£2) and consequently

w+GHt]=K[v]. O (2.39)
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3. The nonlinear equation

In this section, we consider the nonlinear equation
—Lyu+uf=0 3.1
in QwithO<pu <Cg(2) and g > 1.

Proof of Theorem A. Since u is a positive solution of (1.1), u is L,-subharmonic. Assuming (i), u# is dominated
by an L, -harmonic function. Therefore, by Proposition 2.14, (i) = (ii) and u € Lga + (€2). On the other hand, by
Proposition 2.20 (ii) = ().

As mentioned above, (i) implies that u € LZO, +(£2) and that there exists v € DI)T;SZ +(32) such that tr*(u) = v.
Therefore, by Theorem 2.18, (1.14) is a consequence of (2.37). Thus (i) = (iii).

Finally, the implication (iii) = (i) is obvious.

It remains to prove the last assertion. If u is a positive solution of (1.13) then, by (iii), u € Lga +(2) and (1.15)
follows from Theorem 2.18.

Conversely, assume that §%tu?, u/§% € LY(Q) and (1.15) holds. Then, by (1.15) with ¢ € C°(2), u is a solution
of (1.1). Taking ¢y = (fo[f] where f € C.(2) and f > 0 we obtain

/(Kff[v] —u)f dx =/uq{f dx < oo.

Q Q

This implies u < Kff[v], i.e., u is L, -moderate. Therefore by (i), u is a solution of (1.13). O

Proof of Theorem B.
Uniqueness. Let u; and us be two positive solutions of (1.13). Then v := (4] — u2)+ is a subsolution of (1.1) and
therefore an L, -subharmonic function. Furthermore, by (iii) in Theorem A, uy,u; € Lga +(R) and v < fo[u;’ +

ug] =:v. Obviously v is L, superharmonic and tr*(v) = 0. Therefore, by Proposition 2.14, v = 0. Thus #1 < u; and
similarly us <uj.

Monotonicity. As before, v := (4 — uz)4 is L, -subharmonic and it is dominated by an L, -superharmonic function.
Since v; < vy, tr*(v) = 0. Hence by Proposition 2.14, v = 0.

A-priori estimate. Suppose that u is a positive solution of (1.13). Then (1.15) with { = Gf}[l] implies (1.16). (Recall
that (fo[l] ~8) 0O

For the proof of the next theorem we need

Lemma 3.1. Ler D € Q be a C? domain and q > 1. If h is a positive function in L' (3 D) then there exists a unique
solution of the boundary value problem,
—Lyu+u?=0 inD
u=h onoD. (3.2)

Proof. First assume that /4 is bounded. Let Plf) denote the Poisson kernel of —L, in D and put ug := IP’fB [A]. Thus ug
is bounded. We show that there exists a non-increasing sequence of positive functions {u,}7°, dominated by u, such
that u,, is the solution of the boundary value problem,
W .
—Av+v? = 5—2un,1 in D
v=h ondD n=12,... 3.3)

As usual 6 denotes the distance to d€2, not to d D. For n = 1, ug is a supersolution of the problem and, obviously v =0
is a subsolution. Consequently there exists a unique solution u;. By induction, for n > 1,
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w u
—Aup_1+ ”Z,l = 5_2”"_2 > 5_2un—1~
Thus v = u,,_ is a supersolution of (3.3) and it is bounded. It follows that there exists O < u, <u,_1 such that

—Au, +uf, = %un_l inD, wu,=hondD.

As the sequence is monotone we conclude that # =limu,, is a solution of (3.2).

If h € L'(3 D), we approximate it by a monotone increasing sequence of non-negative bounded functions {h;}. If
v is the solution of (3.2) with & replaced by Ay then {vx} increases (by the comparison principle [4, Lemma 3.2]) and
v = lim vg is a solution of (3.2).

Uniqueness follows by the comparison principle. O

Proof of Theorem C. Put ug := Kf}[u] and hg := uolzy. Let ug be the solution of (3.2) with i replaced by hg,
B € (0, Bo). Since uy is a supersolution of (1.1) it follows that {ug} decreases as B | 0. Therefore u :=limg_qug is
a solution of (1.1).

We claim that tr*(u) = v. Indeed,

D, D,
up + G, [ug] =P, [hg] = uo. (3.4
Furthermore, in Dg, ug < ug € Lga + (R2). Therefore
D,

G’ [uf] > G [u].
Hence, by (3.4),

u+ G u?] =uo =K [v].
By Proposition 2.12, tr*(u) = v.

By Theorem B the solution is unique. O

Proof of Corollary C1. By the previous theorem, if v = f where f is a positive bounded function then (1.13) has
a solution. If 0 < £ € L'(Q) then it is the limit of an increasing sequence of such functions. Therefore, once again
problem (1.13) with v = f has a solution.

Proof of Theorem D. Put v = Kﬁ[u] — u. By the comparison principle v > 0. Clearly v is L, -superharmonic in Q
and, by definition tr*(v) = 0. By Proposition I(iv) v is an L, potential. Consequently, by Theorem 2.6,

. ov(x)
lim
x>y Kf}[v]

=0 non-tangentially, v a.e. on 0€2.
This implies (1.17). O

Proof of Theorem E. By Proposition 2.8, specifically inequality (2.15), Kﬁ[v] € Lga+ (2) for every g € (1,q,,¢)
and v € MMT(3Q). Therefore the first assertion of the theorem is a consequence of Theorem C.

We turn to the proof of stability. Put v, = Kﬁ[v,,]. By Proposition 2.8, {v,} is bounded in L§a+ (2) for every
q € (1,qu,) and in L? . () for every p € (1, %). In addition v, — v pointwise in 2. This implies that
{vl8%+} and {v,/8% } are uniformly integrable in €. Since u,, < vy it follows that this conclusion applies also
to {uy,}.

By the extension of the Keller—Osserman inequality due to [4], the sequence {u,,} is uniformly bounded in every
compact subset of 2. Therefore, by a standard argument, we can extract a subsequence, still denoted by {u,,} that
converges pointwise to a solution « of (1.1). In view of the uniform convergence mentioned above we conclude that

Uy, > u in L, () andin Li_,_ ().
By Theorem A,

wy, + G luf 1=K vy ].
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In view of the previous observations, passing to the limit as n — 0o, we obtain,
Qr.q7 _ W
u +Gu[u 1 —KM[U].

Again by Theorem A it follows that u is the (unique) solution of (1.13). Because of the uniqueness we conclude that
the entire sequence {u,, } (not just a subsequence) converges to u as stated in assertion II. of the theorem.
Finally we prove assertion III. By Theorem A

us, + G [ugg)y_] =kK(.y). (3.5)
Combining (2.7), (2.6) and the fact ks, < kK/iz(-, y), we obtain

G ugs 10x) G2(KL(., y)9](x)
y < 4 [ 2
K2(x.y) ~ K2(x.y)

<ckl|x — y|N+a+—q(N—l—a,).

Since 1 < g < qyu.c, it follows that
 GRlufs 1)
lim —o——— =
=y K, y)
Therefore, by (3.5), we obtain (1.19). O
Proof of Theorem F. Let y € 92. By negation, assume that there exists a positive solution u of (1.13) with v = k§, for

some k > 0. By Theorem A, u < kaf(., y)andu € Lgmr (2). Lety € (0,1) and denote Cy, (y) ={x € Q: y|x — y| <
&(x)}. By Theorem D,

, u(x)
i )
xeC, ()x—y K (x,y)

This implies that there exist positive numbers rg, ¢ such that
u(x)ZcK;Z(x,y) Vx € Cy(y) N Byy(y). (3.6)
By (2.7),
Ty 1= o, o,y o K (6 )18 (1) dx
2 ¢ e, (i 8TV — y @m0 dx

> C/ya+(q+l) fcy lx — y|°‘+_‘1(N_1_°‘*)dx.

NNBr, (y)

Since g > gy, the last integral is divergent. But (3.6) and the fact that u € Lga + (€2) imply that J,, < co. We reached
a contradiction. O
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CHAPTER 3

Semilinear elliptic equations with a Hardy
potential and a subcritical source term

This chapter is based on the paper [119]. In this chapter, we discuss
semilinear elliptic equations with a source term and a Hardy potential. Var-
ious necessary and sufficient conditions for the existence of solutions to the
corresponding Dirichlet problem are obtained.
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1 Introduction

This paper concerns a study of weak solutions of semilinear elliptic equations with Hardy
potential and source term

—Au—(%u:g(x,u) inQ (1.1)

where Q is a C2 bounded domain in RV (N > 2), w > 0,8(x) ;= dist(x,02) and g €
C(2 xRy).
Henceforth, we will use the notations L, := A + 5% and (g ou)(x) := g(x, u(x)).

Definition 1.1 (i) A function u is an L, -harmonic function (resp. L, -subharmonic, L -
superharmonic) in Q if u € LIIOC(Q) and

—L,u =0 (resp. — Lyu <0, —L,u>0)

in the sense of distributions in 2.
(ii) A function u is called a nonnegative weak solution (resp. subsolution, supersolution) of
(1.)ifu>0,u € LIIOC(Q), goue LIIOC(Q) and

—Lyu=gou (resp.— Lyu < gou,—Lyu>gou)
in the sense of distributions in 2.

Boundary value problem with measures for (1.1) with © = 0 and g o u = u9, i.e. the
problem

—Au=u? inQ, u=v ondQ (1.2)

was first considered by Bidault-Véron and Vivier [7]. They established estimates involving
classical Green and Poisson kernels for — A and applied these estimates to obtain an existence
result in the subcritical case, i.e. | < ¢ < g, = %—ﬂ Then Bidaut-Véron and Yarur [9]
reconsidered this type of problem in a more general setting and provided a necessary and
sufficient condition for the existence of a solution of (1.2). Chen et al. [12] investigated (1.1)
with u = 0 and g satisfying a subcriticality condition. Their approach makes use of Schauder
fixed point theorem, essentially based on estimates related to weighted Marcinkiewicz spaces.
Recently, Bidaut-Véron et al. [8] provided new criteria for the existence of weak solutions of
problem (1.2) and extended those results to the case where A is replaced by L.
When o # 0, the study of (1.1) relies strongly on the investigation of the linear equation

—Lyu=0 inQ. (1.3)
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Equation (1.3) with < 0, and more generally Schrédinger equations —Au + V(x)u = 0
where V is a nonnegative potential, was studied by Ancona [1,2], Marcus [18], Ancona and
Marcus [3] and by Véron and Yarur [25]. The case ;« > 0 was considered by Bandle et al.
[4-6], Marcus and Nguyen [20], Gkikas and Véron [15] and by Marcus and Moroz [19] in
connection with the Hardy constant C g (£2) which is given by

Jo |Vu|2dx

Cy(Q) = inf 2277 (1.4)
" HE @0} [ (u/8)%dx

It is well known (see [11,21]) that Cyx(2) € (0, 31] and Cy(Q2) = % when €2 is convex.
Moreover the infimum is achieved if and only if Cy (2) < 1/4.

Let ¢ > 0in Q2 and p > 1, we denote by L”(2; ¢) the space of all functions v on Q2
satisfying fQ vl dx < oo. We denote by I(2; ¢) the space of Radon measures t on
Q satisfying fQ ¢ d|t| < oo and by MT(Q; ¢) the nonnegative cone of M(Q; ¢). When
¢ = 1, we use the usual notations 91($2) and 9™ (2). We also denote by M (I) the space
of finite measures on 32 and by MM+ (dQ) the nonnegative cone of IMM(IR).

Let G, and K, be the Green and the Martin kernels for — L, in S respectively (see [20]
for more detail). Denote by G, and K, the associated operators defined by

Gulrlx) = /QGM(x, ydt(y), Vre M), (1.5)
Kuvl(x) = /m K, (x,2)dv(z), Vv e MORQ). (1.6)

Put
oy = @. (1.7)

Let A;,1 be the first eigenvalue of —L, in € and denote by ¢, | the corresponding
eigenfunction normalized by fQ ((pM71/8)2dx = 1(see[11]).If u € (0, Cy(2)) then A, | >
0 and by [13] (see also [22]), there exists a constant ¢; > 0 such that

'8 < gu1 <18 inQ. (1.8)
For g > 0, put
Qp={reQ:8(x)<p), Dg={xeQ:8(x)> B}, Tp={xeQ:sx) =4

When dealing with boundary value problem associated to (1.1) with & > 0 one encounters
the following difficulties:

— The first one is due to the fact that every positive L, -harmonic function has classical
measure boundary trace zero (see [20, Corollary 2.11]). Therefore, the classical notion
of boundary trace no longer plays an important role in describing the boundary behavior
of L, -harmonic function or solutions of (1.1).

— The second one stems from the invalidity of the classical Keller-Osserman estimate, as
well as the lack of a universal upper bound for solutions of (1.1). Moreover, contrast to the
case of nonnegative absorption nonlinearity, K, [v] with v € 9 (9<2) is a subsolution
of

—Lju=gou inQ (1.9)

and therefore it is no longer a natural upper bound for solutions of (1.9).
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In order to overcome the first difficulty, we shall employ the notion of normalized boundary
trace which is defined as follows:

Definition 1.2 A function u possesses a normalized boundary trace if there exists a measure
v € M(92) such that

lim g% / lu(x) — Ku[v](x)|dS(x) = 0. (1.10)
B—0 Zﬂ

The normalized boundary trace of u is denoted by tr *(u).

In the above definition, we use the notation dS = dHpy_; where Hy_; denotes the
Hausdorff measure. This notion was introduced by Marcus and Nguyen [20] in the case
u € (0, Cy(£2)). It is worth mentioning that A, ; > 0 when u € (0, Cyx(2)) and hence
@u,1 1s a positive L, -superharmonic function in £2. This fact, together with a classical result
of Ancona [2], guarantees the validity of Representation theorem (see [20]). The notion of
normalized boundary trace turned out to be appropriate to investigate the problem

—Lyu+u!=0 inQ, o*u) =y (1.11)
More precisely, when u € (0, Cy (2)), they showed that there exists a critical exponent

N+O{+

_ 1.12
T (1.12)

g =q"(N,n) =
for (1.11). This means that if 1 < g < g%, for every positive finite boundary measure
v on 9%, (1.11) admits a unique positive solution, while if g > ¢* there exists no positive
solution of (1.11) with v being a Dirac measure. Stability result was also discussed in the case
1 < q < g*. Problem (1.11) with u replaced by a more general nonlinearity f(u) was then
investigated by Gkikas and Véron [15] in a slightly different setting. When f (1) = |u|? " 'u,
they provided a necessary and sufficient condition in terms of Besov capacity for solving
(1.11) in the supercritical case, i.e. ¢ > g*.

Because of the second difficulty, we mainly deal with the minimal solution of (1.9)
which possesses several exploitable properties. This solution is constructed due to sub-
supersolutions theorem in Sect. 3. Observe that K, [v] with v € M+ (9Q) is a subsolution
of (1.9); hence in order to prove the existence of a minimal solution of (1.9), it is sufficient
to find a supersolution of (1.9) which dominates K, [v].

Throughout the present paper, we assume that . € (0, Cy(£2)). We now introduce the
definition of solutions of

—Lyu=gou inQ, tr*u)=v. (1.13)

Definition 1.3 (i) A nonnegative function u is called a (weak) solution of (1.13) if u is a
solution of (1.1) and has normalized boundary trace v.
(ii) Put

X(Q):={¢ e c%(Q): 8% Lt € L®(Q), § % e LT(Q)}).
A function ¢ € X () is called an admissible test function for (1.13).

Notice that ¢, 1 € X (£2). More properties of X (£2) can be found in [20, Section 2.4].
Using this space, we establish integral formulation for weak solutions of (1.13). This is stated
in the following result.

Theorem A Let v € M (9Q). The following statements are equivalent:
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(1) u is a positive weak solution of (1.13);
(i) gou € L(Q; %) and

u=Gylgoul+K,[v]; (1.14)
(i) u € LY(:;87%), gou € LY(Q; §*+) and
— / ul,tdx = / (gou)tdx — f KyvIL,sdx Vi € X(R). (1.15)
Q Q Q
Under some additional assumptions on g, we obtain an existence result for (1.13).

Theorem B Let g(x, r) be a nondecreasing continuous function with respect to r for every
x € Qandv € MT(IQ) with IVllonag) = 1. Assume that there exist numbers c; > 0, ¢3 >
0,0 <ry <ry <ooandafunction £ : Ry — Ry such that

glx,rs) <Ll(r)g(x,s) Vs >0,r >0,x € 2, (1.16)
£(1 +62C3r71£(7’)) <cy Vre(,nr), (1.17)
Gulg o Ku[vD] < a3Kpu[v] ae in Q. (1.18)

1. EXISTENCE. For any o € (r1, r2) the problem
—Lyju=gou inQ, tr*(u) = ov (1.19)

admits a minimal positive weak solution u

of (1.19) then u,,, < v in Q.

ov in the sense that if v is a positive weak solution

2. ESTIMATES. There exists a positive constant c4 = c4(ca, ¢3, £, 0) such that
oK, [v] = Uy, < c40K,[v] ae.in Q. (1.20)
3. NONTANGENTIAL CONVERGENCE. For v-a.e. point z € 92, there holds

g, (x)

im ———— = ¢ non-tangentially. 1.21
LS T IES) ¢ g y (1.21)
Remark When g(x, u) = u? with g > 1, c4 can be chosen independently of .

In the next results, we focus on the pure power case, namely the problem
—Lyu=uf inQ, tr*(u)=v (D)

where ¢ > 0 and v € 9T (32). We shall establish some estimates related Green and Martin
operators and a necessary condition for the existence of solutions of (D)) in the case ¢ > 1.

Theorem C Let ¢ > 0 and v € 9T (0RQ). Then there exists a positive constant cs =
¢s(N, u, g, Q) such that

GulKu[v1] < ¢5 vy yay Kulv] a.ein . (1.22)

Furthermore, if ¢ > 1 and problem (D, ) admits a positive weak solution then there holds

GulK,[v]1] < qiilKM[v] a.e. in . (1.23)
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Remark 1t is worth mentioning that when v = 0, (1.22) and (1.23) were obtained by Bidaut-
Véron and Vivier [7]. When L, is replaced by a uniformly elliptic differential operator of
second order with bounded Holder-continuous coefficients, (1.23) is relevant to [17, Theorem
7.6]. Recently, (1.23) with an inexplicit multiplier on the right hand-side were proved by
Véron et al. in [8, Theorem 4.1]. In this paper we employ the method in [7] to prove (1.22)
for ¢ > 0 and apply the idea in [7,9,10] to point out that the multiplier on the right hand-
side of (1.23) can be explicitly chosen as q%l. When ¢ = 1, estimate (1.22) becomes
GulK,[v]] < esK,[v] with ¢5 = ¢5(N, p, 2), which can be regarded as the limiting case
of (1.23).

The next results reveal that ¢g* is a critical exponent for (D,). More precisely, in the
subcritical case, namely | < g < ¢*, (D,) admits a solution under a smallness assumption
on the boundary datum, while in the supercritical case, i.e. ¢ > ¢*, this problem possesses
no solution with isolated boundary singularity.

For z € 92, we denote by §, the Dirac measure concentrated at z. Existence and nonex-
istence results when 0 < g < ¢*, g # 1 are given as follows.

Theorem D Let g € (0,q%),q # 1 and v € M (9Q) with IVllonee) = 1. For o > 0,
consider the problem

—Lyu=u? inQ, ¥ u) =ov. (Dgv)

1. CASE: g € (1, ¢"). There is a threshold value o* € Ry for (D,,) such that the following
holds.

(i) If ¢ € (0, 0*] then problem (D,,) admits a minimal positive weak solution ov*
Moreover, if ¢ € (0, %), Uy, satisfies (1.20) and (1.21). In addition, if {o,} is a nonde-
creasing sequence converging to o* then {u opv} CONVEIEes 10 U v, in L'(9;87%) and
in L9(2; §%).

(i) If o > o™ then there exists no positive weak solution of (Dyy).

2. CASE: g € (0, 1). For every ¢ > 0 problem (D,,) admits a minimal solution u ov which
satisfies satisfies (1.20) and (1.21). Moreover, lim,_, u,, =o00ae. in Q.
Forany 1 # g € (0, g*), if v = §, with z € 92 then there holds

fim o) _

% 7 1.24
oK) C (129

Remark Note that in the absorption case [namely equation (1.11)], if 1 < g < ¢*, there are
two types of solution with isolated boundary singularity: the weakly singular solutions u,, .
(the solution of (1.11) with v = p§;) and the strongly singular solution u ;. Actually, U -
is the limit of the sequence u,, ; as ¢ — oo. This limiting process can not be executed in the
source case since (D,s,) admits no solution if ¢ > ¢* due to Theorem D.

We next give a stability result.

Theorem E Let g € (0,q%), g # 1 and {v,} is a sequence of measures in N (32) which
converges weakly to v € T (0Q). If ¢ > 1, assume in addition that

sup [lvn lonag) < 0. (1.25)
n

For each n, let u,, be a positive weak solution of (D,, ). Then, up to a subsequence, {u,, }
converges to a positive weak solution u, of (Dy) in LY(Q; §~%) and in L1(2; §%+).
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An existence and stability result in the case ¢ = 1 is stated in the following theorem in
which 1, 1 is the first eigenvalue of —L, in Q.

Theorem F Let v € M (0Q). For k > 0, consider the problem
—Lyu=«ku inQ, t*u)=nv. (E¥)
There exists a number k* € (0, A, 1] such that the following holds.

(i) Ifx € (0, k™) then problem (EY ) admits a minimal positive weak solution u «.v- Moreover,
Uy satisfies (1.21).
Assume {v,} is a sequence of measures in M+ (dQ) which converges weakly to v €
IMM*(dQ) and for each n denote by uy ,, a positive weak solution of(Eﬁn ). Then, up to a
subsequence, {u,,, } converges to a positive weak solution u, , of (E% ) in LY(Q;87%).
(ii) Ifk > k™ then (EX) admits no positive weak solution.

A . .. .
Furthermore, problem (E,,’ Y admits no positive weak solution.

Remark 1t is notified by the referee that k* = A, 1. The way to prove it is to note that
—L,, — « admits the Green function G, , for any ¥ < p and then to prove a modification of
Proposition 2.4 for G, . (see [24] for the existence of the Green function G, ). The weaker
statement k* < A, | in the present paper is essentially in order to simplify the proofs and to
streamline the exposition.

In the supercritical case, i.e. ¢ > g¢*, there is no solution with an isolated boundary
singularity.

Theorem G Assume g > q*. Then for every ¢ > 0 and z € 9%, there is no positive weak
solution of

—Lyu=ul inQ, tr*(u) =05, (Dos,)
Here §; denotes the Dirac measure concentrated at z.

Remark Interesting removability results for (D,) in terms of capacities in the supercritical
case was provided in [8].

In the next two theorems, we consider the case (g o u)(x) = §(x)” g(u(x)) where y >
—1 —o4 and g : Ry — R, is nondecreasing and continuous. In this framework, the critical
exponent for (1.1) is

N+oay+y

S =qX(N,u,y) = . 1.26
g, =4,(N, 1, y) Nta, —2 (1.26)
Clearly q5 = q*.
Theorem H gives an existence result for the problem

—Lyu=38"gu) inQ, tr*(u) = ov. (1.27)

Theorem H Let v € I (3Q) with IVllonq) = 1. Assume that

o0 *
Ag = f s 5(s)ds < +oo, (1.28)
1

g(s) < As? +6, Vsel0,1] forsomeq, > 1,A; > 0,0 > 0. (1.29)

Then there exist 6y > 0 and o9 > 0 depending on N, i, y, Ao, A1 and q1 such that for every
0 € (0,6p) and o € (0, 0o) problem (1.27) admits a weak solution u > oK, [v] in .
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Remark 1If g satisfies (1.28) we say that g is subcritical with respect to y .
The case where g is linear or sublinear is treated in the following theorem.
Theorem I Let v € M (3Q) with ||vllonq) = 1. Assume that
8(s) < Aps®? 4+0, Vs >0 (1.30)

for some g3 € (0,1], Ao > 0and 6 > 0.
In (1.30), if g = 1 we assume in addition that A, is small enough. Then for any o > 0,
(1.27) admits a weak solution u > oK, [v].

Remark In Theorem I, when ¢g» < 1, the smallness assumption on 6 is not required.

The plan of the paper is as follows. In Sect. 2 we give results concerning Green and Martin
kernels and boundary value problem for linear equations with Hardy potential. Theorems A
and B are proved in Sect. 3. It is noteworthy that main ingredients in proving Theorem A are:
a generalization of Herglotz—Doob theorem to L, -superharmonic functions and the theory of
Schrodinger linear equations. Theorem B is established using a sub-supersolutions theorem.
The proof of Theorems C-G are presented in Sect. 4. Finally, in Sect. 5 the existence result
in the case of more general source terms (Theorems H and I) is obtained due to the Schauder
fixed point theorem and estimates in weak L? spaces.

2 Preliminaries

Throughout this paper we assume that 0 < u < Cg ().

2.1 Weak L? spaces

We denote by LY@ 1), 1 < p < 00,7 € MT(RQ), the weak L? space (or Marcinkiewicz
space) (see [23]). When T = §%dx, for simplicity, we use the notation LY (Q; 8%). Notice
that, for every o > —1,

LP(Q;8%x) C L"(€2; 8%, Vrell,p).

Ifu € LY (Q;8%(a > —1) then
8%dx < s P \ull?, ... 2.1
2.2 Green and Martin kernels

Let G, be the Green kernel for the operator — L, in & x € and denote by G, the associated
operator defined by (1.5). It was shown in [20] that for every T € MM (Q; §%*), |G, [7]| < o0
a.e. in Q. Denote by K, the Martin kernel for —L, in © and by K, the Martin operator
defined by (1.6).

In what follows the notation f ~ g means: there is a constant ¢ > 0 such that c~! f <
g < cf in the domain of the two functions.

By [14, Theorem 4.11] and [20] (see also [15]),

Gpux, ) ~min {1x =y 77N 5™ 8% 1x =y V] vay e @ x £ y;
(2.2)
Ku(x,2) ~8(x)* |x — 2>V Vx e Q,z€9Q. (2.3)
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The following estimates can be found in [16, Proposition 2.4]

Proposition 2.1 (i) Let 8 € ( — ]\,_‘_#“:_2, %) Then there exists a constant ¢; =
c7(N, i, B, Q) such that

IGLlel| _n+e < crlltllon(sesy YT € M(Q: 87). 2.4)
L

w T @f)
(ii) Let B > —1. Then there exists a constant cg = cg(N, i, B, 2) such that

IK. o] ~es = cgllvlilonee) Vv € MOIRQ). (2.5)
Ly T (@of)

2.3 Some results on linear equations

In this subsection, we recall some results concerning boundary value problem for non homo-
geneous linear equation

—Lyju=1t inQ. (2.6)

Definition 2.2 (i) A function u is a solution of (2.6) ifu € L ll ¢ (§2) and (2.6) is understood
in the sense of distributions.
(ii) Let T € M(L2; 8%F) and v € M(IR). A function u is a weak solution of

— L=t inQ, tr¥u) =y, 2.7
if u is a solution of (2.6) and # admits normalized boundary trace v.

Definition 2.3 A nonnegative L ,-superharmonic function is called an L ,-potential if its
largest L, -harmonic minorant is zero.

The following results, which can be found in [20, Proposition I, is crucial in proving
Theorem A.

Proposition 2.4 (i) If t = 0 then problem (2.7) has a unique weak solution u = K, [v]. If
u is a nonnegative L -harmonic function and tr *(u) = 0 then u = 0.
(i) Ift € MT(Q; §%F) then tr *(Gulzl) = 0. Thus G, [7] is a solution of (2.7) with v = 0.
(iii) Letu be apositive L, -subharmonic function. If u is dominated by an L -superharmonic
function then L, u € IMT(Q; §*+) and u has a normalized boundary trace. In this case
tr*(u) = 0 if and only if u = 0.
(iv) Let u be a positive L, -superharmonic function. Then there exist v € M (OQ) and
T € MT(Q; %) such that

u=G,lt] +K,lvl. (2.8)

In particular, u is an L, -potential if and only if tr *(u) = 0.

(v) For every v € MY (0Q) and t € MT(Q; §%), (2.7) has a unique positive solution
which is given by (2.8). Moreover, there exists a positive constant cg = c9(N, u, 2)
such that

lull g1 @is—a—y < colllTllon(ase+y + IVIamoae))- (2.9)

(vi) u is a solution of of (2.7) if and only ifu € LY(Q;87%) and

—f ul,Zdx :/ gdr—/ Ku[IL,Zdx, ¥ e X(R). (2.10)
Q Q Q
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For easy reference, we present a potential theoretic result which serves to prove Theorem B.

Theorem 2.5 Let w; be a positive L, -potential and wy be a positive L, -harmonic function
with v = tr *(wy). Assume that % satisfies the local Harnack inequality. Then for v-a.e.
7€ 0%,

. wi(x)

lim

=z wn(x)

= 0 non-tangentially.

This theorem can be obtained by combining the Fatou convergence theorem [1, Theorem
1.8] and the fact that if a function satisfies the Harnack inequality, fine convergence at the
boundary (in the sense of [1]) implies non-tangential convergence (for more details, see [3]).

3 Nonlinear equations with source term

In this section, we deal with nonlinear equations involving source term
—Lyu=gou 3.1)

in Qwhere 0 < u < Cy(R) and g : @ x Ry — R, is continuous.

3.1 Properties of weak solutions

For z € 9€2, denote by n, the outward unit normal vector to 92 at z. We recall below a
geometric property of C> domains (see [23]).

Proposition 3.1 There exists By > 0 such that for every point x € ﬁﬁo, there exists a unique
point oy € 32 such that x = oy — §(x)ng,. The mappings x +— 8(x) and x + oy belong
to C2(Qﬂo) and Cl(Qﬁo) respectively. Moreover, limy_,4(x) V8(x) = —ng, .

For D € Q,let G 5 and K 5 be the Green and Poisson kernels of —L, in D respectively.

Denote by sz and Kf the corresponding Green and Poisson operators in D.
We prove below main properties of solutions of (1.13).

Proof of Theorem A (i) = (ii). Assume u is a positive weak solution of (1.13). Put
7 = gouandfor B € (0, Bp) denote 75 := T|py and Ag := ulx,. Consider the boundary
value problem

—L,v=r1g in Dg, v=Ag on Xg.

This problem admits a unique solution vg (the uniqueness is derived from [5, Lemma
2.1] since u < Cp(£2)). Therefore vg = u|p,. We have

D, D
ulpy =vg = G." [tp] + K" [gl.

It follows that
Dg Dg
G Cy)(gouw(y)dy =Gy [tg] < ulpg.
Dp
Letting 8 — 0, we get

/Q Gl (g o)) dy < u. (32)
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Fix a point xo € € such that u(xg) < co. Keeping in mind that G, (xg, ¥) > cx,8(y)**
forevery y € Q, we deduce from (3.2) that gou € L1(§2; §%+). Thanks to Proposition 2.4
(v), we obtain (1.14).

(ii) = (i). Assume u is a function such that g o u € L'(§2; §*+) and (1.14) holds.
By Proposition 2.4 (i) —L,K,[v] = 0, which implies that u is a solution of (3.1). On
the other hand, since g o u € LY(Q; 8%+), we deduce from Proposition 2.4 (ii) that
tr *(G,[g o u]) = 0. Consequently, tr *(u) = tr *(K,[v]) = v.

(i) = (iii). Assume u is a positive solution of (1.13). From the implication (i) = (ii),
we deduce that u € L'(Q;87%) and gou € LY(Q; 8%+). Hence, by Proposition 2.4
(vi), u satisfies (1.15).

(iii) = (i). This implication follows directly from Proposition 2.4 (vi). O

3.2 Nondecreasing source

We start with an existence result for (3.1) in presence of sub and super solutions.

Theorem 3.2 Let g € C(2 x Ry), g(x,r) be nondecreasing with respect to r for any
x € Q. Assume that there exist a subsolution V| and a supersolution V, of (3.1) such that
0 < Vi < Vain Q. Then there exists a solution u of (3.1) which satisfies Vi <u < V5 in Q.

Moreover, if Vi = K,[v] for some v € MY (0Q) and g o V5 € L' (2 8%+) then there
exists a minimal positive weak solution u,, of (1.13) in the sense that u,, < v in Q for every
positive weak solution v of (1.13).

Lemma33 Let D € Q, f € Ll(D), f>0andn € L1(8D), n > 0. Then there exists a
unique solution of

—Lyu=f inD, u=mn ondD. 3.3)

Proof We start with the case f € L>(D) and n = 0. Let us consider the functional

_ 1 2 M 5 _
J () .—Z/D(WUI —Szv)dx /vadx

over the space H(% (D). Since i < Cy(£2), by Hardy inequality and the variational method,
one can show that the problem min (D) J (v) admits a solution v € HO1 (D). The minimizer
v is the unique weak solution of (3.3).

If fe LL(D) then we can approximate it by an increasing sequence { f,,} C L3°(D).
Let v, be the solution of (3.3) with = 0 and f replaced by f,,. By comparison principle
[5, Lemma 2.1], {v,,} increases and therefore v := lim,,_. » v, is a solution of (3.3) with
n=0.

We next consider the case n € L'(3D). Let v be a solution of (3.3) with n = 0 then
u=v+ }P’ﬁ [n]is a solution of (3.3). The uniqueness follows from the comparison principle.

O

Proof of Theorem 3.2 Put ug := V) and ng := Vi|x, for B € (0, Bo). For n > 1, consider
the problem

—L,u=gou,—1 in Dg, u=nmng ondDg. 3.4)

For each n > 1, by Lemma 3.3 there exists a unique solution ug , of (3.4). Moreover, since
g(x, r) is nondecreasing with respect to r for every x € €2, by applying the comparison
principle, we deduce that
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Vi Sugn <ugnpt1 <V
in Dg. Therefore ug := lim, .,  ug , is a solution of (3.1) in Dg which satisfies V| < ug <
V2 in Dg. Moreover,
D D
up = G,"[g ougl +P,” [ngl. 3.5)

For0 < g’ < B < fo, by the comparison principle, ug | < ug 1 in Dg. By the monotonicity

assumption on g, it follows that ug , < ug: , in Dg for every n > 1. Therefore V| < ug <

ug < Voin Dg and hence u := limg ¢ ug is a solution of (3.1) in Q2 satisfying Vi <u < V5.
In the case Vi = K [v], formulation (3.5) becomes

ug = G g ougl + Ku[vl. (3.6)

Putu, :=limgoug. Since 0 < goug < goV, € LY(Q; §%+), it follows that
D
limG,,” =G .
/31?(1) u [gougl ulgou,l

Letting 8 | 0in (3.6), we infer that u,, satisfies (1.14), namely u , is a solution of (1.13). If v
is a solution of (1.13) then v > K, [v]and gov € LY(; 82+); consequently u, < vin Q.
O

Proof of Theorem B We first notice that since go (K, [v]) € Li (Q)and Gulgo(K,[vD] <

loc
00, it follows that g o (K, [v]) € L'($2; 8%F) due to a similar argument as in the proof of

Theorem A. It is easy to see that K, [v] is a subsolution of (3.1). For ¢ € (r1, r2), we look
for a supersolution v of the form

v =0K,[v]+ 2G,lg o (0K, [v])] 3.7
where c¢; is the constant in (1.17). By (1.16) and (1.18), we obtain
v <o(l +crez0 ()K,[V] inQ.
The monotonicity property of g implies
gov =go(o(l+eese LK) inQ.
By (1.16),
gov < (1 +cac30” ' (@))g © (@K, [v]) in Q. (3.8)
In light of (1.17), we deduce
gov < g0 (EKuv]) = —Lyv (3.9)

This means v is a supersolution of (3.1).
We apply Theorem 3.2 to derive that problem (1.19) admits a minimal solution u,,
satisfying
oKulvl = u,, = 0Kyl + 2Gpulg o (Ku[vD] in 2. (3.10)
Estimate (1.20) follows directly from (1.18) and (3.10) with ¢4 = 1 + CZC3Q_1€(Q).
We next prove (1.21). Due to (1.14), it is sufficient to prove that for v-a.e. z € 9€2,

Gplg o 1t,,1(x)

P_}mz K, 1) = 0 non-tangentially. (3.11)

To obtain (3.11), we shall employ Theorem 2.5. Since K, [v] is a positive L, -harmonic
function satisfying local Harnack inequality, we only need to show that:
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(i) Gulgo ggv] is a positive L, -potential;
(i) Gulgou Qv] satisfies Harnack inequality.
Since g o U, € LY(§; 82+), tr*(Gylg o Egv]) = 0 and hence (i) follows from Propo-

sition 2.4 (iv). By (1.20), we infer that Ugy satisfies the local Harnack inequality. Since u o

can be written under the form (1.14), it follows that G, [gou Qv] satisfies this inequality too.
Hence (ii) is verified. By invoking Theorem 2.5, we get (3.11). O

4 Power source

In this section, we focus on the equation
—Lyu=u? inQ. “4.1)

4.1 Subcritical case

We start with a lemma the proof of which is an adaptation of an idea in [7].

Lemma 4.1 Assume 1 < q < q* and z € 0. Then there exists a constant cjy =
co(N, u, g, Q) such that

GulK (-, 2)71(x) < crolx — z|VFor—WFae=2a g (x 7) Vx € Q. 4.2)

Proof The proof is an adaptation of the argument in [7]; for the convenience of the reader it
is presented below. By (2.2) and (2.3), there exists a positive constant ¢ such that for every
x € 2,

GulK (2 271() < enid ()™ / I — y[2N |y — g @meNa
Q

min {|x — y|**, [y — z|**} dy. 43)
Put
Dy = QN B(x, |x —z|/2),
Dy = QN B(z, |x —z|/2),
D3 = Q\(D; UDy),
and

I = /D lx — y[P =Ny — z| @ Ne

min {|x — y|**, |y —z[*}dy, i=1,2,3.

For every y € Dy, |x — z|] < 2]y — z|, therefore

1

—_

< cplx — Zl(zf‘”*mq/ lx — y|"T*-"Nay

Dy
< C/12|x _ Z|1+ot,—(N+Ot+—2)q’ 4.4)
For every y € Dy, |x — z| <2|x — y|, hence

I

[\

< enlx — zl”‘”:Nf ly — z|@ e Magy
Dy

< 0/13|x _ Z|1+a,—(N+Ot+—2)q. 4.5)
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For every y € D3, |y — z| < 3|x — y|, therefore
13 < Cl4f |y _ Z|1+a,—N—(N+(¥+—2)qdy < C/14|X _ Z|1+(¥,—(N+0l+—2)q. (46)
3

Combining (4.3)—(4.6), we obtain
GulKu (-, 2)71(x) < c11(ciy + €3 + 18 () H[x — g e~ NFew=2a 4.7

Estimate (4.2) follows straightforward from (2.3) and (4.7). O

Proposition 4.2 Assume 0 < g < q* and v is a positive finite measure on 9$2. Then
Ku[v] € L9(2; §%F) and there exists a constant c15 = c15(N, i, q, ) such that

GulK 1] < c15 Il ) Kulv] in Q. 4.8)

Proof We may assume that [[v|oppq) = 1 Gf it is not the case, one can replace v by

v/ [Ivllon(aq))- We first consider the case g > 1. From (2.5) and the fact that qu* (2; 6%) C
L9(82; 6%+), we deduce that K, [v] € L9(L2; §%*). It follows from (1.6) and Jensen’s inequal-
ity that

K, [v](x)? 5/ K, (x,z2)%dv(z) forae.x € Q.
Q2
Consequently,

K, 1) < / / G (x. Ky, v (2)dy.
092 JQ
By Lemma 4.1, since N + a4y — (N + a4 — 2)g > 0,

GuIK, [vI10r) < cro f = 2 VHes e D g ()
I
< cio(diam ()N e mVFE=DIR [)](x).

Thus we obtain (4.8).
If0 < g < 1then

G [KL]] < Gu [1 + Kpulvl] = Gul1]+ G, [Kplv]] in Q.
From the case ¢ = 1, we deduce that
GM[Kz[v]] < Gul1]+ c15K,[v] in Q.

By the estimate G,[1] < c16K,[v], where c16 = c16(N, 1, 2), we conclude (4.8). O

Lemma 4.3 Let f € L'(Q;8%), f = 0,v € MTOQ), v £ 0and ¢ € C'([0, 0)) be a
concave, nondecreasing function such that ¢ (1) > 0 and ¢’ is bounded. Let ¢ be a positive
function in L} () such that —L,¢ > f.Then

loc

/ % 1 .oy
) (K,ﬂv]) f e L (;§), 4.9)
—-L, [Kﬂ[v]zb (Kf[v])] > ¢ (K,ip[v]) f in the weak sense. (4.10)
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Proof Since —L,¢ > f > 0, by Proposition 2.4, there exist t € MF(Q; 8% ) and A €
MT (9 such that

¢ = Gulf1+ Gulr] + KAl

Puty := K, [v]. Let{ f,,} and {7, } be two sequences in CZ°(£2) such that { f,,} converges to f
in L1(Q; 8%+) and {,,} converges to T in the weak sense of M (Q; §%+). Let {v,,} and {1, } be
two sequences in C!(3$2) converging to v and A respectively in the weak sense of T (9<2).
Put ¢, = Gl ful + Gult,] + Ky[As] and ¥, := K, [v,]. By the bootstrap argument, one
can prove that ¢,, ¥, € C3(Q) for every n € N. By [20] {G.[ful}, (Gulza ]}, (K [2n]}
and {K, [v,]} converge to G,[ f], G,[7], K, [A] and K, [v] respectively in LY, 8%%). As
a consequence, up to subsequences, {¢,} and {y,,} converge to ¢ and y respectively a.e. in
Q. Therefore, for n large enough, ¥, > 0.
Due to [10, Lemma 5.3],

)] () o o) () o

It follows that

B R e Y R e

Consequently,
—M{%@(?)]zd<w>ﬂ @.11)

Then for every nonnegative function ¢ € X (£2), there holds
nd | — dx > / ( ) dx. 4.12)
/w¢(%) vt v ) It

0<yne (%) < Vn <¢(0) + ¢’(0)1%n> = c17(¥n + @n). (4.13)

n

We see that

By (2 4) and (2.5), {¢,} and {y,} are uniformly bounded in L”(2;5 %) for p €
(1, 7= l“* ). Due to Holder inequality, {¢, } and {y,,} are uniformly integrable with respect

to 8%~ dx. In view of Vitali theorem {¢,} and {y,} converge to ¢ and ¥ in L'(2; %)
respectively. By (4.13) and dominated convergence theorem we deduce that

©n % . 1 —a_
o (%) > vo (%) i@
"\ v v
Due to Fatou lemma, by sending n — oo in (4.12), we obtain (4.9) and (4.10). O

Theorem 4.4 Let g > 1 and v € M (9RQ), v # 0. If problem (D, ) admits a positive weak
solution then

GulK, 1] < q%lKu[v] in Q. (4.14)
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Proof Let u a positive weak solution of (D,); then by Theorem A, u? € L' ($2; 8%) and
(1.14) holds. Consequently K, [v]? € L'(Q; 8%+). Now applying Lemma 4.3 with f =
u?, 9 = u and
1 —sla
p) =1 q-1

s—1 if0<s <1,

, ifs > 1,

we obtain the following estimate in the weak sense

u u 4
— q — q
L, [Kﬂ[uyp (Kﬂmﬂ > (KM[VJ ud =K, [v]9. (4.15)
Put
V=K, [v]p (K:‘[v]> and W = G, [K,[v]].

Then W is an L, -superharmonic function and by Proposition 2.4, ¥ admits a nonnegative
normalized boundary trace. By Kato lemma (see [23]), (\fl — W), is an L, -subharmonic

function and tr* (U — W), ) = 0. It follows that (b — W), = 0 and hence U < VinQ.
This means

1
Gl [v17] < Ku[vlg (K”M) = 7K
L

O
Proof of Theorem C The theorem follows from Lemma 4.1 and Theorem 4.4. O

Proposition 4.5 Assume 0 < q < g*, q # 1 and v € MT(3Q) such that IVllonee = 1.

(1) If g > 1 then there exists a positive number oo > 0 depending on N, u, q, Q such that
forevery o € (0, 0o) problem (D,,) admits a minimal weak solution Upy-
(i1) Ifq € (0, 1) then for every o > 0 problem (D,,) admits a minimal weak solution u

Forany 1 # g € (0, q*),ggv satisfies (1.20) and (1.21).

ov*

Proof We shall apply Theorem B to deduce the existence of a solution of (D,,). One can
verify that the functions g(x,s) = s? and £(s) = s9 with ¢ > O satisfy (1.16). From
Proposition 4.2 we deduce that condition (1.18) is fulfilled with the constant c¢;5. For such g
and ¢, condition (1.17) is valid if one can find a positive constant cyg such that

1
1+ cigerso?™ < cf. (4.16)

If ¢ > 1 then there exist oo = 00(q, c15) and c;3 = c13(¢g) such that (4.16) holds true
for every o € (0, gp). If ¢ < 1 then for every ¢ € [1, c0) one can choose c13 = c1g(c15)
large enough such that (4.16) holds. If ¢ < 1 then for every o € (0, 1) one can choose
c13 = c18(q, 0, c15) large enough such that (4.16) holds. Hence, by Theorem B, there exists
a minimal solution Uy, of (Dyy) which satisfies (1.20) and (1.21). O

Lemmad.6 Let 0 < g # 1 and v € IMT(3Q). Then there is a constant cj9 =
c19(N, u, g, 2) such that if u is a solution of (D,,)

lull 1 qeg-a—y + [|u? ||L1(Q;5a+) < cio(1 + [vllonaa))- 4.17)
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Proof Indeed, by taking { = ¢, 1 (the first eigenfunction of —L ) in the formulation satisfied
by u, we obtain

)‘MJ/ u(pﬂyldx:/ uq(pu’ldx-i-)w,l[ Kulvley, 1dx. (4.18)
Q Q Q

Case 1: ¢ > 1. By Young inequality, we get

1
/u(puﬁldxf(2k%1)71/ ul @y 1dx + 2hy 1) / @u1dx. (4.19)
Q Q Q

By (4.18) and (4.19), we obtain

a4
/qualt,ldx+2)uﬂ,1/Ku[v]gomldxf(Z)wJ)q—l/(pu,ldx. (4.20)
Q Q Q

Since the second term on the left hand-side of (4.20) is nonnegative, we deduce by (1.8) that

_4q
Nl g gugary < €7 @Ay, 1) 7] /Q 8%+ dx < ex. (4.21)
On the other hand, we derive from (1.14), (2.4) and (2.5) that

lullprqis—o—y < cai (”Mq ||L1(Q;5ut+) + lIvllone))- (4.22)
Combining (4.21) and (4.22), we obtain (4.17).
Case 2: ¢ € (0, 1). By Young inequality, we have

Au,l 1\
ulodx < —— | ug,1dx +Qr, DT | @, 1dx.
Q 2 Ja e Q

Consequently,

1
/ngaﬂ,ldx < (2)\;}1)@L(pu,ldx—l—Z/QK#[v]goM,ldx.

Therefore

lull L1 o0ty < c2(1 + Vllanan)- (4.23)
Combining (4.22) and (4.23) leads to (4.17). m]

Theorem 4.7 Assume g € (1, q*) and v € MT(IQ) with IVllo o) = 1. Then there exists
a threshold value 0* € Ry for (D) such that the following holds.

(i) If o € (0, 0*] then (Dyy) admits a minimal weak solution Upy- If 0 € (0, 0%) then Ug,
satisfies (1.20) and (1.21). Moreover {ng} is an increasing sequence which converges,
as 0 — 0%, to the minimal positive weak solution Ugx, of (Dgxy) in LY 867%) and
in L1(€2; §9+).

(ii) If o > 0™ then there exists no positive weak solution of (D).

Proof Put
A= {0 > 0:(D,,) admits a weak solution} and 0" :==sup A.

By Proposition 4.5, (D,,) admits a solution for ¢ > 0 small, therefore A # J. Moreover,
from Theorem 4.4, we deduce that o™ is finite.

We shall show that (0, 0*) C .A. To this purpose, we have to show that if 0 < ¢ < o’
and A > o' < o* then ¢ € A. Since ¢’ € A, due to Theorem 4.4, there exists a minimal
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weak solution Uy, of (Dy,) which is greater than oK, [v]. By Theorem 3.2, (D,,) admits
a minimal weak solution Upys ie.o € A

Next we prove that o* € A, namely problem (D,+,) admits a weak solution. Let {0, } be
an increasing sequence converging to o*. For each n, let u,,,, be a weak solution of (D).
Then u,,, € L'(€2;87%) N L9(Q; §%+) and it satisfies

—/ uQnVL,Lg“dx:/ugnvfdx—Q,,/ KylvIL,¢dx V¢ € X(2). (4.24)
Q Q Q

It follows from Lemma 4.6 that the sequence {ugnv} is uniformly bounded in LY(€2; 5%+)
and hence by local regularity for elliptic equations there exists a subsequence, still denoted
by the same notation, such that {u,,,} converges a.e. to a function u,+,. From Theorem A,
there holds

u@n“ = G,U- [ugnv] + QHK;L[U]' (425)

Thanks to Proposition 2.1, {u,,, } is uniformly bounded in L9' (€2; 6% ) and in L9 (£2; §%+)

where 1 < g1 < and g < g2 < g*. We invoke Holder inequality to infer that

N—oa_
N—1l—oa_
{uo,v} and {ugnv} are uniformly integrable with respect to 8 %~ dx and §“+dx respectively.
As a consequence, {u,,,} converges to uy+, in L'(€2: 5% ) and {ugn,)} converges to “Z*u in
LY(Q; 891). Letting n — oo in (4.24) implies

—/ uQ*ULug‘dx:/ uZ*VCdx—Q*/ Ky[vlL,tdx V¢ € X(R). (4.26)
Q Q Q

We infer from Theorem A that u,+, is a solution of (Dy+)).

Notice that, in light of Theorem 3.2 and the above argument, one can prove that {u,,,} is
an increasing sequence converging to the minimal solution u o*v of (Dy+y) in LY(Q;67%)
and in L9(2; §%+).

We next show that for each o € (0, o), there exists a minimal weak solution u ov of (Dgy)
which satisfies (1.20). Take ¢’ = % and let u,r,, be a solution of (D). We apply (4.10)
with v replaced by 0'v, ¢ = ugy, f =u?, and

o
S(Uf 8597177, ifs > 1, et
¢(s) = o\? 0 0\? with 5:(9—) —1.
(o (2)-(5) e L
Q 0
We get
Uy U,
—Ly Kyl ’v]¢< £ )) z¢’< £ )u‘%
“( MY\ Kol Kplo'v1 ) e
Kulo'vlg (20 ))
= v
uie KM[Q/V]
Therefore

’ Ug'v
v =K,[ov]g K, lo'v]
n

is a supersolution of (4.1). Moreover W > oK, [v]. By Theorem 3.2 there exists a minimal
weak solution u, ov of (Dyy) such that
oK, [v] =u,, < ¥ in Q.
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This implies

1
oKuvl < u,, <& 7To'Ky[v] in Q.

1
Therefore we get (1.20) with ¢4 = 0~ 'o’e " 4-1. Finally, (1.21) can be obtained by a similar
argument as in the proof of Theorem B. O

Proof of Theorem D Part (1) follows from Theorem 4.7. Part (2) follows from Proposition 4.5
(ii).
If v = 04§;, by (1.14) and (1.20), we obtain
s (X) GulK, (-, 2)7](x)

<o+
) Ku(x,2)

< = 427
Q= Ky (x.z (4.27)

Since ¢ < g*, it follows from Lemma 4.1 that

lim G[L[K/L('s 2)9](x) _
x—2z K, (x,2)

Thus, by (4.27), we conclude (1.24). m]

0.

Proof of Proposition E If g > 1, assumption (1.25) guarantees the existence of a solution
uy, of (Dy,). Moreover, since {v,} converges weakly to v, it follows that [[v{lopsq) < 0*.
Due to Lemma 4.6, the sequence {u,, } is uniformly bounded in L4(£2; §°+). Employing a
similar argument as in the proof of Theorem 4.7, we obtain the convergence in L' (Q; §7%-)
and in L9(2; §%t).

If ¢ € (0, 1), due to Lemma 4.6, we obtain the convergence in LY(Q; 87%). O

We next consider the case g = 1.

Lemma 4.8 Let k > 0 and u be a positive solution of
—Lyu=«xu inQ. (4.28)
Then u satisfies the Harnack inequality; i.e. for every a € (0, 1) and x € €,

sup u <cp inf u (4.29)
B(x,a8(x)) B(x,aé(x))

where co4 = c24(N, i1, q, ).
Proof Equation (4.28) can be written as follows

— Au= (8% -|—K) W inQ. (4.30)

Take arbitrarily a € (0, 1) and xg € Q. Putd := %S(xo) and M := maxpy,,q) u. Put
yo:=d 'xo, Q1:=d7'Q, 8,(y) :=dist(y, 0Q%) with y € Q7.
We define
va(y) := M~ 'u(dy), Vye Q%
Clearly, maxpg(y,,1) v4 = 1 and due to (4.30) we deduce that v, is a solution of

—Avg=Vy; inQ% 4.31)
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where
M 2
+dx
8a(y)?

One can find a positive constant ¢35 such that V(y) < ¢2584 (y)_2 forevery y € Q7. Notice
that B(yp, 1) C €29 and for every y € B(yo, 1), there holds

V(y) =

8()>1—a
V=T

Hence 0 < V < ¢p6in B(yp, 1) where c26 = c26(a, ). By applying Harnack inequality, we
deduce that there is a constant ¢co7 = ¢y7(a, i, N, 2) such that

sup vy < cp7 inf2a vg.
B(yo, 725) B(yo. z37)

Thus we obtain (4.29). O

Proof of Theorem F Put

Claim 1 For any « € (0, ko) there exists a minimal solution u,. ,, of (EY).

Fix g € (1, ¢*) such that x < (g HGM[l
(Dgv). Put 0 = |[vllonagq) > 0.

We first assume that o € (0, 0*) and let u, be the minimal weak solution of (D,). By
Young inequality, we get

]|| L00 (Q))_1 and let o™ be the threshold value for

1
ul +1>u, + . > k(u, +Gy[1]) inQ.

It follows that
—L,(u, +G,1]D) = «(u, + G,[1]) in Q.
Therefore u,, + G [1] is a super solution of the equation
—Lyu=«u inQ. 4.32)

Clearly K, [v] is a subsolution of (4.32). By Theorem 3.2 there is a minimal weak solution
u,,, of (Ey) which satisfies K, [v] < u, , < u, + G,[1]in Q. Since G,[1] < c16K,[v],
we infer that u,., satisfies (1.20) and (1.21).

If o > o* then there exists m > 0 such that o/m € (0, 0*). Let u, » be the minimal
weak solution of (E% ). Putu, , = M, v then by the linearity, we deduce that u,, is the

minimal weak solutign of (EY) with satisfies (1.20) and (1.21).

Claim 2 There exists a number k* € (0, A, 1] such that the following holds.

(i) Ifk € (0, k™) then (EY) admits a solution;
(ii) Ifk > k™ then (EY) admits no solution.
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Put B := {k > 0 : (E}) admits a weak solution} and denote «* := sup B. We shall

show that (0, x*) C B. Take ¥’ € B and let u,s , be the minimal solution of (Eﬁl). For
any k € (0,«"), u,, and K, [v] are respectively super and sub solutions of (E) such that
Ku[v] < uy . Then by Theorem 3.2 there exists a minimal solution u, , of (EY) satisfying
Kulvl < u,, <uy,in Q. Hence k € B.

By Lemma 4.3, G, [u,. ,] satisfies local Harnack inequality. Hence, we deduce from The-
orem 2.5 that, for v-a.e. 7 € dw, there holds

Gpuluy, ,1(x)
m —— =
=z Ky [v](x)

Consequently, (1.21) remains valid with u,,, replaced by u, .
Now letv € M+ (3L2), k € B and denote by u, ,, a solution of (E¥). Then by Theorem A,

—/ uevLCdx =/c/ u,{,v{dx—/ KylvIL,¢dx V¢ € X(R).
Q Q Q

Taking ¢ = ¢,,,1, we obtain

/\m/ u/(,v(Pu.,ldx:K/ uK.V¢M,1dx+Au,1/K,L[v]fpu,ldx, (4.33)
Q Q Q

which implies that ¥ < A, 1. Consequently, k* < X, 1.
We show that A, | ¢ B by contradiction. Indeed, suppose that there exists v € M1 (32)
such that the problem

— Lyu =X, u inQ, tr*(u) =v (4.34)

admits a weak solution i. Take ¢,, | as a test function in the weak formulation satisfied by
i1, we deduce v = 0, which is a contradiction.

Now let ¥ € (0,«*) and assume {v,} is a sequence of measures in 9+ (32) which
converges weakly to v € 9T (3Q). Let Uy v, be a solution of (Efn). By (4.33), we deduce

-1 -1
”uK,\),, Li@set) = 28(hp,1 =€) Nvnlloreg) < c29(hp1 — )7 Ivilonee) -

By a similar argument as in the proof of Theorem 4.7, we deduce that, up to a subsequence,
{u,.,, } converges to a solution u, , of (E¥) in LY, 87%).

Remark (i) If « > 0 small then u, , satisfies (1.20). Moreover, if v = 04, with ¢ > 0,z €
92 then u, 5 satisfies (1.24).

(ii) Itisnotified by the referee that k™ = A, 1. This can be obtained by noticing that —L,, —k
admits the Green function G, for any k < u and then by proving a modification of
Proposition 2.4 for G,  (see [24] for the existence of the Green function G ). The
weaker statement k* < A, 1 in the present paper is essentially in order to simplify the
proofs and to streamline the exposition.

4.2 Supercritical case

Proof of Theorem G This theorem is a consequence of a more general result established in
[8]. We present below a simple proof for the special case treated here.

Suppose by contradiction that for some ¢ > 0 and z € 92 there exists a positive weak
solution u of (Dys,). Then by Theorem A, u € L9(82; 6%+) and u > 0K, (-, z). This, along
with (2.3), implies
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/ S)*Fu(x)dx = / S(x)** K, (x, 2)9dx
Q Q

> / 5(x)0!+(<1+1)|x_y|(20!——N)f1dx

Q
> 30 / §(n) @@ty — y|CoMa gy,
{er:S(x)z%leyl}
Fix rp > 0 such that
1 1
C:= x:|x|§r0,8(x)25|x—y| - er:(S(x)Z§|x—y| .
Then
/ S u(x)4dx > cgof Ix — y|@r=WN=l=a)a gy (4.35)
Q c

Since ¢ > g*, the integral on the right hand-side of (4.35) is divergent, which in turn implies
that u ¢ L9(2; 6“t). Thus we get a contradiction. O

Remark Interesting removability result in the supercritical case can be found in [8].

S More general source

In this section, we assume that (g o u)(x) = §(x)” g(u(x)) where y > —1 — a4 and
g : Ry — R, is nondecreasing and continuous. Theorems H and I are obtained by using
the method in [12].

5.1 Subcriticality

Let {g,} be a sequence of C' nonnegative functions defined on R such that

8n(0) = 8(0), gn < gn41 =& supgy =nand lim [g, — &l o ®,) =0. (5.1)
n—oo loc

R4

Put
y = minf{a +y, —a_} > —1. 5.2)
In preparation for proving Theorem H, we establish the following lemma.

Lemma 5.1 Let v € M (9R) with IVllonee = 1 and {g.} C CY(R,) be a sequence
satisfying (5.1). Assume (1.28) and (1.29) are satisfied. Then there exist * 600 > 0 and
00 > Odepending on Ay, A1, N, i, y and q1 such that for every 6 € (0, 6y) and o € (0, 09)
the following problem

—Lov=38g,w+0K,[v]) inQ, t*(v)=0 (5.3)
admits a positive weak solution v, € L?Uy (Q; 8%+TYy N LI1(Q; %) satisfying

10l 47 ey T 001 7y < 5 (5.4)
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Proof We shall use Schauder fixed point theorem to show the existence of a positive weak
solution of (5.3). For n € N, define the operator S, by

Sn(v) := G, gn(v + 0Kyu[v])] Vv e LL(Q). (5.5
Set
= " q; . sopty
M) =0l g o, Y0 € L (236577,
Ma(v) = [l oy 57y Vv € LT(R;87), (5.6)

M) := M, (v) + Ma(v) Vv e LY (Q; s0++7) 0 L91(Q; §7).
Step 1: To estimate L'(2; 8“++7)-norm of g, (v + oKy [v]) for v € Ly (Q: 8%+7) N

L9(Q; 87).
ForA > 0,set A) :={x € Q: v+ 0K, [v] > A}anda(}) := fAA 8%+17 dx. We write

| gn @ + KD | 11 gugus ) = fA gn(v + oK, [V)8*+ 7 dx
1

+ / gn (v + oK, [V])8%+ 7 dx (SN
A5

I+ 11

We first estimate / from above. We see that
o0
1= a(hg, () + f a()dgn(5).
1

Since (1.28) holds, it was proved in [12, Lemma 3.1] that there exists an increasing sequence
of positive number {£} such that

*

lim £; =oco and lim €, g(¢;) =0. (5.8)
j—oo j—oo J
Consequently,
lim ¢, ¢,(¢;) =0, VneN. (5.9)
J—>00

Observe that

o0 @j
f a(s)dgn(s) = lim f a(s)dgn(s).
1 J—=>00 S

On the other hand, by (2.1) one gets, for every s > 0,

ay

q*
Ly (2;8%+77)

a(s) < v+ oK, ]| 5T < e31(My(v) + e0) s (5.10)
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where ¢; = ¢;(N, u, y, Q) with i = 31, 32. Using (5.10), we obtain
¢
a(l)gn(1) + / a(s)dgn(s)
1

* * l] *
< c31(M1(v) + c320)? gn (1) + c31(M1(v) + ¢320)% / s dgy(s)
1
x —q
< e31(Mi(v) + 207 L7 gn(€)) + 3195, (M (v)

« [ «
+ co)? / s g, (s)ds.
1

By virtue of (5.8), letting j — oo yields

o0
I < 63161;(M1(v)+632Q)q"/ 5717 g (s)ds
I

< e AoM1 ()% + ¢33 A00% (5.11)

where ¢33 = ¢33(N, i, y, Q). )
To handle the remaining term I /, without lost of generality, we assume g1 € (1, Nivlt ’;7 ).

Since g satisfies condition (1.29) and g, < g, it follows that g, satisfies this condition too.
Hence

Il < A1/ (v + oK, [vD? 8%+ dx + 9/ 8%+ TV dx
Af AS

12
< A1634/ V184V dx + Are3ao? + c340 (5.12)
Q
< AessMa(0)? + Ajczso? + c340
where ¢; = ¢;(N, i1, q1, Y, 2),i = 34, 35.
Combining (5.7), (5.11) and (5.12) yields
| gn(v+ QKM[V])”U(Q;SHW) < c33A0M (V)7 + 3581 Mo (v)7
+c340 +dy (5.13)
where d, = C33AOQq; + c3a A 107"
Step 2: To estimate M, M, and M.
From (2.4), we have
M1 (Sy () = ||GL[8” gn (v + oK, [vD]| L o) 510

< ¢7 || gn + eKulvD | L1 g gor+v) -
It follows that
Mi(Sp(v)) < ere33M0Mi ()% + c7¢3581 Ma(0)! + ¢7¢346 + c7d,. (5.15)
Applying (2.4), we get
M>(Sn(v)) = ”G#[(Sygn(v + QKM[UD]HL‘H(Q;(W)
< ¢36 || gn (v + KL DVD | 11 gugus+7) -
which implies

My (Sn(v) < 36633 M0M1 (V) + c36c35 A1 Ma ()T + c36¢3460 + c36dy.  (5.16)
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Consequently,
M(Sp(v)) < c3780M1 ()T + 33 A1 Ma () + 408 + c39d, (5.17)

where ¢37 = (c7 + ¢36)¢33, €38 = (€7 + €36)C35, €39 = €7 + €36, C40 = (€7 + C36)C34.
Therefore if M (S, (v)) < A then

M(Sp(v) < c37M00% + c33 A1 A9 + ca060 + c39d,.

Since q; > 1 and g1 > 1, there exist oo > 0 and 6y > 0 such that for any o € (0, g9) and
0 € (0, 8p) the equation

C37A0kq; + 33 A1AT + 400 + c30dp, = A
admits a largest root A > 0. Therefore,
M) < k= M(S,(v)) < L. (5.18)

Step 3: We apply Schauder fixed point theorem to our setting.
Set

0:=1{p e LL(Q) : M(¢) <2).

Clearly, O is a convex subset of L' (). We shall show that O is a closed subset of L!().
Indeed, let {¢,,} be a sequence in O converging to ¢ in L'(€2). Obviously, ¢ > 0. We can
extract a subsequence, still denoted by {¢,,}, such that ¢, — ¢ a.e. in Q. Consequently, by
Fatou’s lemma, M;(¢) < liminf,,_, oo M;(¢) fori = 1, 2. It follows that M(¢) < A. So
¢ € O and therefore O is a closed subset of L' ().

In light of (5.13) and (5.18), S, is well-defined on O and S,,(O) C O.

We observe that S,, is continuous. Indeed, if ¢, — ¢ as m — oo in L!($2) then 8n(@m +
0K, [v]) = gu(¢ + oKu[v]) as m — oo in L(Q; 8*+17). By (2.4), Su(¢m) — Su(9h) as
m — ooin L' ().

We next show that S, is a compact operator. Let {¢,,} C O and for each n put
Ym = S, (¢m). Hence {A,} is uniformly bounded in L”(G) for every compact subset
G C Q. Therefore {1/,,} is uniformly bounded in W' -7 (G). Consequently, there exists a
subsequence, still denoted by {y,,}, and a function ¢ such that v, — ¥ a.e. in Q. By
dominated convergence theorem, y,, — ¥ in L' (). Thus S, is compact.

By Schaude_r fixed p9int theorem there is a function v,, € LL(Q) such that S, (v,) = v,
and M (v,) < A where A is independent of n. Due to Proposition 2.4, tr *(v,) = 0 and v,, is
a nonnegative solution of (5.3). Moreover, there holds

—/ v,,LM;dx:/ 87 gn(p + 0K, [v])Zdx VE € X(RQ). (5.19)
Q Q
O

Proof of Theorem H Let 6 € (0, 6p) and o € (0, go). For each n, set u, = v, + 0K, [v]
where v, is the solution constructed in Lemma 5.1. Then tr *(u, ) = ov and

—/ unLugdx:f (Syg,,(un)g‘dx—Q/ KyvIL,cdx V¢ e X(R).  (5.20)
Q Q Q

Since {v,} C O, the sequence {g, (v, + oK,[v])} is uniformly bounded in LY(Q; 89+17)

and the sequence {sﬂvn} is uniformly bounded in L' (G) for every compact subset G C 2.

As a consequence, {Av,} is uniformly bounded in L'(£2). By regularity result for elliptic
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equations, there exists a subsequence, still denoted by {v, }, and a function v such that v, — v
a.e. in Q. Therefore u, — u a.e. in Q with u = v 4+ oK, [v] and g, (1,) — g(u) a.e. in Q.

We show that u,, — u in L'(2; §~%-). Since {v, } is uniformly bounded in L9 ($2; 87, by
(2.5), we derive that {u,} is uniformly bounded in L7!($2; §~%-). Due to Holder inequality,
{u, } is uniformly integrable with respect to § ~*~dx. We invoke Vitali’s convergence theorem
to derive that u, — u in L'(€2; §~%-).

We next prove that g, (u,) — g(u) in LY($2; 8%+17). For . > O and n € N set By, =
(x e Q:u, > A and b,(A) := fBM 8%V dx. For any Borel set E C £,

/gn(un)8a++ydx :/ gn(”n)8a++ydx+/ gn(un)8a++ydx
E ENByy, ENBC

nh

5[ gn(u,,)3°‘++ydx+®xf 8 dx
Bn,)» E

< by(gn () + / bu(5)dign (s) + O, / s dx. (521)
A E

where ©, := supy ,; g- By proceeding as in the proof of Lemma 5.1, we deduce

bn(A)gn(A) +f bn(s)dgn(s) < ca1 ffos_l_@gn(S)ds
A
<cu [57 17 g(s)ds (5.22)

where c41 depends on N, i, y and 2. Note that the term on the right hand-side of (5.22) tends
to 0 as A — oo. Therefore for any ¢ > 0, there exists A > 0 such that the right hand-side of

(5.22) is smaller than 5. Fix such A and put = 2(f)k . Then, by (5.21),

/ S+ dx < n = / 8n ()8 () dx < &.
E E

Therefore the sequence {g, (1)} is uniformly integrable with respect to §%+*7”dx. Due to
Vitali convergence theorem, we deduce that g, (#,) — g(u) in LY(Q; 82+ 7)),
Finally, by sending n — oo in each term of (5.20) we obtain

— /Q ul,¢dx = /QSV(é(u)(dx — QLK,L[V]L,LCdx Vi e X(R2). (5.23)
By Theorem A, u is a nonnegative weak solution of (1.27). m]
5.2 Sublinearity
In this subsection we deal with the case where g is sublinear.
Lemma 5.2 Let v € MT(OQ) with IVlloree = 1 and {g.} C Cl(R+) be a sequence

satisfying (5.1). Assume (1.30) is satisfied. Then for every ¢ > 0 problem (5.3) admits a
nonnegative solution v, satisfying

”vl’l”Ll(Q;gf) < (5.24)

where y is as in (5.2) and A depends on Ay, g2, N, uand y.
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Proof The proof is similar to that of Lemma 5.1, also based on Schauder fixed point theorem.

So we point out only the main modifications. Let S, be the operator defined in (5.5). Fix

g3 € (1, Nﬁ/f_’;a_) and put

N@) = lvlla .57y YV € L93(2; 87).
Combining (2.4), (2.5) and (1.30) leads to
N(Su(v) < ca2 | gn(v + QKU-[U])”LI(Q;501++V)

< m/ Ar(v + 0K, [v]) 28 T dx + me/ 8 dx
Q Q

< 0421\2/ V28T dx + ca3(0% 4 0)
Q
2

< cauhs ( fg vq35“++ydx> " e 0® +6)
< 44 Ao N (V) + c43(0" +0)
where ¢; = ¢; (N, 1, v, 2, q2) (42 <i < 44). Therefore, if N(v) < A for some A > 0 then
N(Sn(v)) < caa AaA? + ca3(0? +0).
Consider the following algebraic equation
caa Mo + ca3(0%* +6) = X. (5.25)

If ¢» < 1 then for any ¢ > 0 (5.25) admits a unique positive root A. If g» = 1 then for A
small such that c44A> < 1 and ¢ > 0 Eq. (5.25) admits a unique positive root A. Therefore,

N@) < i = N(S,(v)) <A. (5.26)

By proceeding as in the proof of Lemma 5.1, one can prove that S, is a continuous, compact
operator from the closed, convex set

O:={velL (Q):Nw) <k

into itself. Thus by appealing to Schauder fixed point theorem, we see that there exists a
function v, € L1+(Q) such that S,, (v,) = v, and N (v,) < A with X being independent of 7.
By Proposition 2.4, tr *(v,) = 0 and v, is a nonnegative solution of (5.3). Moreover (5.19)
holds. O

Proof of Theorem I Let v, be the solution of (5.3) constructed in Lemma 5.2. Put u,, =
v, + 0K, [v] then u, satisfies (5.20). By a similar argument as in the proof of Theorem H,
there exists a subsequence, still denoted by {u, } and a function u such that u, — u a.e.in 2.
Since {v,} C O, it follows that {v,} is uniformly bounded in L% (2; §=%-), so is {u,}. By
Holder inequality, {u,} is uniformly integrable in L'(2; §~%-). Due to (1.30), {g, (1)} is
uniformly integrable in L'(€2; 8%+17). Vitali convergence theorem implies that u,, — u in
LY(Q;87%) and g, (u,) — §(u) in LY (S §2+17). Letting n — o0 in (5.20), we conclude
that u is a positive solution of (1.27). O
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CHAPTER 4

Semilinear elliptic equations and systems with
Hardy potentials

This chapter, which is based on a collaboration with Gkikas [78], is a
continuation of our study on semilinear equations with a Hardy potential.
We offer a unified approach and go further in the analysis of the boundary
value problems with both interior and boundary measure data. We also
extend several existence results for semilinear equations to systems.
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1. Introduction

Let @ c RY (N > 3) be a bounded C? domain, §(x) = dist (x, 9R2) and g € C(R). Put L,:=
A+ 8% In the present paper we study semilinear problems with Hardy potential of the form

—Lyu=gu) 4+t ing, (1.1)

where 1 > 0, T is a Radon measure on 2.

The boundary value problem with measures for (1.1) without Hardy potential and with power
absorption nonlinearity, i.e. © =0, T =0, g(u) = —|u|”~'u, p > 1, was well understood in the
literature, starting with a work by Gmira and Véron [10]. It was proved that there is the critical
exponent p* := % in the sense that if p € (1, p*) then there is a unique weak solution for
every finite measure v on 2, while if p € [p*, 00) there exists no solution with a boundary
isolated singularity. Marcus and Véron [15,16] studied this problem by introducing a notion of
boundary trace, providing a complete description of isolated singularities in the subcritical case,
i.e. 1 < p < p*, and giving a removability result in the supercritical case, i.e. p > p*.

The solvability for boundary value problem for (1.1) without Hardy potential and with power
source term, namely u =0, Tt =0, g(u) = u?, p > 1, was studied by Bidaut-Véron and Vivier
[4] in connection with sharp estimates of the Green operator and the Poisson operator associ-
ated to (—A) in Q. They proved that, in the subcritical case 1 < p < p*, the problem admits a
solution if and only if the total mass of the boundary datum v is sufficiently small. Afterwards,
Bidaut-Véron and Yarur [6] reconsidered this type of problem in a more general setting and pro-
vided a necessary and sufficient condition for the existence of solutions. Recently, Bidaut-Véron
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et al. [5] provided new criteria for the existence of solutions with p > 1 in terms of the capacity
associated to the Besov spaces.

Let ¢ > 0in Q and p > 1, we denote by L”(£2; ¢) the space of all function v on Q satisfy-
ing fQ |[v|? ¢dx < oo. We denote by IM(2; ¢) the space of Radon measures T on 2 satisfying
Jo@dlt| < oo and by MT(Q; ¢) the nonnegative cone of M(; ¢). When ¢ = 1, we use the
notations J1(2) and M (). We also denote by D(IL) the space of finite measures on 92 and
by MM+ (dQ) the nonnegative cone of M (IR).

Let G, and K, be the Green kernel and Martin kernel of —L, in Q, G, and K, be the
corresponding Green operator and Martin operator (see [ 14,9] for more details). Let Cy be Hardy
constant, namely

vv|2d
Cpie  int JolVUIAX vlz * (12)
veH (@)\(0} Jo(v/8)%dx

then it is well known that 0 < Cy < % and if Q is convex then Cy = i (see for example [12]).

Moreover the infimum is achieved if and only if Cy < %. When —A$ > 0 in 2 in the sense of
distributions, the first eigenvalue A, of L, in Q is positive, i.e.

2 m 2
PR (it L (1.3)
" penl@\o) Jo#Pdx

For 1 € (0, 4—1‘], denote by « the following fundamental exponent

o= %(1 +/1—4p). (1.4)
1

Notice that 5 < a < 1. The eigenfunction ¢, associated to A, with the normalization
fQ ((pu/8)2dx = 1 satisfies ¢c~16% < ¢, < 8% for some constant ¢ > 0 (see [7]).
In relation to Hardy constant, Bandle et al. [3] classified large solutions of the linear equation

—L,u=0 inQ, (1.5)
and of the associated nonlinear equation with power absorption
—Lyu+u?=0 inQ. (1.6)

In [14], Marcus and P.-T. Nguyen studied boundary value problem for (1.5) and (1.6) with u €
(0, Cy) in measure framework by introducing a notion of normalized boundary trace which is
defined as follows:

Definition 1.1. A function u € L!

10c(§2) possesses a normalized boundary trace if there exists a
measure v € N (02) such that

lim g~ / lu — K, [v]ldS =0. (1.7)
B—0
{xeQ:5(x)=p}

The normalized boundary trace is denoted by tr* ().
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The restriction p € (0, Cg) in [14] is due to the fact that in this case L, is weakly coercive in
H(; (£2) and consequently by a result of Ancona [2, Remark p. 523] there is a (1 — 1) correspon-
dence between T (d€2) and the class of positive L, harmonic functions, namely any positive
L,, harmonic function u can be written in a unique way under the form u = K,[v] for some
v eMT Q).

The notion of normalized boundary trace was proved [14] to be an appropriate generaliza-
tion of the classical boundary trace to the setting of Hardy potentials, giving a characterization
of moderate solutions of (1.6). In addition, it was showed in [14] that there exists the critical
exponent

N+a«a
Pu:

=— 1.8
N+oa-—-2 (1.8)

such that if p € (1, p,) then there exists a unique solution of (1.6) with tr*(u) = v for every
finite measure v on €2, while if p > p,, there is no solution of (1.6) with an isolated boundary
singularity. Marcus and Moroz [ 13] then extended the notion of normalized boundary trace to the
case L < % and employed it to investigate (1.6). When p = %, L, is no longer weakly coercive
and hence Ancona’s result cannot be applied. However, Gkikas and Véron [9] observed that if
the first eigenvalue of —L 1 is positive then the kernel K 1 (-, y) with pole at y € 9€2 is unique up
to a multiplication and any positive L 1 harmonic function u admits such a representation. Based

on that observation, they considered the boundary value problem with measures for (1.6), fully
classifying isolated singularities in the subcritical case p € (1, p;,) and providing removability
result in the supercritical case p > p,. A main ingredient in [9] is the notion of boundary trace
which is defined in a dynamic way and is recalled below.

Let D € Q2 and xg € D. If h € C(d D) then the following problem

—L,u=0 in D,
(1.9)
u=nh ondD,
admits a unique solution which allows to define the L ,-harmonic measure w}; on 3D by
utxo) = [ ). (110

aD

A sequence of domains {€2,} is called a smooth exhaustion of Q if 9Q, € C2, Q, C Qn+1,
Up 2, = Q and HY1(09Q,) — HY~1(8Q). For each n, let a)g)n be the Lff” -harmonic measure
on 0%2,.

Definition 1.2. A function u possesses a boundary trace if there exists a measure v € M (9€2)
such that for any smooth exhaustion {€2,} of €2,

n—o0

lim | fudwg =/§dv Vi e C(Q). (1.11)
2, Q2

The boundary trace of u is denoted by tr (u).
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It is worthy mentioning that in Definition 1.2, u is allowed to belong to the range (O, %]
provided A, > 0.
In parallel, semilinear equations with Hardy potential and source term

—Lyu=u? inQ (1.12)

were treated by Bidaut-Véron et al. [5] and by P.-T. Nguyen [18] and a fairly complete description
of the profile of solutions to (1.12) was obtained in subcritical case p < p, (see [18]) and in
supercritical case p > p, (see [5]).

Our first contribution is to show that the notion of normalized boundary trace given in Def-
inition 1.1 is equivalent to that in Definition 1.2 by examining tr (fo[r]) = tr*(Gf} [z]) and
tr (Kf} [v) =tr* (Kf} [v]). This enables to establish important results for the boundary value prob-
lem for linear equations (see Proposition 2.13) which in turn forms a basic to study the boundary
value problem for

—Lu=gu)+t in Q,
(1.13)
tr(u) =v.

When dealing with (1.13), one encounters the following difficulties. The first one is due to
the presence of the Hardy potential in the linear part of the equations. More precisely, since the
singularity of the potential at the boundary is too strong, some important tools such as Hopf’s
lemma, the classical notion of boundary trace, are invalid, and therefore the system cannot be
handled via classical elliptic PDEs methods. The second one comes from the interplay between
the nonlinearity, the Hardy potential and measure data. The interaction between the difficulties
generates an intricate dynamics both in €2 and near 92 and leads to disclose new type of results.

Convention. Throughout the paper, unless otherwise stated, we assume that u € (0, }‘] and the
Sfirst eigenvalue A, of —L,, in 2 is positive. We emphasize that if u € (0, Cy) then A, > 0.

Definition 1.3. (i) The space of test functions is defined as

X, (Q):={t e H. (Q):87%¢ e H'(Q,8), §*L,¢ € L(Q)}. (1.14)
(i) Let (7, v) € M(K, 8%) x M(IK2). We say that u is a weak solution of (1.13) if u € L1 (Q; 8%),
g(u) € L' (; 8%) and

—fuL,gdx:fg(u){dx—i—f{dr—/KM[U]L,L{dx Vi e X, (R2). (1.15)
Q Q Q Q

Main properties of solutions of (1.13) are established in the following proposition.

Proposition A. Let T € M(2; %) and v € M(dN). The following statements are equivalent.
(1) u is a weak solution of (1.13).
(i) g(u) € L'(R; 8%) and

u :Gu[g(u)]+Gu[f]+Ku[V]- (1.16)

Gi)ue Ll (Q), gu)e Ll (Q), uis adistributional solution of (1.1) and tr (u) = v.

loc loc
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This allows to establish necessary and sufficient conditions for the existence of a weak solu-
tion of

—Lyju=uf+ot inQ,

1.17)
tr (u) = ov.
Theorem B. Let T € MT(Q; §%), v e MT(IQ) and p > 0.

(i) Assume 0 < p < p,,. Then there exists a constant C > 0 such that
GuIK,[v]I’]1 < CK,[v]  ae. in Q. (1.18)

(ii) Assume 0 < p < py,. Then there exists a constant C > 0 such that
GulG,lt]P1 < CGylt]  a.e in Q. (1.19)

@iii) If (1.18) and (1.19) hold then problem (1.17) admits a weak solution u satisfying

Gulotl+Kylovl <u < C(Gulot]l + K, l[ov]) a.e. in Q (1.20)

for o >0 and o > 0 small enough if p > 1, foranyo >0and o >0if0<p < 1.
Gv) If p > 1 and (1.17) admits a weak solution then (1.18) and (1.19) hold with constant
1

p—1
(v) Assume 0 < p < p,. Then there exists a constant C > 0 such that for any weak solution u
of (1.17) there holds

Gulotl+Kyulovl <u < C(Gulot]l+ K, [ov] +8%) a.e. in Q. (1.21)

In order to study (1.17) in the supercritical case, i.e. p > p,, we make use of the capacities
introduced in [5] which is recalled below. For 0 <6 < 8 < N, set

1

Ix — y|N=Bmax{|x — y|,8(x),8(y)}? Vx,y) €Q2xQ x#y, (1.22)

Nog(x,y) =

Ng glt](x) :=/N9,ﬁ(x,y)dz VT e MT(Q). (1.23)

Q

Fora>—1,0<6 <8 <N and s > 1, define Capﬁlg,ﬁ,s by

Cap%gﬂ’s(E) :=inf /5”¢>S dx: ¢>0, Nggl8?¢l=> xk ¢, (1.24)

Q

for any Borel set E C Q. For @ € (0, N — 1) and s > 0, let Capgff be the capacity defined in [5,
Definition 1.1]. Notice that if 65 > N — 1 then Capzfg({z}) > 0 for every z € 9Q2.
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Theorem C. Let 7 € MM (Q; 6% and v € MT(IQ). Assume p > 1. Then the following state-
ments are equivalent.
(1) There exists C > 0 such that the following inequalities hold

/ 8%dt < CCap™* ;)Z,(E) Y Borel E C 2, (1.25)
E
v(F) < CCap"l’S_za+& ,(F) ¥ Borel F CoQ. (1.26)
P’

(ii) There exists a positive constant C such that (1.18) and (1.19) hold.
(iii) Problem (1.17) has a positive weak solution for o > 0 and o > 0 small enough.

Remark. When 7 = 0, Theorem C covers Theorem B (i), (iii) due to the fact that
Cap??aJrLﬂ p,({Z}) >c >0 forevery z€dQif 1 < p < py. Alsoif 1 < p < p, then (see

Lemma 3.10)

. (p+Da
ing CanZ ) > 0,

which implies the statements (ii) and (iii) in Theorem B.

The next goal of the present paper is the study of weak solutions of semilinear elliptic system
involving Hardy potential

—Lyu=g)+71 inL,
—Lyv=gu)+7 inQ, (1.27)

tr(u)=v, tr(v)="v
where 7, T € M(2; 5%, v,V € M(ORQ), g, g € C(R).

Definition 1.4. A pair (u, v) is called a weak solution of (1.27) if u € LI(Q; 8%, ve LY (Q: 8Y),
gw) e L1(Q;8%), g(v) € L' (Q; %) and

—/uL,gdx:fg(v){dx—i—/{dt—/Ku[v]Lu;“dx,
Q Q Q

¢ (1.28)

—/vLﬂgdx=f§(u){dx+/§df—/KM[G]LMQ‘dx V¢ e X, ().
Q Q Q Q

A counterpart of Proposition A in the case of systems is the following:

Proposition D. Let t, T € 9M(2; §%) and v, v € M(I2). Then the following statements are equiv-
alent.
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(1) (u, v) is a weak solution of (1.27).
(i) g(u) € L1 (Q; 8%), g(v) € L1 (2 8%) and

u=GulgWI+Gulrl+ Kulvl,  v=GCGulgw)]+ Gult]+ Ky[v]. (1.29)

(iii) (u, v) € (L}, ()% (g(v), gw)) € (L}, ()% (u,v) is a solution of
—Lyju=gw)+1t inQ,

(1.30)
—Lyv=gu)+7 inQ,

in the sense of distributions and tr (u) = v and tr (v) = V.

Elliptic systems arise in biological applications (e.g. population dynamics) or physical ap-
plications (e.g. models of nuclear reactor) and have been drawn a lot of attention (see [8,19]
and references therein). A typical case is Lane—-Emden system, i.e. system (1.27) with u =0,
g)=v?, gu) = u?. Bidaut-Véron and Yarur [6] proved various existence results for Lane—
Emden system under conditions involving the following exponents

.p+1 - p+1
q:=P= 7 =p— (1.31)
p+1 p+1
We first treat the system
—Lyu=v"+ot inQ,
—Lyv=i’+6% inQ, (1.32)

tr(u) =ov, tr(v)=0vV,

where p >0, p >0, 7, T € M(2Q; 5% and v, v € M(IQ).
The next theorem provides a sufficient condition for the existence of solutions of (1.32).

TheoremE. Let p > 0, p >0, 7,7 € MT(Q; 6%) and v, b € MT(0Q). Assume pp # 1, g < py,

Gultl+Kylv+v] e LP(Q,8%). Then system (1.32) admits a weak solution (u,v) for ¢ > 0
and ¢ > 0 small if pp > 1, forany o > 0and 6 > 0 if pp < 1. Moreover

v%GM[w] +KM[1~)], (1.33)
u %G/L[(G/l,[w] +Ku[ﬁ])p]+Gu[T] “I‘Kp,[‘)] (1.34)

where the similarity constants depend on N, p, p, u, 2,0,6,t,T and
=Gt + K, [0]P17 + K, [v]? + .

A new criterion for the existence of (1.32), expressed in terms of the capacities Capﬁle 58 and

Capgg, is stated in the following result.
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TheoremF. Let p > 1, p > 1, 7, T € MT(Q; 6%) and v, ¥ € M (IQ). Assume there exists C > 0
such that

max / s%dr, / s9d7 § < Cmin{Cap(Nﬁj;)z,(E),CapI(N’zj ;)‘;;,(E)}, VECQ, (1.35)
E E

max{v(F), ¥(F)} < Cmin{CapfilH]ﬂ (), Capil?a+l+__a 5 (F)} VF Co. (1.36)
p’ P’

Then (1.32) admits a weak solution (u,v) for o >0, 6 >0, 0 >0, 0 > 0 small enough. There
exists C > 0 such that

Gulotl +Kulovl <u <C(Gulot + 671+ K,[ov +0V]),

o - - . (1.37)
Gulotl +Ku[ov] v < C(Gulot +o7]+ Kylov +0ov]).
Finally, we deal with elliptic systems with more general nonlinearities
—Lju=eg)+tor in Q,
—L,v=egu)+ot in €, (1.38)

tr(u) =ov, tr(v)=0V onadf

where g and g are nondecreasing, continuous functions in R, e =+1,0 > 0,6 >0, o0 > 0,

¢ >\K(7)é shall treat successively the cases € = —1 and € = 1. For any function f, define
)
Ay ::/s_l_p“|f(s) — f(—=s)|ds (1.39)
1
with p,, defined in (1.8).
Theorem G. Let ¢ = —1 and o0,6,0,0 be positive numbers, t, T € M(RQ;8%) and v,V €

IM(0R). Assume that Ay + Az < 0o and g(s) = g(s) =0 for any s < 0. Then system (1.38)
admits a weak solution (u, v).

When € = 1, different phenomenon occurs, which is reflected in the following result.

Theorem H. Let ¢ =1, 7, T € M(Q; 8Y) and v, v € M ().

I. SUBCRITICALITY. Assume that Ag + Az < oo. In addition, assume that there exist q1 > 1,
ay > 0, by > 0 such that

lg)| <ayls|? +by Vse[-1,1], (1.40)
18(s)| <ayls|? +b; Vse[—1,1]. (1.41)

Then (1.38) admits a weak solution for by, o, , 0, 0 small enough.
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II. SUBLINEARITY. Assume that there exist g1 > 1, g2 € (0, 1], ap > 0 and b> > 0 such that
Kul[9]]+Gl7]] € L9 (2 6%~ 1) and

lg($)| <aals|” +by VseR, (1.42)

18| <als|?+Dby VseR. (1.43)

(@) If q192 = 1 and a> > 0 is small then (1.38) admits a weak solution for any o > 0, 6 > 0,
0>0,0>0.
(b) If 192 < 1 then (1.38) admits a weak solution for any o >0, 6 >0, 0 >0, 0 > 0.

III. SUBCRITICALITY AND SUBLINEARITY. Assume that Ay < 0o. In addition, assume that
there exist a; > 0, ap >0, by >0, by > 0, q1 € (1, pu), g2 € (0, 1], such that (1.40) and (1.43)
hold.

(@) If 192 > 1 then (1.38) admits a weak solution for by, by, o, G, 0, 0 small enough.

(b) If g2p, =1 and ay is mall enough then (1.38) admits a weak solution for any o > 0,
6>00>00>0.

(©) If g2p,. < 1 then (1.38) admits a weak solution for every for any o >0, 0 >0, ¢ > 0,
0>0.

Remark about elliptic equations and systems with weights. We emphasize that Theorems B
and C can be extended to the case of equations with weights of the form

—Lyu=8"u’+o0tr inQ, (1.44)
and Theorems E-H can be extended to the case of systems with weights of the form

—Lu=€8"glw)+ot inQ,
o . (1.45)
—Lyv=€8"gu)+67 inQ,

by using similar arguments. However, in order to avoid the complication of the proofs, we state
and prove the results without weights.

The paper is organized as follows. In Section 2 we investigate properties of the boundary
trace defined in Definition 1.2 and prove Propositions A and D. Theorems B and C are proved

in Section 3 due to estimates on Green kernel, Martin kernel and the capacities Capl(\‘]"2 +l)z
o, 2

Cap‘?izm_”_Jrl o In Section 4 sufficient conditions for the existence of weak solutions to elliptic
P’
systems with power source terms (1.32) (Theorems E and F) are obtained by combining the

method in [6] and the capacity approach. Finally, in Section 5, we establish existence results
for elliptic systems with more general nonlinearities (Theorems G and H) due to Schauder fixed
point theorem.

, and

Notations. Throughout this paper, C, c, ¢/, ... denotes positive constants which may vary from
one appearance to another. The notation A & B means ¢ 'B < A < ¢B for some constant ¢ > 1
depending on some structural constant.
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2. Preliminaries
2.1. Green kernel and Martin kernel

Denote by Lb(; 1), 1 < p <00, T € MT(RQ), the weak L? space (or Marcinkiewicz space)

(see [17]). When t = §%dx, for simplicity, we use the notation LP (2 8%). Notice that, for every
s> —1,

LP(:8°) C L' (:8°) Vrell, p). @2.1)

Moreover for any u € L% (2;8%) (s > —1),

8dx <a7P ||u||’£5, @y VA>0 (2.2)

{lul=A}

Let Gf} and K f} be respectively the Green kernel and Martin kernel of —L , in Q (see [14,9]) for
more details). We recall that

G2,y ~min{lx =y @)U x - yPV ) vayeQux £y, @3
K, ) ~8(x0)%x —y* V72 vxeQ, yedQ. (2.4)

Finally, we denote by G, and K, be the corresponding Green operator and Martin operator (see
[14,9]), namely

GM[I](x)szM(x,y)dr(y), Yz e M(Q), (2.5)
Q

K, [v](x) = / Ku(x, 2)dv(z), Vv eM@OR). (2.6)
Q2

Let us recall a result from [4] which will be useful in the sequel.

Proposition 2.1. ([4, Lemma 2.4]) Let w be a nonnegative bounded Radon measure in D = 2 or
02 and n € C(2) be a positive weight function. Let H be a continuous nonnegative function on
{(x,y) e Q2 x D: x #y}. Forany A > 0 we set

M) = €Q\ () Hery) >4 and my(y):= / n(x)dx.

An(y)
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Suppose that there exist C > 0 and k > 1 such that m;(y) < CA* for every » > 0. Then the

operator

Hio](x) := / Hx, y)do(y)
D

belongs to Lﬁ) (2;n) and

Ck
||H[w]||1‘{<“(9;n) <1+ m)w(D)~

By combining (2.3), (2.4) and the above Lemma we have the following result.

Lemma 2.2. Let y € (—& If,‘—l_vz) Then there exists C = C(N, u, y, ) > 0 such that

N+2a-2>

Gu.§)
8(5)~

<C.

N+y
£€Q L2 (9;87)

Q2.7

Proof. Let & € Q2. We will apply Proposition 2.1 with D = @, n = 48" with y > —1, w = §%6,

where J; is the Dirac measure concentrated at &, and

Gux,y)

MO0 = =500

Then

G )
Hio](x) = / w0 D) s gs (v) = G (s, £).

§(»)“
Q
From (2.3), there exists C = C(N, u, 2) such that, for every (x,y) € Q x Q, x #y,

Gu(x,y) < C8(»)*|x — y|>~ N7,

(i(y)“ R
()@

G(x,y) < C8(x)?8(y)%|x — y> N2,

Gux,y)<C

’

By (2.8), for any x € A, (y),
r<Clx =y,

and form (2.9) and (2.10)

C
() < v~ 2N and  §(x)% > Chlx — V22

2.8)
2.9)

(2.10)

@2.11)

(2.12)
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We consider two cases: y >0 and —1 <y <O.

Case 1: y > 0. Due to (2.11) and (2.12) we have
C Y
o N+
) = / 5(x)"dx < / <;|x—y|2‘N> dx < CA™ Wi,
Ar(y) A(y)

with y < If,‘—j_vz Observe that w (£2) = §(&)%, by Proposition 2.1, we get

[GuC &) ner < C5(E)".
Lyt (2 87)

This implies (2.7).
Case2: —1 <y <0.By (2.11) and (2.12) we have
N
mo = [ swrdxs [ (Car-yNedEar < oa i,
Ax(y) An(y)
with y > _#12—2' By arguing similarly as in Case 1, we get (2.7). O

Lemma 2.3. Let y > —1. Then there exists C = C(N, u, y, ) > 0 such that

sup HK/L(’E)H Nty <C.
£cdQ LY (@87)

Proof. Let & € 9Q2. We will apply Proposition 2.1 with D = 92, n = §” with y > —1 and
@ = 8¢ . The rest of the proof can be proceeded as in the proof of Lemma 2.2 and we omitit. O

In view of (2.1), Lemma 2.2 and Lemma 2.3, one can obtain easily the following proposition
(see also [14,18]).

Proposition 2.4. (i) Let y € (_#Z—z’ If,‘—l_vz). Then there exists a constant ¢ = ¢(N, u,y, )

such that

IGulel| nty <cltlonsey YT €M 8. (2.13)

Ly T2 (Qi87)

(i) Let y > —1. Then there exists a constant c = c(N, i, y, 2) such that

IKL 1| wer <clvligmee YveMOR). (2.14)
L

a2 (@;67)
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2.2. Boundary trace

In this section we study properties of the boundary trace in connection with of L, harmonic
functions. In particular, we show that, when y < Cg(€2), the boundary trace defined in Defini-
tion 1.2 coincides the notion of normalized boundary trace introduced in Definition 1.1). To this
end, we will examine that tr (G, [r]) = 0 for every T € 9(2; %) and tr (K, [v]) = v for every
v € M(I2). These results are proved below, based on a combination of the ideas in [9] and [14].
It is worth emphasizing that the below results are valid for u € (0, }l] (under the condition that
the first eigenvalue A, of —L,, is positive).

Proposition 2.5. Let T € M(2; 6%) and u = G, [t]. Then tr (u) = 0.

Proof. First we assume that t is nonnegative. Let {2,} be a smooth exhaustion of 2 and for
each n, let a)gn be the Lff” harmonic measure on 9£2,,. Then u satisfies

—Lyju=rt in 2,
(2.15)
u=u on 0$2,.
Thus
u= Gf}n [r]+ K/izn [u]l = (fo” [t]+ f Ltda)?zon. (2.16)
9,

This, joint with G,Sf” [t]11 Gylr] as n — oo, ensures
lim f Mda)g) =0,
n—oo n
Q2

namely tr (u) = 0.
In the general case, the result follows from the linearity property of the problem. O

The next result shows that the boundary trace of L, harmonic function can be achieved in a
dynamic way.

Proposition 2.6. [9, Proposition 2.34] Let xo € 21 and p € M(9L2). Put
v(x) = f Ky (x, y)dv(y),
Q2
then for every ¢ € C(RQ),

n— o0

lim ;vdwg‘;’n =/§du. (2.17)
I, I
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Also we have the following representation formula for L, harmonic functions.

Proposition 2.7. [9, Theorem 2.33] Let u be a positive L, harmonic in Q. Then u € L! (2; 89)
and there exists a unique Radon measure v on 02 such that

u(x)=/KlL(x,y)dv(y). (2.18)

Q2

In the following proposition, we study the boundary trace of L, subharmonic functions.

Proposition 2.8. Let w be a nonnegative L,, subharmonic function. If w is dominated by an L,
superharmonic function then L,w € M (Q; 8%) and w has a boundary trace v € M(IQ). In
addition, if tr (w) =0 then w = 0.

Proof. By proceeding as in the proof of [14, Proposition 2.14] and using Proposition 2.7, we
obtain the desired result. O

Proposition 2.9. Let w be a nonnegative L, subharmonic function. If w has a boundary trace
then it is dominated by an L, harmonic function.

Proof. The proof is similar to that of Proposition 2.20 in [14]. For the sake of convenience we
give it below. Let {€2,} be as in the proof of Proposition 2.5 and fix x¢ € Q. For any x € €,
set

Uy (x) = / wda)’s‘zn,

082,

then u, is Lf}” harmonic function with boundary trace w. Furthermore, by the maximum princi-
ple we have that w < u, in ,,. Let v € M(9<2) be such that

n—oo

lim [ cwdogy =/§dv Ve e C(Q). (2.19)
Q0 a0

Then
u, (xg) = / wdwg’n — fdv.
982, Q2
We infer from Harnack inequality that {u,} is locally uniformly bounded and hence there exists

an L, harmonic function u such that u,, — u locally uniformly in 2. By Proposition 2.8, there
exists a nonnegative measure T € M (Q; §%) such that

w=—-G,[t] +K,[v].
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On the other hand,
w= —fo”[t] +u, - —Gulrl+u,
locally uniformly in 2. Thus we can deduce that u =K, [v] and the result follows. O

Proposition 2.10. Let u be a nonnegative L, superharmonic function. Then there exist v €
M (0RQ) and v € MT(KQ; 8%) such that

u=Gu[r]+K,[v].

Proof. Let €2, and a)?zon be as in the proof of Proposition 2.5. Since u is L, superharmonic
function there exists a nonnegative Radon measure in 2 such that

—L,u=1 inQ

in the sense of distributions. Note that u is the unique solution of

—Lyw=rt in
(2.20)
w=u on 082,.
Therefore
u=Gr[r] + K [u]. .21)

Set w,, = Kf}” [¢]. Since T > 0, by the above quality, we have 0 < w, (x) < u(x). Thus by the
Harnack inequality, w, — w locally uniformly in 2. Furthermore, w is an L, harmonic function
in © and by Proposition 2.18 there exists v € M1 (d2) such that

w=K,[v]. (2.22)
Now since fo" 1 G, as n — 00, we deduce from (2.21) and (2.22) that

u=G[t]+ K [u] > Gulr] + Kuv].
Since
Gu(x,y) =c(x, u, N)§(y)“,
we can easily prove that T € M+ (R; %) which completes the proof. O
The above results enable to study the boundary value problem for the linear equation

—Lyju=rt in €,
(2.23)

tr(u) =v.
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Definition 2.11. Let (7, v) € M(2; §%) x M (). We say that u is a weak solution of (2.23) if
u e LY(Q;8%) and

—/uLM;‘dx:/;dr—/Kﬂ[v]Lugdx VE € X,(Q), (2.24)
Q Q Q

Proposition 2.12. For any (t,v) € M(2; §%) x M(I) there exists a unique weak solution of
(2.23). Moreover

u=Gylr] +K,vl, (2.25)
lullprq:se) < cliTllon:se) + lIVIiom@as))- (2.26)

In addition, for any ¢ € X,,(2), £ >0,

—/|u|LM§dx§/§sign(u)dr—/KM[|U|]LM§dx, 2.27)
Q Q Q
and
—/u+LM§dx§/§sign+(u)dt—/Ku[m_]LM{dx. (2.28)
Q Q Q

Proof. The proof is similar to that of [9, Proposition 3.2] and we omitit. O

Remark 2.1.If h € L' (392, da)gj) is the boundary value of (2.23), the above Proposition is valid
for dv = hd(ug’.

Proposition 2.13. (i) For T € M(; 6%), tr (G, [t]) =0 and for v e M), tr (K,[v]) = .

(ii) Let w be a nonnegative L, subharmonic function in Q. Then w is dominated by an L,
superharmonic function if and only if w has a boundary trace v € M (I2). Moreover, if w has a
boundary trace then L,w € MM*(2; 8%). If, in addition, if tr (w) =0 then w = 0.

(iii) Let u be a nonnegative L, superharmonic function. Then there exist v € M (0Q) and
T € M (R, §%) such that (2.25) holds.

(iv) Let (t,v) € M(2; 8%) x M(3K2). Then there exists a unique weak solution u of (2.23).
The solution is given by (2.25). Moreover, there exists ¢ = c(N, pu, Q) such that (2.26) holds.

Proof. Statement (i) follows from Proposition 2.5 and Proposition 2.6. Statement (ii) can be
deduced from Proposition 2.8 and Proposition 2.9. Statement (iii) follows from Proposition 2.10.

Finally statement (iv) is obtained due to Proposition 2.12. O

Proof of Proposition A. We infer from [9] that (i) <= (ii). By an argument similar to that of
the proof of [18, Theorem B], we deduce that (ii) <= (iii). O

For g > 0, put

Qe ={xeQ:6(x) <B}, Dg:={xeQ:5(x)> B}, Lg:={xeQ:5x)=p}. (2.29)
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Lemma 2.14. There exists B, > 0 such that for every point x € 5,3*, there exists a unique point
ox € 02 such that x = oy — §(x)n,,. The mappings x — 8(x) and x — oy belong to C2(§,3*)
and Cl(ﬁﬁ*) respectively. Moreover, limy_, 5 (x) V8(x) = —ng,.

Proof of Proposition D. (iii) — (ii). Assume (u, v) is a distribution solution of (1.30). Put
w := g(v) and denote wg := a)|Dﬁ, T8 1= ‘L’|Dﬁ and Ag := ul):ﬁ for B € (0, B4). Consider the
boundary value problem

—L,w=wg+18 1in Dg, w=2»Ag on Xg.
This problem admits a unique solution wg (see [9]). Therefore wg = u|p - We have

D D D
ulpy, =wp =G, [wpl + Gy" [tp] + Py [1p]

where szﬁ and PS“ are respectively Green kernel and Poisson kernel of —L, in Dg.
It follows that

[ 6 cnrswinds| =621zl < uly | + || + [0
Dg

Letting 8 — 0, we get

f G Vg dy| < oc. (230)
Q

Fix a point xo € Q. Keeping in mind that G, (xp, y) ~ §(y)* for every y € Qg,, we deduce
from (2.30) that g(v) € L'(RQ; 8%). Similarly, one can show that g(u) € L' (R; 8%). Thanks to
Proposition 2.13 (v), we obtain (1.29).

(ii) = (iii). Assume u and v are functions such that g(u) € L'(Q;8%), g(v) € L'(2;8%)
and (1.29) holds. By Proposition 2.13 (i) L,K,[v] = L, K,[V] = 0, which implies that (u, v)
is a solution of (1.30). On the other hand, since g(u) € L'(£2;8%) and g(v) € L' (Q;8%),
we deduce from Proposition 2.13 (ii) that tr (G, [g()]) = tr (G,[g(v)]) = 0. Consequently,
tr (u) =tr (K,[v])) =vand tr (v) =tr (K, [V]) = V.

(iii) = (i). Assume (u, v) is a positive solution of (1.30) in the sense of distributions. From the
implication (iii) = (ii), we deduce that u € L'($2; 8%), v e L1(2;8%), g(u) € L' (Q; %) and
g) e L'(€2: 8%). Hence, by Proposition 2.13, (1.28) holds for every ¢ € X, (£2).

(i) = (iii). This implication follows straightforward from Proposition 2.13. 0O
3. The scalar problem

3.1. Concavity properties and Green properties

Here we give some concavity lemmas that will be employed in the sequel.
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Proposition 3.1. Let ¢ € L'(2;8%), ¢ > 0 and © € M+ (; §%). Set

w:=Gyulo+r1] and ¢ =Gulr].

Let ¢ be a concave nondecreasing C? function on [0, 00), such that ¢ (1) > 0. Then ¢’ (w/y)¢ €
LY (2 8%) and the following holds in the weak sense in Q

—L, (Yo (w/¥)) =" (w/¥)e.
Proof. Let {¢,}, 7, € C°°(Q) such that ¢, — ¢ in L' (€2, §%) and 7, — 7. Set w,, := Gulen +

7,] and ¥, = G [7,]. Since w,, > ¥, > 0 for any n > ng for some ng € N, we have by straight-
forward calculations

n - Z_An - ) - An -
(1/”15(%)) ( 1//)(¢(%) 1//n¢(%)>+( w)¢(wn)

— g (22 Mﬂ)
" Yn

Now note that, since ¢’ > 0, we have

2

- Awn)¢<—>>¢(w>< AV — 1t ‘”"

This, together with the fact that ¢ (r) — t¢’(¢) + ¢’ (¢) > 0 for any ¢ > 1, implies
wy,
=AYy —) = — + (—Awy)o' (—
( lﬂ)(flﬁ(wn) 1//¢(1/r”)) (= w)¢(1//)

Yn )
— AV, Iy T2t " Zn .,
> ( 1/f)(¢(%) n¢(n)+¢(%))+¢(%)< +“52+¢

lﬁ _ Wn o, Wn Wn Wn Yn
<¢(W) wn¢(w)+¢(%)>+¢(%)< +M32 +§0n)

32‘”""’(1/, )+¢<%> -

Thus we have proved

(Wnd’(%)) >¢ (%)%

Also

W(%) < V(9 (0) +¢’<0>%) < C(n + wn)
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and

—fl/fnqﬁ(%)LMdeZfdf(%)fﬂnédx VE € X, ().
Q Q

By passing to the limit with Lebesgue theorem and Fatou lemma, we complete the proof. O
In the next Lemma we will prove the 3-G inequality which will be useful later.

Lemma 3.2. There exists a positive constant C = C(N, u, 2) such that

Gux, MGu(y,2) _ c (S(y)“ s

Go(r.2) < 500)° Gﬂ(x,y)—l—WGM(y,z)) Vx,y,2) € 2x Q2x Q. (3.1)

Proof. It follows from (2.3) and the inequality |5(x) — §(y)| < |x — y| that
Gulx,y) =~ min{|x — 2N S8 (n)? |x — y|2—2a—N]

-1
~ =y PV 800800 (max [s )8 (0%, | — y*})
~fx — yP7V §(x)*8()* (max {5(x), 8(y), Ix — y[}) ™
= 5(1)*8(y) Na 2(x.y),  Vx.yeQ x #y,

where Ny 2(x, y) is defined in (1.23) with @ = 2« and B = 2. By [5, Lemma 2.2] we deduce
that there exists a positive constant C = C (N, u, 2) such that

1 1 1
<C < + ) . 3.2)
Nog2(x,2) Nog2(x,y)  Nog2(y,2)

From (3.2) we can easily obtain (3.1). O

Lemma 3.3. Let 0 < p < p,, and © € MT(; 8%). Then there is a constant C = C(N, u, p,
T, Q) > 0 such that (1.19) holds.

Proof. First we assume that p > 1. By (2.13) we have that G, [t]” € LY (2 8%). We write

GM(ys Z)

50" 8(2)%dt(2),

GLlr() = / Gp(y. 2)dT(2) = /
Q

Q

thus

o (Guy, D\’
Gulrl(y)? 50/8@ (g‘Ty)Z> dt(2).
Q
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Consequently,

GulG,[t]P1(x) < C / / Gu(x, )G u(y, 2)P8(2)* 1P dr(z)dy. (3.3)
Q Q

Also by (3.1) we obtain

/ / G (. )G (v, 278 ()P dz (2)dy
Q Q

A (G (Cuy. )\ <Gu(y,z)>”
SCQ/GM(X’Z)S[BU) << 500 )( 500 ) + 78(2)0‘ dydt(z)

P P
=c [Guw.o [s0r ((%) + (%y)”) )dydr(z), (3.4)
Q Q

where in the last inequality we have used the Holder inequality. By (3.3), (3.4) and Lemma 2.2
we derive that

GG, lt1P1(r) < C / G (x, 2)dT(2).
Q

Note that the above argument is still valid for p = 1.
If0 < p <1 then

GulGulrl?’] = C(GL[1] + GLlGlz]D).
By combining the case p =1 and the estimate G,[1] < CG[7], we obtain (1.19). O
Actually (1.19) is a sufficient condition for the existence of weak solution of

—Lyju=u’+ot inQ,

tr(u) =0 on 0€2.

(3.5)

Proposition 3.4. Let 0 < p # 1, 6 > 0 and T € M (Q; §%). Assume that there exists a positive
constant C such that (1.19) holds. Then problem (3.5) admits a weak solution u satisfying

Gulotl <u <CGylot] a.e in, (3.6)
with another constant C > 0, for any o > 0 small enough if p > 1, forany o > 0if p < 1.

Proof. We adapt the idea in the proof of [6, Theorem 3.4]. Put w := AG, [0 T] where A > 0 will
be determined later. By (1.19),

Gulw” + 011 < (CAPaP~ ' + 1)Gylot] in Q.
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Therefore we deduce that w > G, [w” 4+ o7] as long as
CAPeP 1 4 1<A. (3.7)

If p > 1 then (3.7) holds if we choose A > 1 and then choose o > 0 small enough. If p € (0, 1)
then (3.7) holds if we choose o > 0 arbitrary and then choose A > 0 large enough.

Nextput ug :=Gylot]and u,q1 :=Gy [uﬁ,7 +ot]. Itis clear that {u,} is increasing and u,, <
w in § for all n. Since (1.19) holds, w? € L'(€2; §%). Consequently, by monotone convergence
theorem, there exists a function u € L (2; 8%) such that uf}, — u? in L'(€2; 8%). It is easy to see
that u is a solution of (3.5) satisfying (3.6). O

Estimate (1.19) is also a necessary condition for the existence of weak solution of (3.5).

Proposition 3.5. Let p > 1, 0 > 0 and T € MT(Q; §%). Assume that problem (3.5) admits a
weak solution. Then (1.19) holds with C = ﬁ.

Proof. We adapt the argument used in the proof of [6, Proposition 3.5]. Assume (3.5) has a
solution u € LP(2; §%) and assume o = 1. By applying Proposition 3.1 with ¢ replaced by u?”

and with

A=s""Py/(p—-1) ifs=>1,
d(s) =

s—1 ifs <1,
we get (119 with € = 215 O

Proposition 3.6. Let 0 < p < p,, 0 > 0 and v € MT(Q; 8%). Then there exists a positive con-
stant C = C(N, u, R, o, T) such that for any weak solution u of (3.5) there holds

Gulot]l<u < C(Gulot]+8%) ae. inQ. (3.8)

Proof. We follow the idea in the proof of [6, Theorem 3.6]. We may assume that o = 1. If
0<p<1,then

u=Guu? + 11 < CGLIT+Gulul+Gulr].
Since G, [1] < Cé“ a.e. in Q, we obtain
u<C@*+Guul+Gylr]) ae inQ.
Therefore it is sufficient to deal with the term G, [u] and we may assume that p > 1. Set
upi=u—Gylt]l=G,lu?],
hence u = u1+Gy[t]. Since u € LP(2; §%) (by assumption), it follows that u + 1 € M (Q; 8%,

therefore by (2.13), u € L*(2; §%), for all 1 <s < p,. Thus there exists ko > 1 such that u” e
Lko(Q; 89).
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Let p <s < p,. By Holder inequality we obtain

kos
Gu(x,
1 (K5 = G [uP](x)*0* = / #5@)“”@)%
Q
Gpu(x, ) G KN
ulX,y o k ulX,y o

R orq —H s (y)*d
f 50)° N u(y)™Fdy / ()" (»)*dy
Q Q

<c / (M) S0 u(y)ordy.

J s(y)”

This, joint with Lemma 2.2, yields

/ un (708 (y)%dy < C / U ()O3 ()" / (%) S(x) dxdy < c.
Q Q Q

Since u? < C(u{7 + Gu[r]?), by Lemma 3.3 we have

u < C(GuIGulr]P 1+ u2) + Gulr] < C(Gulr] + u2),

kosz
where us := G [u]']. Note that up € L »* (Q; §%).

By induction we define u, := Gu[uf;_l] and we have u < C(G,[t] + up), ul e L5 (Q; %)

with s, = kl‘;—‘fln. Since s, — 00, by [17, Lemma 2.3.2] we have for 1 <s < p,,,

Uy < C / = yP NP 8()%dy
Q

ﬂ
<C f lx — y| @7 Mss(y)*dy + / v =y N s (v)*dy
Q Q
<C,

for n large enough. Therefore we obtain u < C(G,[r] + 1), which implies u < C(G,[r] +
G [1]) with another C > 0. This, together with the inequality G,[1] < C8%, implies (3.8). O

3.2. New Green properties

Lemma 3.7. Let 0 < p < p,,, T € MT(Q; 8%). Let s be such that

max(O,p—pu+1)<s§1. 3.9)
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Then there exists a constant C > O such that
GuIGL[t1P1 < CGLlr]  ae in Q. (3.10)

Proof. First we assume that p > 1. In view of the proof of Lemma 3.3, we have
GulGpulrlP1(x) < C / f Gux, )Gu(y. 2"8@* " Pdr(2)dy
Q Q

G/L(y, 2)

p—s
S a(l—s)
59(2) ) (2) dt(z)dy

=C//G/4(x’ Y)I_XG/L(X’ Y)SG/L(.V’Z)X(
Q Q

SC/Gﬂ(x’z)s(s(z)a(l—s)/a(y)d G/‘L('x’y) <Gﬂ(y’z)
Q

p—s
) dydz(z) @3.11)

8(x) §(2)%
Q
_ G, »\' ™ (Gur. D\’
s a(l—s) o M M
+C/Gu(x,z) 8(2) /S(y) <76(x) ) ( 507 ) dydt(z) (3.12)
Q Q
p—s+1
5C/Gﬂ(x,z)SS(z)“(l_‘Y)/8(y)°‘ <%) dydt(z) (3.13)
Q Q
p—s+1
+/Gu(x,z)SS(z)“(l_S)/S(y)“ (%) dydz(z) (3.14)
Q Q
§C/ <M> 5(2)%dt(2) (3.15)
8(2)”
Q
<C /G,L(x,z)dt(z) . (3.16)

Q

Here (3.11) and (3.12) follow from (3.1), (3.13) and (3.14) follow from Holder inequality, and
(3.15) follows from Lemma 2.2, Holder inequality and (3.9).

Note that the above approach can be applied to the case p = 1.

If0 < p <1 then

GulGulr]"] < C(GL1] + GLIG,IT]]) < C(GLl1]+ Gplz])
Then (3.10) follows by a similar argument as in the proof of Lemma 3.3. O
3.3. Capacities and existence results

Fora>0,0<60 <B <N and s > 1, let Ng g, Ny g and Cap’&gvﬂ’s be defined as in (1.22),
(1.23) and (1.24) respectively.

In this section we recall some results in [5, Section 2].

We recall below the definition of the capacity associated to Ng g (see [11]).
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Definition 3.8. Leta > 0,0 <6 <8 < N and s > 1. Define Cap‘&e,ﬂ’s by

Carty, (B =int § [ 59%dy: 9= 0. Noglo'1= x|

Q

for any Borel set E C Q.

Clearly we have

Capfy, , (E) =inf{ [ 87" Vg’dy: ¢ =0, Noglgl=xe ¢,

Ol

for any Borel set E C Q. Furthermore we have by [1, Theorem 2.5.1]

(Capﬁleyﬁ’s(E))% = inf{a)(E) L0 eM (),

|No,plo]]|

@ < 1} : (3.17)

for any compact set E C Q where s’ is the conjugate exponent of s.
Using [5, Theorem 2.6], we obtain easily the following result.

Proposition 3.9. Let p > 1, 0 > 0 and T € M (Q; §%). Then the following statements are equiv-

alent.
1. There exists C > 0 such that the following inequality hold

1
/ 8*dr < CCapf" )% (E),

E
for any Borel E C Q.
2. There exists a constant C > 0 such that (1.19) holds.
3. Problem (3.5) has a positive weak solution for o > 0 small enough.
Proof. First we note that
G(x,y) =8()*8(V)* Now2(x, ), Vx,y€Q, x#y.
Thus the inequality
GulGLlt]P1 < CGlr] ae. in
is equivalent to
Naa 287D (1) Na 2[ 217 (1)](x) < CNag2[F1(x)  ae. in 2,

where d7(y) = §*(y)dt(y).
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Now notice that if u is a positive solution of (3.5) then by Proposition 2.12 we have that
u=Gylu?]+ Gy [r] which implies that

s~ Mo 8070 (1) €0+ oNawal 10,
the desired results follow by [5, Theorem 2.6] and [5, Proposition 2.7]. O

Let us now give a result which implies the existence for the problem (3.5).
Lemma 3.10. Let 1 < p < p,. Then

i (p+Da
?;'HeleZ CapNza,z,p’({‘i:}) > 0.

Proof. By (3.17) it is enough to show that
;lelg ||N2(¥,2[55]||Lp(gz;5(p+1)a) <C<oo,

which is equivalent to

Gu(, %)
8(&)

<C. (3.18)
LP($2;8%)

EeQ

The result follows by Lemma 2.2 and (2.1). O
3.4. Boundary value problem
Estimate (1.18) is a necessary and sufficient condition for the existence of weak solutions of

—L,u=u? inQ,
(3.19)

tr(u) =pv ond.
Proposition 3.11. [5, Theorem 4.1] Let p > 1, 0 > 0 and v € MT(3). Then, the following

statements are equivalent.
1. There exists C > 0 such that the following inequality holds

Q2
v(F) = CCapl% v (F)

for any Borel F C 02.
2. There exists C > 0 such that (1.18) holds.
3. Problem (3.19) has a positive weak solution for o > 0 small enough.

Lemma 3.12. Ler v € M (Q) and 0 < p < p,,. Then there exists a constant C > 0 such that
(1.18) holds.
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Proof. We first assume that 1 < p < p,. Let § € 9Q2; we have 8¢ (F) < cCap?? p,(F) for

a+l+J,

every F C 02 where c is independent of £. By Proposition 3.11, (1.18) holds with v replaced by

8¢ and with the constant C independent of £. By taking integral over & € 9€2, we get (1.18).
Next, if p € (0, 1], we choose s > 1 such that 1 < ps < p,. By Young’s inequality,

GulK,[v]?] < C(GL[1T+ GLIK,[v]P]) < C(GL[1] + K, [v]). (3.20)
This, combined with the inequality G, [1] < ¢8* < 'K, [v] a.e. in Q2 leads to (1.18). O

Proposition 3.13. Let p > 0, 0 > 0 and v € MT(INQ).
(1) Assume there exists a constant C > 0 such that (1.18) holds. Then problem (3.19) admits a
weak solution u satisfying

Kulovl =u < CK,lov] a.e in Q, (3.21)

with another constant C > 0, for any ¢ > 0 small enough if p > 1, for any o > 0 if p € (0, 1).
(i1) Assume p > 1 and problem (3.19) admits a weak solution. Then (1.18) holds with C =
1

p=1. . .
(iii) Assume 0 < p < p,. Then there exists a constant C > 0 such that for any weak solution

u of (3.19) there holds

Kylovl <u < C(K,lov]+6%) ae. in . (3.22)

Proof. By using an argument as in the proof of Proposition 3.4, Proposition 3.5 and Proposi-
tion 3.6, we obtained the desired results. O

The above results allow to study elliptic equations with interior and boundary measures.

Proposition 3.14. Let p > 0, 0 >0, 0 > 0 and © € MT(Q; 8%) and v € MT(OQ). If (1.18) and
(1.19) hold then problem (1.17) admits a weak solution u satisfying (1.20) for o > 0 and o > 0
small enough if p > 1, forany o >0and o >0if0 < p < 1.

Furthermore if 0 < p < p,, there exists a constant C > 0 such that for any weak solution u of
(1.17) estimate (1.21) holds.

Proof. We adapt the argument in the proof of [4, Theorem 3.13]. Put v := u — K, [oV] then v
satisfies

—L,v=w+K,[ov])! +o1 inQ,
(3.23)
tr(v) =0.
Consider the following problem
—L,w=cpw? +c,(K,[ov])’ +0T in L,
w p JASNT! (3.24)
tr(w) =0
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where ¢, :=max({I, 27=1} Since (1.18) holds, it follows that Ku[v]? e L' ($2: 8%). Since (1.19)
holds, we infer from Proposition 3.4 that problem (3.24) admits a weak solution w for o > 0
and o > 0 small enough if p > 1, for any ¢ > 0 and ¢ > 0 if 0 < p < 1. Notice that w is a
supersolution of (3.24), we infer that there is a weak solution v of (3.23) satisfying v < w a.e.
in 2. By Proposition 3.4 and (1.18), we get

w < cGLIK,[ov]? +0o7] < c/(GM[ar] +Kulov]D) ae.in Q.

This implies (1.20).
If 0 < p < p, then (1.21) follows from Proposition 3.6 and Proposition 3.13 (iii). O

Proof of Theorem B. Statements (i) and (ii) follow from Lemma 3.12 and Lemma 3.3 respec-
tively. Statement (iii) follows from Proposition 3.14. Statement (iv) follows from Proposition 3.5
and Proposition 3.13 (ii). Statement (v) is derived from Proposition 3.14 (ii). O

Proof of Theorem C. The implications (i) <= (ii) = (iii) follow from Proposition 3.11,
Proposition 3.9 and Proposition 3.14. We will show that (iii)) = (ii). Since (1.17) has a weak
solution for ¢ > 0 small and o > 0 small, it follows that (3.5) admits a solution for ¢ > 0 small
and (3.19) admits a solution for o > 0 small. Due to Proposition 3.11 and Proposition 3.9, we
derive (1.19) and (1.18). This completes the proof. O

4. Elliptic systems: the power case

Let 1 € (0, %]. In this section, we deal with system (1.32). We recall that p, is defined in
(1.31) and

p+1l . p+1
1 TP

q:=p
Without loss of generality, we can assume that 0 < p < p. Then p <g <g <pif pp > 1. Put
tw=p(p—put+l).
Notice thatif ¢ < p,, thent, <g < py.
Lemma 4.1.Let p >0, p > 0 and t € M (Q;8%). Assume q < p,. Then for any t €

(max(0, t,), pl, there exists a positive constant ¢ = c¢(N, p, p, i1, t, T) (independent of T if
p > 1) such that

GulG,lr1P)? < cG,lr). 4.1)

In particular,
GulG,lr]P)? < CG )Y, (4.2)
GulGulG,[r1P1P]1 < CG 7] (4.3)

where C =C(N, p, p, L, T).
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Proof. Since ¢ < p,, it follows that p < p,, hence max(0,p — p, + 1) < 1. Let t €
(max(0, ¢, p] then max(0, p — p, + 1) < = < 1. By applying Lemma 3.7 with s replaced by %

L
. . . p
respectively in order to obtain

t

GM[GM[T]I)] = CGM[T] ’,

which implies (4.1). Since t, < g < p, by taking t = g in (4.1) we obtain (4.2). Next, since
g < pyu, by apply Lemma 3.7 with y replaced by y and (4.2), we get

GulGulG,[t]71P1 < CGL[G,[t]] < CG,lr]. O

Lemma 4.2. Let p > 0, p >0, 7,7 € M (Q: 6%) and v, b € MY (3R2). Assume that there exist
positive functions U € LP(2; 8%) and V € LP(2; %) such that

U=>Gul(V+EKL[o0DP1+Gulor],

. o 4.4)
V>Gul(U+KulovD?P1+GuloT]
in Q. Then there exists a weak solution (u, v) of (1.32) such that
Gulot]l+Kylovl<u <U,
g e (4.5)
Gulotl+Kylov]l <v < V.
Proof. Put ug:=0 and
{vm = Gulul]+ G671+ K,[60]. n>0, “)
up = Gulvh 1+ Gulot]l +Kylovl, n>1.

We see that 0 < vy =G, [6T] +K,[oV] < V.Itis easy to see that {u,} and {v,} are nondecreas-
ing sequences, 0 < u, < U and 0 < v, <V in Q2. By monotone convergence theorem, there exist
ue LP(Q: 8% and v € LP(S2; 8%) such that u, — u in LY(Q), v, — v in LY(Q), ul — u? in
LI(Q; 8%), U,[; — vPin L1 (§; 8%). Moreover u < U and v < V in Q. By letting n — o0 in (4.6),
we obtain

{v =GuluP]+G,[67] + K, [a7], wn

u=G,Ww1+Gylot] +K,lov].
Thus (u, v) is a weak solution of (1.32) and satisfies (4.5). O

Proof of Theorem E. We first show that the following system has weak a solution

—Lyw=@@+K,[00]DP +01r inQ,
— L, =w+Kulov)’ +6% ing, (4.8)
tr(u) =tr(v) =0.



4. EQUATIONS AND SYSTEMS WITH HARDY POTENTIALS 129

862 K.T. Gkikas, P-T. Nguyen / J. Differential Equations 266 (2019) 833-875
Fix 9; >0,(i =1,2,3,4) and set
=G, 017 + K, [920]P17 + K, [030]7 4 047.
For « € (0, 1], put
o ::K%ﬂl, Gi=k4, 0:=KkPV3, Q:=kPid,.

Then from the assumption, we deduce that ¥ € 9" (Q; §%). By Lemma 4.1,

Gu [GM[GM[‘I’][’]‘&] <CGulY] 4.9)
where C =C(N, p, p, u,0,0,k,T,T). Set

V:i=AG,[kW¥] and U:=G,[(V+K,[oV])?P +or]
where A > 0 will be determined later on. We have
(U +Kulov])? +61
< c[Gu[ (@G, LW + Kﬂ[@a])l’]ﬁ +GuloT)” + Kylov) | +67
< c[APPRPPGL GV Y + GulK,(E1 ) | + ¢ Gulot)” + cKlov)” + 67
where ¢ = c¢(p, p). It follows that
Gul(U +Kulov)? +5T1< I + I (4.10)
where
1= AP GGG W11 | + ¢ G [ GulK,lan17)7 |,
b= cGul[Gulot1P1+ ¢ G LK, [ov]?1+ G L[5 T].
We first estimate /1. Observe that
G| GulKu 69117 ] = G [ GulK, 9201717 | < Gl w].

This, together with (4.9) implies

I} < c(APPPP=L L )G [0 W) 4.11)
Next it is easy to see that

L <cGyleV]. (4.12)
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By collecting (4.10), (4.11) and (4.12), we obtain

Gul(U + Kulov))? + 571 < c(APP kPP~ + )Gy [k W] (4.13)

with another constant c. We will choose A and « such that
c(APPPPI L 1) < A, (4.14)
If pp > 1 then we can choose A > 0 large enough and then choose « > 0 small enough (depend-

ing on A) such that (4.14) holds. If pp < 1 then for any « > O there exists A large enough such
that (4.14) holds. For such A and «, we obtain

CulU +Kulov])? + 671 < V.

By Lemma 4.2, there exists a weak solution (w, w) of (4.8) foro > 0,6 >0, v >0, v > 0 small
if pp>1,foranyo >0,6 >0,v>0,v>0if pp < 1. Moreover, (w, w) satisfies

w~Gylwl, 4.15)
w G;},[(Gﬂ,[w] + Kﬂ, [(bDP1+ Gu[f] (4.16)
where C=C(N, p, p, 1, 2,0,6,17,7T).
Next put u := w + K, [ov] and v := w + K, [0V] then (u,v) is a weak solution of (1.32).
Moreover (1.33) and (1.34) follow directly from (4.15) and (4.16). O

Proof of Theorem F. Put t* := max{r, 7} and v* := max{v, 7}. Fix 9 > 0, & > 0 and for « €
1 ~ - L
(0,1, putoc =0 = (k)7 and 6 =k}, 0 = (k) 75 . Set

=9t 497 and V:=9v+0D
then v < (¥ + 9)t* and v < (¥ + F)v*.
Put V := A(G, k] + KM[KV#]) where A > 0 will be determined later on and put U :=

Gul(V+K,[ov])? + o).
We have

UP +6% < CA”’;K”’;{GM[GM[I#]”]’; + GM[KM[U#]‘”][;} +colGy[r]?
+CQ[3KM[V]1; +c671,
with ¢ = c¢(p, p). It follows that
Gul(U +Kyulov)? + 671 < c(Jy + J) (4.17)
where

It i= AP [ GGG 1P 1) + GulGulK, 17171
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2= 0P GG 11 + 0P GulK,u V)] + 5 GulF] + 6K [D].
We first estimate J;. We have

H = APPRPP (D 4+ 5)PP] GGGl 1)) + GulGulKu 17171
By (1.35), (1.36) and Proposition 3.11, Proposition 3.9 we infer that
J1 < c APPicPP (9 4+ )PP (G [*] + K, [v¥])

where c is a positive constant. Therefore

J1 <cAPPIcPP (9 4 9)PP max (9L, 971 (G[t*] + K [v¥]). (4.18)
We next estimate J. Again by (1.35), (1.36) and Proposition 3.11, Proposition 3.9, we deduce

D <c (@Gl + 0Kyl + 6G 7] + 8K, [0])

4.19)
=k (Gulr"1+ K ¥).
Combining (4.17), (4.18) and (4.19) implies
GulUP + 6714+ K,u[60] < C(APPicPP=L 4 1) (G pliet™] + K [ev™]) (4.20)
where C is another positive constant. We choose A > 0 and « > 0 such that
C(APP PPl L 1) < A. 4.21)

Since pp > 1, one can choose A large enough and then choose x > 0 small enough such that
(4.21) holds. For such A and «, we have

GulUP + 671+ Kylov] < V.
By Lemma 4.2, there exists a weak solution (u#, v) of (1.32) which satisfies (1.37). O
5. General nonlinearities
5.1. Absorption case

In this section we treat system (1.38) with € = —1. We recall that A; and A; are defined in
(1.39).

Proof of Theorem G. Step 1: We claim that

/g(K,L[ITJI] + Gpllo|)s“dx +/§(Ku[lv|] + GullrIDé*dx < oc. (6.1
Q Q
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For A >0, set Ay :={x € Q: KulIV[1+GullT]] > A} and a(r) := ffh 8%dx. We write

| g lIPN +GlIE M 11 050 =fg(Ku[|ﬁ|]+Gu[|f|D8“dx

Al

+/g(Ku[|ﬁl] + GlIT1)8%dx

Af

(5.2)

5/g(Ku[WH+GM[IfI])8“dx+g(l)/8“dx.
A Q

We have

/g(KM[If)I]-i-GM[IfI])Sadx=a(1)g(1)+fa(8)dg(S)-
A 1

On the other hand, by (2.2) and Proposition 2.4 one gets, for every s > 0,

a(s) =€ ([Kulon]”

LE’L(Q;S‘*) +lGulEn;

) S ECET L (53)
where C = C(N, i1, 2, v, [IVllon@ae) > ITllon(;s))- Thus

0]

a(l)g(1) —l—/a(s)dg(s) < C+Cfs717p"g(s)ds <CpuAhg. 5.4
1 1

By combining the above estimates we obtain

[, 1911+ GollZ D 1 ey = CPulte + g (D) / $dx < C.
Q

Similarly,

[EE 91+ Golle D 1 gy = Cpug + (D / s%dx < C.
Q

Thus (5.1) follows directly.

Step 2: Existence.
Put ug := K, [v]+ G,[]. Let vy be the unique weak solution of the following problem

! —Lyvo+guo) =7 ing,

tr (vg) = V.
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For any k > 1, since g, g satisfy (5.1) there exist functions uj and vy satisfying

—Lyur+g—1)=rt in Q,
—Lyvg+gup) =1 in €2, 5.5)

tr(ug) =v, tr(vg)=".
Moreover

up +Gulgu—D] =Gulr] + Ky lv],

. . . (5.6)
vr + G/L[g(uk)] = G[L [T]1+ Ku[v]

Since g, g > 0, it follows that, for every k > 1,

Kuvl+ Gult] = Gulg K] + GultD] = uk =Kyl + Gultl=uo

and

KWl 4 Gult] = Gulg Kyl + GulrD] = vk = Kyu[v] + Gul7]

in . Now, suppose that for some k > 1, uy < uy_. Since g and g are nondecreasing, we deduce
that

vk = Kuo] + Gult] = Gulg(ui)] = Kuv] + Gult] — Gulg (ur—1)1 = vk—1,

(5.7)
up1 =Ky vl +Gult] — Gulg(w)] < Kp[vl+Gpult] — Gulg(vk—1)] = ux.

This means that {vy} is nondecreasing and {u} is nonincreasing. Hence, there exist u and v such
that uy | u and vg 1 v in Q and

Kulvl+ Gpulr] = Gulg(Kpuv]1+ GultD] < u < Kyuvl+ Gylzl,
Ky + Gult] = GulgKyuv] + GultD] = v = Ky [v]1 + Gyl
Since g and g are continuous and nondecreasing, we infer from monotone convergence

theorem and (5.1) that g(v;) — g(v) in L'(2; 8%) and g(uz) — §(u) in L'(£2; 8%). As a conse-
quence,

Gulgwi)l — GLlgm)] ae.in €,
Gulg(w)]l — Gplg(v)] ae.in Q.

By letting kK — oo in (5.6), we obtain the desired result. O
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5.2. Source case: subcriticality

In this section for simplicity we consider system (1.38) with € = 1. Assume that g(0) =
£(0) = 0. In preparation for proving Theorem H, we establish the following lemma:

Lemma 5.1. Assume € = 1, g and g are bounded, nondecreasing and continuous functions in R.
Lett, T € M(RQ; 8%) and v, v € M(0N). Assume there exist a; > 0, by > 0 and q1 > 1 such that
(1.40) and (1.41) are satisfied. Then there exist Ay, ):*, b, > 0 and o, > 0 depending on N, u, Q
v, V. Mg, Ag, a1, q1 such that the following holds. For every by € (0, by) and 0,5, 0, 0 € (0, 04)
the system

—Lyu=g+ oK, [V]1+oG,lT]) inQ,
—Lyv=gu+ oK, [vl+oG,lz]) inQ, (5.8)
tr(u)=tr(v) =0

admits a weak solution (u, v) satisfying

”u”Llu’}l‘ (§2;8%) + ”u”qu (9;80‘—1) =< )\*v (5 9)
VIl 2 g0y + 101 L1 (g1 < A

Proof. Without loss of generality, we assume that ||Tllonq:se) = T lon(a:s%) = IVlane) =
IVllonay = 1. We shall use Schauder fixed point theorem to show the existence of positive
weak solutions of (5.8). Define

S(w) :=Gpulg(w + oK,V +0GL[TD],

. (5.10)
S(w) :=Gulg(w + oK,V +0GultD], Ywe LY().

Set

M (W) = [[wll e ey s Y0 € Lu' (8%,

My W) = Wil pe ey s Y0 € L' (R58%),

My (w) = |wll a1 (g ga-1y . Yw € L9 (R; 8%,

Mw) :=M;(w) + Ma(w), Vw e LY (€:6%) N LI (Q; 5%,

Mw) :=M;(w) + Ma(w), Vw e LI (Q:6%) N LI (Q; 8% ).
Step 1: Upper bound for g(w + oK ,[V] + 6G,[T]) in LY(Q:8%) with w € L' (Q:;8%) N
L91(Q; 841y,

For A > 0, set By, :={x € Q: |w| + oK, [IV[] +oGylIT|] > A} and b(A) := féx 8%dx. We
write
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|g(w + 8K, [0+ 6GulED | 1 .o < /g(|w| + 0K, [[0]] + 6 Gl |7 [1)8%dx
B

+/g<|w|+@KM[|E|]+&GH[|%|J>8“dx

By

_/g(_|w|_éKM[lm]_&GMHﬂ])S“dx (.11
By

_/g(_'“"_@Kﬂ[l‘”]—&%[lﬂ])a“dx
By

= I+I1I+I1I1+1V.

We first estimate /. Since g € C (R4 ) is nondecreasing, one gets

o0

1=b(1)g(1)+/b(S)dg(S)~

1

Since g is bounded, there exists an increasing sequence of real positive number {£;} such that

lim £; =co and jlir&e;”“g(ej)zo. (5.12)

j—oo
Observe that

[e¢]

¢
/b(s)dg(s) = lim /b(s)dg(s).
j—o00
A

1

On the other hand, by (2.2) one gets, for every s > 0,

i‘iﬂ @eyd S CMI) +0+5)Ps ™ (5.13)

a(s) < [ lwl + K, [P +6GLlI7 )|
where C = C(N, u, ). Using (5.13), we obtain

¢j

b(1)g(1) +/b(s)dg(s)
1
£

<CMi(w) +0o+36)g(l) + CM(w) + 0 +6)"* /S_”“dg(S)
1
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¢
< COMIw) ++5) € g() + Cpu i) +5+ ) [[571Peg(s)ds
1

By virtue of (5.12), letting j — oo yields

(o)
I5CpM(Ml(w)+§+5)p“/s_1_”“g(s)ds. (5.14)
1

Similarly we have

o0
111 < —Cpu(Mi(w) + 6 + )" / 1P g(—s)ds.
1

To handle the remaining terms 7,111, without lost of generality, we assume ¢q; €

(1, %ig:;) Since g satisfies condition (1.40), it follows that

max{II,IV}§a1/(|w|+éKﬂ[|\7|]+6Ku[|f|])q‘8“dx+b1f8“dx
By By

5.15
SalC/ |w|78%dx + ajc34(@" +67) + b1 C 619

Q
<aiCMy(w)"" +a1C(@" +6%) + b C

where C = C(N, u, 2).
Combining (5.11), (5.14) and (5.15) yields

| ¢ + K1+ G GUITD | 11 qupe) < CAMI )P + a1 CMa(w)?! +b1C +dg 5 (5.16)

where dj 5 = CAg(0P* +oPr) +a;C(@1 +ao1).
Step 2: Estimates on M, M, and M.
From (2.13), we have

MiSw)) = [ Gpulgw + 8K 0]+ 6 GulZD | 1w 50,

- - - - 5.17)
<C|gw + oK, [0]+6GL[TD|,

(€;6%) "

It follows that

M (S(w)) < CAM; (w)P* 4 aiCMa(w)?' + b1 C + Cdj 5. (5.18)
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Applying (2.13), we get

Mo Sw) = |Gpulgw + 8Kul9]+ 6 GultD | o) (501
< C|g(w + 8K, [51+ 6 GulED | 1 g0 -

which implies
M, (S(w)) < CA M ()P + a1 CMa(w)?' 4+ b1C + Cdjp 5. (5.19)
Consequently,
M(S(w)) < CA M (w)P" 4+ a1 CMa(w)?' 4+ b1C 4 Cdj 5. (5.20)
Similarly, we can show that
MSw)) < CAzM;(w)Pr +a CMp(w)?' + b1 C + Cdy, (5.21)
where C is a positive constant. Define the functions 7 and 7 as follows

n(A) :=max{CAg, CAz}AP" + max{C, C}aiA?" + max{C, C}b; + max{Cdj 5, Cdy o)
(1) := max{CAg, CAg}aP* + max{C, C}a1A?" + max{C, C}b; + max{Cd; 5, Cdp o}

where C and C are the constants in (5.20) and (5.21) respectively. By (5.20) and (5.21), we
deduce

M(S(w)) < n(M(w)) and M(S(w)) < 7(M(w)).

Since p, > 1 and g1 > 1, there exist g4 > 0 and b, > 0 depending on N, u, 2, Ag, Az, ai, q1
such that for any g, 0 € (0, 0+) and by € (0, b,) there exist L, > 0 and )Lk > 0 such that

n) =hs and (k) = As
Here A, and X* dependon N, 1, 2, Ag, Az, a1, q1. Therefore,

M(w) < Ay = M(S(w)) < Ay

_ - . (5.22)
M(w) < i = M(S(w)) < A,
Step 3: To apply Schauder fixed point theorem.
For wy, wp € LY(Q), put
T(wi, w2) := (S(w2), Sw1)), (5.23)

D:={(p, §) € LL(Q) x LL(Q) : M(p) < A and M(§) < L.}
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Clearly, D is a convex subset of LY(©) x L1(2). We shall show that D is a closed subset of
(LY(2))2. Indeed, let {(¢m, Pm)} be a sequence in D converging to (¢, @) in (LY(2))2. Obvi-
ously, ¢ > 0 and ¢ > 0. We can extract a subsequence, still denoted by the same notation, such
that (¢, Pm) = (¢, @) a.e. in Q. Consequently, by Fatou’s lemma,

M;(p) <liminfM;(¢m), M;(¢) <liminfM; (@n)
m—00 m— 00

fori =1, 2. It follows that M(¢) < A, and M(9) < i*. So (¢, ¢) € D and therefore D is a closed
subset of L1(€2) x L1().

Clearly, T is well defined in D. For (w, w) € D, we get M(w) < A, and M(w) < )2*, hence
M(S(w)) < A, and M(S(h)) < As. It follows that T(D) C D.

We observe that T is continuous. Indeed, if w,, — w and W, — W as m — oo in L' () then
since g, g € C(R) N L*°(R), it follows that

g + 0K, [v] + 6GL[T]) — g + 6Ku[v] +6GylF])  in L'(2;8%),

and

g(wn + 0K,V +0Gy[t]) = g(w + 0K, v +0Gylr]) in L'(2;6%)

as m — oo. By (2.13), S(w,,) — S(w) and S(wy) — S(w) as m — oo in L'(Q). Thus
T(wy, W) — T(w, ®) in LY(Q) x LY(Q).

We next show that T is a compact operator. Let {(w,,, w,)} C D and for each m > 1, put i, =
S(Wp) and Y, = S(wy,). Hence {Av,,} and {Av,,} are uniformly bounded in L”(G) for every
subset G € Q2. Therefore {y,,} is uniformly bounded in whr(G). Consequently, there exists
a subsequence, still denoted by the same notation, and functions v, & such that (y,,, 1/7m) —
W, 1}) a.e. in 2. By dominated convergence theorem, (¥, &m) — (Y, 1}) in LL(Q) x L1().
Thus T is compact.

By Schauder fixed point theorem there is (u, v) € D such that T(u, v) = (u,v). O

Proof of Theorem H.I. Let {g,} and {g,} be the sequences of continuous, nondecreasing func-
tions defined on R such that

gn(0) =g(0), Ignl = Ign+1l = Igl. sup[gn| =nand lim [g, —gllz ®) =0
R n—00 oc

. . . . . . ) . _ (5.24)
gn(0) =8(0), I8nl = [8n+11 = 18|, sup[gn| =nand lim g, —gllz0 ®) =0.
R n—o00 oc

Due to Lemma 5.1, there exist A, 5\*, by > 0 and g, > 0 depending on N, w1, 2, Ag, Ag, a1, qi
such that for every by € (0, by), 0, 0 € (0, 0«) and n > 1 there exists a solution (wy,, w,) € D of

—Ljwy = gn (W, ‘|‘éKp.[‘~)] “F&Gu[f]) in 2,
—L, Wy, = gn(wy + 0Ky [vl+0Gy[r]) inQ, (5.25)
tr (wy,) = tr(w,) =0.
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For each n, set u, = w, + 0K, [v] +0Gylr] and v, = w, + 0K, [V] + 6 G,[T]. Then

—/unLuqbdx:/gn(vn)q)dx—}—a/q)dt—Q/Ku[v]Luq&dx Vo € X, (£2), (5.26)
Q Q Q

Q
—/anM¢dx=f§n(un)¢dx+6f¢df —@/KM[TJ]L,@dx Vo eX,(Q). (527
Q Q Q Q

Since {(wy, w,)} C D and the fact that Ag, < Ag, we obtain from (5.16) that
lgn @)l L1 (@:s0y < CAGAL" + a1 CAL + b, C +d,, (5.28)

Hence the sequence {g(v,)} is uniformly bounded in L'(£2; 8%). Since {(w,, W,)} C D, the se-
quence {a%w”} and {3%12)”} are uniformly bounded in L?'(G) for every subset G € 2. As a
consequence, {Aw,} and {A,} are uniformly bounded in L'(G) for every subset G € Q. By
regularity results for elliptic equations, there exist subsequences, still denoted by the same no-
tations, and functions w and w such that (w,, w,) — (w, w) a.e. in Q. Therefore (u,, v,) —
(u,v) ae. in Q with u = w + oK, [v] + oG, [r] and u = w + 0K, [V] + 0 G, [T]. Moreover
(8n(n), gn(vn)) = (g(u), g(v)) ae. in Q.

We show that u, — u in L'(2;8%). Since {w,} is uniformly bounded in L9'($2; 8%~ "), by
(2.14), we derive that {u,} is uniformly bounded in L' (€2; §%). Due to Holder inequality, {u,} is
uniformly integrable with respect to §%dx. We invoke Vitali convergence theorem to derive that
U, = uin LI(Q; §%). Similarly, one can prove that v,, — v in LI(Q; 8%).

We next prove that g, (v,) — g(v) in L'(€2:8%.For A >0and n € N set B, ={xeQ:
|vy| > A} and b, () := an , 8“dx. For any Borel set E C €,

f gn(0)8%dx = / gn (0)8%dx + / gn(0)8%dx

E ENBy. 3 ENBS,

= / gn(vn)aadx—Fm(g,)L/Sadx

(5.29)
Bn,)» E
fbn()\)gn()\)"‘/bn(s)dgn(s)+mg,k/5adxa
A E

where mg ;. 1= supy ;; &- By proceeding as in the proof of Lemma 5.1 in order to get (5.14), we
deduce

bu(W)gn (1) + / bu(s)dgn(s) < C / 571 Pugy(s)ds < C / s Pig(ds  (5.30)
A A A

where C depends on N, u, Ag, Ag, ai, 1. Note that the term on the right hand-side of (5.30)
tends to 0 as A — oo. Take arbitrarily ¢ > 0, there exists A > O such that the right hand-side of
(5.30) is smaller than 5. Fix such A and put n = 5-*—. Then, by (5.29),

g’
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/S(x)“dx <n= /gn(vn)S(x)adx <e.

E E

Therefore the sequence {g,(v,)} is uniformly integrable with respect to §%dx. Due to Vitali
convergence theorem, we deduce that g, (v,) — g(v) in L1(§2; 8%).
By sending n — o0 in each term of (5.26) we obtain

—/uLﬂ¢dx=/g(v)¢dx+a/¢dr—Q/K,L[u]Lmdx, Vo eX,(Q).  (531)
Q Q

Q Q

Similarly, one can show that g, (u,) — &(u) in L' (R; §%). By letting n — oo in (5.27), we get

—/vLu¢dx:/§(u)¢dx+6/¢df—Q/KM[T)]L,mdx, Vo eX, ().  (5.32)
Q Q

Q Q
Thus (u, v) is a solution of (1.27). O
5.3. Source case: sublinearity
We next deal with the case where g and g are sublinear.
Proof of Theorem H.II. The proof is similar to that of Lemma 5.1, also bgsed on Schauder
fixed point theorem. So we point out only the main modifications. Let S and S be the operators

defined in (5.10). Put

Ni(w) = ||w||qu (Q:62—1) Yw e L1 (€; 50[71),
No(w) := [lwll 1 (qupa-1y,  Yw € L1(€Q;8%7").

Combining (2.13), (2.14) and (1.42) leads to

No(S(w)) < a2CNy(w)?' + C (@4 + 69" + by).

On the other hand
NiS)) < axCNo(w)® + C(@® + 0% +by)..
Define
E1(A) :=aaCAT 4 C (" 461" + by),
&£ (W) :=aCA” + C(e" + 0 + by).
Then

No(Sw) <& (Ni(w)) and  Ni(S(w)) < & N2 (w)).
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If g1g2 < 1 then we can find A1 and A such that & ()\1~) = Ay and &(Ap) = A. Thus if
Ni(w) < A then N2(S(w)) < A and if Na(w) < Ay then N (S(w)) < .

If 192> = 1 and a, small enough we can find, A1 and A, such that &1 (X1) = X2 and &§2(A2) = Ag.

The rest of the proof can be proceeded as in the proof of Lemma 5.1 and the proof of Theo-
rem H.I. and we omitit. O
5.4. Source case: subcriticality and sublinearity
Proof of Theorem H.III. Set

NwW) = |wll o @go-1y, Ywe LI (8.

By an argument similar to the proof of Lemma 5.1 and Theorem H.II, we get

N(S(w)) < CAgM; (w)Pr + a1 CM(w)?' + b C +dz 5.

On the other hand
MS(w)) < aCNw)% + C(0? + 09 + by).
Set
E1(0) :=CAM " +a1CAT +b1C +d; 5,
£ 1= aCA” 4 C(0® + 0% + by).
Then

NSw)) <& M(w)) and M(ES(w)) < &(N(w)).

We consider there cases.
Case 1: g19> > 1. Since p, > qi, it follows that p,g> > 1. Therefore there exist b, > 0 and
0« > 0 such that for by, by € (0, b,) and ¢ € (0, 04) one can find A; > 0 and A, > O satisfying

Ea) =22 and &)= Al (5.33)

Case 2: p,,q> = 1. In this case, there exist a, > 0 such thatif a; € (0, a,) then for every ¢ > 0
and 0 > 0 one can find A1 > 0 and A, > 0 satisfying (5.33).

Case 3: p,g> < 1. In this case for every ¢ > 0 and ¢ > 0 one can find 11 > 0 and A, > 0 such
that (5.33) holds.

Hence, in any case,

M(w) < A1 == N(Sw)) <& (A1) =42
N(w) < 22 = MS(w)) <& () = 1.

The rest of the proof can be proceeded as in the proof of Lemma 5.1 and the proof of Theo-
rem H.II. and we omitit. O
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CHAPTER 5

Elliptic equations with a Hardy potential and a
gradient-dependent nonlinearity

An investigation on semilinear equations with a Hardy potential and
a gradient-dependent nonlinear term is presented in this chapter, which is
based on a joint work with Gkikas [80]. We establish sharp existence and
uniqueness results and obtain a complete description of isolated singularities
in subcritical range. We also show that singularities are removable in the
supercritical range.
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Abstract: Let Q ¢ RN (N > 3) be a C? bounded domain, and let § be the distance to 0Q. We study equations
(E+), =Lyu +g(u, [Vul) = 0 in Q, where L, = A + ;‘7, ue (0, %] and g: Rx R, — R, is nondecreasing and
locally Lipschitz in its two variables with g(0, 0) = 0. We prove that, under some subcritical growth assump-
tion on g, equation (E;) with boundary condition u = v admits a solution for any nonnegative bounded
measure on 0Q, while equation (E_) with boundary condition u = v admits a solution provided that the total
mass of v is small. Then we analyze the model case g(s, t) = |s|’t? and obtain a uniqueness result, which
is even new with p = 0. We also describe isolated singularities of positive solutions to (E.) and establish
a removability result in terms of Bessel capacities. Various existence results are obtained for (E_). Finally, we
discuss existence, uniqueness and removability results for (E.) in the case g(s, t) = |s|P + t.

Keywords: Hardy Potential, Singular Solutions, Boundary Trace, Uniqueness, Critical Exponent, Gradient
Term, Isolated Singularities
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1 Introduction and Main Results

Let Q be a C2 bounded domain in RN (N > 3), u € (0, %] and 6(x) = 6q(x) := dist(x, 0Q). In this paper, we
investigate the boundary value problem with measure data for equation

~Lyu+g(u,|Vul)=0 inQ, (E+)

where L = Lf} =A+ ;‘7 and g: R x Ry — R, isnondecreasing and locally Lipschitz in its two variables with
2(0,0) = 0. The term % is called Hardy potential since it is related to the Hardy inequality. The nonlinear-
ity g(u, |Vul) is called absorption (resp. source) if the “plus sign” (resp. “minus sign”) appears in (E.). One
prototype model to keep in mind is g(u, [Vul) = [ulP|Vu|9.

1.1 Background and Main Contributions

The boundary value problem for (E.) without Hardy potential, i.e. u = 0, has received substantial attention
over the last decades, starting from the pioneering work of Brezis [10]. In particular, Brezis proved that, for
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every prescribed L' boundary datum, the semilinear equation with absorption term
-Au+g(u)=0 inQ (1.1)

admits a unique solution. Afterwards, equation (1.1) in measure framework was first considered by Gmira
and Véron in [18] where they showed that boundary value problem for (1.1) is not always solvable for every
measure boundary datum. Because of its applications in many areas, equation (1.1) with g(u, |[Vu|) = JulP~tu
has been intensively studied in many works, among them is the celebrated series of papers of Marcus and
Véron [26-28]. These results were then extended to the equation with gradient-dependent absorption term

-Au+gu,|Vul) =0 inQ.

We refer to [32] for the case when g depends only on Vu and to [24, 30] for the case when g depends on both
u and Vu.
Equation (E_) with y = 0, i.e.
- Au-g(u,|Vul) =0 inQ, (1.2)

has been studied in various directions. Necessary and sufficient criteria in terms of capacities for the
existence of a solution with measure boundary data were obtained in [9]. Singular solutions of (1.2)
with g(u, |[Vul) = |Vul? in a perturbation of the ball was studied in [2]. Recently, Bidaut-Véron, Garcia-
Huidobro and Véron have established a priori estimates for solutions of (1.2) with g(u, |Vul) = |u|P|Vu|?
or g(u, |Vul) = [ulP + M|Vul|4 (see [7, 8]).

The case with Hardy potential has been intensively studied over the last decade. See e.g. Bandle, Moroz
and Reichel [5], Bandle, Marcus and Moroz [4], Marcus and Nguyen [25], Gkikas and Véron [17], Marcus and
Moroz [23], Nguyen [31], Gkikas and Nguyen [16]. In the aforementioned papers, the best constant in the
Hardy inequality
JoIVol? dx

Cy(Q) := in —
f peny@\0) [ (9/8)? dx

(1.3)
is deeply involved in the analysis. It is well known that Cy(Q) € (0, %] and Cy(Q) = % if Q is convex (see [22,
Theorem 11]) or if ~AS > 0 in the sense of distributions (see [6, Theorem A]). Moreover, the infimum in (1.3)
is achieved if and only if Cy(Q) < 1.

Moreover, Brezis and Marcus [11, Remark 3.2] proved that, for any u < %, the eigenvalue problem

V|2 - £ p?)dx
Ayi=  inf Jo(ver - o dx (1.4)

PeHl(Q)\{0} fQ @2 dx

admits a minimizer ¢, in Hé (Q), and hence A, is the first eigenvalue of - L, in Hé (Q). Moreover, —L, @y = Ay @y
in Q. When y = £, there is no minimizer of (1.4) in Hj(Q), but there exists a nonnegative function pre HL (Q)
such that -L1g1 =2 11 in Q in the sense of distributions.

We see from (1.3) and (1.4) that A, > 0 if p < Cg(Q), A, =0 if = Cy(Q) < +, while A, <0 when
u > Cy(Q). Itis not known if A > 0 when u = Cy(Q) = % However, if Q is convex or if ~Aé > 0 in the sense
of distributions (in these cases Cy(Q) = %), then Az > 0 (see [11, Theorem II] and [6, Theorem A] with k = 1
and p = 2).

Throughout the present paper, we assume that

pe(0,2] and Ay, >0. (1.5)

This assumption implies the validity of the representation theorem which states that every positive L,-
harmonic function u in Q (i.e. u is a solution of L,u = 0 in Q in the sense of distributions) can be uniquely
represented in the form u = K, [v] for some positive measure v € M*(0Q) (the space of positive bounded
measure on 0Q), where K, denotes the Martin operator (see Subsection 2.2 for more details). The represen-
tation theorem is derived from Ancona [3] (see also [25, page 70]) in the case u < Cy(Q) and was proved by
Gkikas and Véron [17, Theorem 2.33] in the case u = % and A% > 0.
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In order to investigate the boundary behavior of L,-harmonic functions, Gkikas and Véron [17] intro-
duced a notion of boundary trace in a dynamic way which is recalled below.
Let D € Qand xo € D.If h € C(aD), then the problem

-Lyu=0 inD,
u=h onoD

admits a unique solution which allows to define the L,-harmonic measure w}’ on dD by

u(xo) = J h(y) dwy ().
oD

A sequence of domains {Q,} is called a smooth exhaustion of Q if 0Q, € C2, Qn € Qpui1, UnQn=0Q and
HN-1(0Q,) —» HN-1(0Q). For each n, let w’g’n be the Lf}"-harmonic measure on 0Qp.

Definition 1.1. Let u € (O, %]. We say that a function u possesses a boundary trace if there exists a measure
v € M(0Q) (the space of bounded measure on 0Q) such that, for any smooth exhaustion {Q,} of Q, it holds

lim j pudwy - I pdv forall g e C(Q).
0Q, 20Q

The boundary trace of u is denoted by tr(u), and we write tr(u) = v.

In [17, Proposition 2.34], Gkikas and Véron proved that if tr(K,[v]) = v for every v € M(0Q). This fact and
the representation theorem allow to characterize L, -harmonic functions in terms of their boundary behavior.
It was shown in [15] that, when u € (0, Cy(Q)), the notion of boundary trace in Definition 1.1 coincides with
the notion of normalized boundary trace introduced by Marcus and Nguyen in [25, Definition 1.2]. This notion
was employed to formulate the boundary value problem

—Lyu+ uPu=0 inQ,
(1.6)

tr(u) = v.

A complete description of the structure of positive solutions to (1.6) with “plus sign” was established in [17,
25], and various existence results for (1.6) with “minus sign” were given in [15, 31] in connection to the
critical exponent -

Dy ::% withtx::%+\/%—y. (1.7)
In particular, it was proved that, when 1 < p < p,, equation (1.6) with “plus sign” admits a unique solution
for every finite measure v € M*(0Q), while the existence phenomenon occurs for (1.6) with “minus sign”
only with boundary measure of small total mass. When p > p,,, the nonexistence phenomenon happens,
i.e. equations (E.) do not admit any solution with an isolated singularity. Related results were obtained in
[4, 5, 23] and references therein.

Very recently, a thorough study of the boundary value problem

—Lyu+|Vu/?=0 inQ,
(1.8)

tr(u) =v

was carried out in [16], revealing that the value

N+a

q“::N+a—1

is a critical exponent for the solvability of (1.8). This means that if 1 < g < gy, then, for every v € 9*(0Q),
there is a unique solution of (1.8); otherwise, if g, < g < 2, singularities are removable.

Motivated by the aforementioned works, in the present paper, we aim to investigate related issues for
(E.). Main features of a boundary value problem for (E.) with measure are
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« the presence of the Hardy potential which blowups strongly at the boundary,

« the dependence of the nonlinearity on both solution and its gradient,

« rough data which cause the invalidity of some classical results.

The interplay between the features leads to new essential difficulties, hence complicates drastically the anal-

ysis and produces interestingly new phenomena.
Our contributions are the following.

«  We establish the existence of weak solutions of (E.) with prescribed boundary trace v under sharp
assumption on g. In particular, by using the standard approximation method, combined with the esti-
mates of the Green kernel and the Martin kernel as well as their gradient [15], the sub- and supersolutions
theorem and the Vitali convergence theorem, we show that, for every measure v € 9i*(0Q), equation
(E,) admits a solution. Unlike the absorption case, thanks to the Schauder fixed point theorem, we can
construct a solution to (E.) under the smallness assumption on the total mass of the boundary datum.

o We prove the comparison principle for (E,), which in turn implies the uniqueness. This result, which is
obtained by developing the method in [16, 24] and the theory of linear equations [15, 17, 25], is new,
even in the case without Hardy potential.

«  We show sharp a priori estimates for singular solutions of (E.). This allows to study solutions with an
isolated singularity. As a matter of fact, we show that there are two types of solutions with an isolated
singularity of (E,): weakly singular ones and strongly singular one. Moreover, the strongly singular solu-
tion can be obtained as the limit of the weakly singular solutions. It is interesting that this phenomenon
does not occur for (E_). The interaction of u” and |Vu|? is a source of difficulties, which requires a delicate
analysis and heavy computations.

« We demonstrate removability results of singularities in terms of capacities. The absorption case and
source case are treated differently using different types of capacities (see [9, 16]).

Our results cover and refine most of the aforementioned works in the literature and provide a full understand-

ing of equations with Hardy potential and gradient-dependent nonlinearity.

1.2 Main Results

First we are concerned with a boundary value problem for equations with absorption term of the form
-Lyu+g(u,|Vul) =0 inQ,
pu +g(u, [Vul) )
tr(u) = .

Before stating the main results, let us give the definition of weak solutions of (PY).

Definition 1.2. Let v € 9(0Q). A function u is called a weak solution of (PY) if
ueL'(Q,8%, gu,|Vul) e L'(Q, %)

and
- J ULy dx + Ig(u, IVal)¢ dx = — J K, [VIL,¢ dx forall { € X,(Q),
Q Q Q
where the space of test function X,,(Q) is defined by

Xu(Q) :={{ € HL (Q): 67%¢ € HY(Q, 6*%), 6 *Ly{ € L®(Q)}. (1.9)
We notice that this definition is inspired by the definition in [17, Section 3.2]. For more properties of the space

of test functions X,,(Q), we refer to [17].
Our first result is the existence of a weak solution of (P}) under an integral condition on g.

Theorem 1.3 (Existence). Assume g satisfies
(o]
u
Ag := Jg(s, sa)s™Pr ds < c0. (1.10)
1
Then, for any v € 9*(0Q), (PY) admits a positive weak solution 0 < u < Ky[v] in Q.
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Remark 1.4. We remark the following.
(i) Ifg(s,t)=|s|Ptifors e R, t € Ry, p,q >0, p+q > 1, then g satisfies (1.10) if

(N+a-2)p+(N+a-1)g< N +a. (1.11)
(ii) Ifg(s,t)=1s|P +tifors e R, t € Ry, p > 1, g > 1, then g satisfies (1.10) if
l<p<py, and 1<q<gqy. (1.12)

It is worth noticing that this theorem is established by developing the sub- and supersolutions method in
[16], in combination with the Schauder fixed point theorem and the Vitali convergence theorem.
It seems infeasible to obtain the uniqueness in case of general nonlinearity; however, when

g(u, |Vul) = |uP|vul?,

we are able to prove the comparison principle, which in turn implies the uniqueness. The method is delicate,
relying on a regularity result (see Proposition 4.1), maximum principle (see Lemma 4.2), estimates on the
gradient of subsolutions of a nonhomogeneous linear equation (see Lemma 4.4). We emphasize that this result
is new even in the case without Hardy potential, i.e. u = 0.

Theorem 1.5 (Comparison Principle). Assume g(u, |Vul|) = |u|P|Vu|? with q > 1 and p and q satisfying (1.11).
Letv; €e M (0Q), i = 1, 2, and let u; be a nonnegative solution of (PY) withv = v;. If v1 < vy, thenuy < uy in Q.

Assume 0 € 0Q, and denote by §, the Dirac measure concentrated at 0. A complete picture of isolated singu-
larities concentrated at O is depicted in the next theorem.

Theorem 1.6. Assume g(u, |Vu|) = |ulP|Vu|? with q > 1 and p and q satisfying (1.11).
() Weak singularity. For any k > 0, let ug’ « be the solution of

—Lyu+g(u,|Vul) =0 inQ
{ it + g(u, [Vul) (1.13)

tr(u) = kbg.
Then there exists a constant ¢ = c¢(N, u, Q) > 0 such that ugk(x) < ck6(x)¥|x|>~N-2% for every x € Q and

IVug (0] < ck8()* x>V forall x € Q.

Moreover,
Q
uy . (x)
im —2kT (1.14)
Qsx-y K3 (x, 0)
Furthermore, the mapping k — uf} « I8 increasing.
(1) Strong singularity. Put ugyoo = limg,00 ug « Then ufioo is a solution of
-Lyu+g(u,|Vul)=0 inQ,
s (1.15)
u=0 on oQ \ {0}.
There exists a constant ¢ = c(N, u, p, q, Q) > 0 such that
c’15(x)“|x|’vi;€1’“ < ugyoo(x) < c6(x)“|x|’ﬂi:1€1’“ forallx e Q,
IVl (0] < c800* T forallx € Q.
Moreover, ,
—q
li Pyl = , 1.16
Qim - IxIPE g 00 (1) = w(0) (1.16)
X=geSV!

IxI

locally uniformly on the upper hemisphere S¥~* = RY n SN-1, where w is the unique solution of problem
(4.35). Here RY = {x = (x1,...,xy) = (X', xy) : xy > O}, and SN~ is the unit sphere in RV,

Brought to you by | Utrecht University Library
Authenticated
Download Date | 3/5/20 9:22 PM



5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY 149

6 =—— K.T.Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential DE GRUYTER

Let us discuss briefly the proof of Theorem 1.6. The main ingredients in the proof of convergence (1.14) are the
estimates on the Green kernel (2.1) and the Martin kernel (2.2) and condition (1.11). From the monotonicity
of the sequence {ug’ «}» universal estimate (4.15) and a standard argument, we deduce that ugm is a solution
of (1.15). The proof of convergence (1.16) relies strongly on the similarity transformation T, (see (4.19)) and
the study of problem (4.35) in the upper hemisphere S¥~!. The existence and uniqueness result for (4.35) is
provided in Section 4.4.

When g(u, |[Vu|) = [ulP|Vu|? with g > 1, in order to deal with a wider range of p and ¢ (i.e. p and g may
not satisfy (1.11)), we make use of Bessel capacities (see Section 5). A necessary condition for the existence
of a solution to (PY) and a removability result are stated in the following theorems.

Theorem 1.7 (Absolute Continuity). Assume g(u, |Vul) = |u|P|Vu|? with
p=0, 1<q<2, p+gq>1 and (N+a-2)p+(N+a-1)g=N+a.

Let v € M*(9Q) and assume that problem (PY) has a nonnegative solution u e C%(Q).
(i) Ifq+a+1,thenvis absolutely continuous with respect to C1 “at S (1) i.e. v(K) = O for any Borel set
K c 0Q such that C1 Mm 1 (prqy (K) = 0. Here (p + q)' denotes the con]ugate exponent of p + q.

(i) If g = a + 1, then, for any e (0, mm{a + 1, (’\; Da _(1- a)}), v is absolutely continuous with respect to
bl ai (p+as+1)- Here the capacity C S.K ! is defined in Section 5.

praris

Put

S(x)t« ifu<i,

W) = 4000 K (1.17)
6(x)2[lné(x)| ifu= %

We note that, by [17, Propositions 2.17, 2.18], for any h € C(0Q), there exists a unique Ly-harmonic

function up € C(Q) n LY(Q, 6%) such that

im up(x)
xeQ, x—¢ W(X)

=h(¢) forallé e 0Q. (1.18)

In addition, tr(up) = hw*°, where xo € Q is a fixed reference point and w*° is the L,-harmonic measure in Q
(see [17, Subsection 2.3] for further details). It is worth mentioning that (1.18) can be viewed as the boundary
condition in the case with Hardy potential. If u = 0, then a = 1 and W(x) = 1, in which case (1.18) becomes
the boundary condition in the classical sense.

The following result provides a removability result for solutions with “zero boundary condition” on
00\ K (see (1.20)).

Theorem 1.8 (Removability). Assumep >0,1<g<2,p+g>1land(N+a-2)p+(N+a-1)g >N +a. Let
K c 0Q be compact such that

(@) ClNalm ¢ prgy ) =0ifq#a+1lor

(ii) C 1 ars ,(p+a+1)’(K) 0 for some € € (0, min{a + 1, W-Da _ (1 _g)}) ifg=a+1.

ﬂ+1
Then any nonnegatlve solution u € C2(Q) N C(Q \ K) of

—Lyu+ufvul?=0 inQ (1.19)

such that
u(x)

xetxag W)

=0 forallé € 0Q\ K (1.20)
is identically zero.
Next we deal with the boundary value problem for equations with source term of the form

(PY)

-Lyu-g(u,|Vul) =0 inQ,
tr(u) = v.

Weak solutions of (PY) are defined similarly to Definition 1.2.

Brought to you by | Utrecht University Library
Authenticated
Download Date | 3/5/20 9:22 PM



150 5. EQUATIONS WITH A GRADIENT-DEPENDENT NONLINEARITY

DE GRUYTER K. T. Gkikas and P.-T. Nguyen, Elliptic Equations with Hardy Potential =— 7

Phenomena occurring in this case are different from those in the case of absorption nonlinearity. This is
reflected in Theorem 1.9 which ensures the existence of a weak solution under a smallness assumption on the
total mass of the boundary data.

In order to make the statement clear and lucid, we rewrite equation (P") as

-Lyu-g(u,|Vul) =0 inQ,
{ it - g(u, [Vul) _—

tr(u) = ov,
where p is a positive parameter and v € 9t*(0Q) with [[v[orq) = 1.

Theorem 1.9 (Existence Result for (P2") in Subcritical Case). Let v € M*(0Q) with |Vlonoq) = 1. Assume g
satisfies (1.10) and
g(as, bt) < k(a” + bl)g(s, t) forall(a,b,s,t) € R%, (1.21)

for some p>1, q>1, k > 0. Then there exists Qo > 0 depending on N, u, Q, Ag, k,ﬁ, g such that, for any
o < (0, o), problem (P2") admits a positive weak solution u > oK, [v] in Q.

This result is established by combining an idea in [34] and the Schauder fixed point theorem.
Remark 1.10. It is easy to see that if g(s, t) = |s|[Pt9 or g(s, t) = |s|P + t9, then (1.21) holds.

The next result provides sufficient conditions for the existence of a solution to (P2") with g(u, |Vul) = |u|?|Vu|?
in terms of capacities. See the definition of the capacities Cap‘39 and IN4-1,1 in Section 7.

Theorem 1.11 (Existence Result for (P2")). Assume that g(u, |Vu|) = |u|P|Vu|? withp > 0,q > 0,p + q > 1 and

q< M. Assume one of the following conditions holds.

(i) There exists a constant C > 0 such that
V(E) < CCap®® ,

— 1-q
1-a+ prq ,(p+q

),(E) for every Borel set E c 0Q).

Here (p + q)' denotes the conjugate exponent of p + q.
(ii) There exists a positive constant C > 0 such that

Nogo1,1 [P DN, 1 [VPH] < CNgg-11[v] < 00 a.e.in Q. (1.22)

Then there exists po = po(N, i, p, g, C, Q) > 0 such that, for any p € (0, po), problem (P2") admits a weak solu-
tion u satisfying
[ul < C'6"Nog-1,1lev],  [Vul < C'6* "Nag1,1lov] inQ, (1.23)

where C' = C'(N, p, Q) is a positive constant.

Organization of the paper. In Section 2, we recall main properties of the first eigenvalue and the correspond-
ing eigenfunction of —L, in Q and collect estimates on the Green kernel and the Martin kernel, as well as
their gradient. In Section 3, we prove Theorem 1.3, and in Section 4, we demonstrate Theorem 1.5 and Theo-
rem 1.6. In Section 5, we give the proof of Theorem 1.7 and Theorem 1.8. Section 6 is devoted to the proof of
Theorem 1.9, and in Section 7, the proof of Theorem 1.11 is provided. In Appendix A, we construct a barrier
in the case g(u, |[Vu|) = |u[P|Vu|?. Finally, in Appendix B, we discuss the case g(u, |Vul|) = [u|? + |Vu|? and
state main results without proofs since the arguments are similar to those in the case g(u, [Vul|) = u?|Vul9.

1.3 Notations

We list below some notations that we use frequently in the present paper.

« For ¢ >0, denote by L¥(Q, ¢) (x > 1) the space of functions v satisfying _[Q|V|K¢ dx < co. We denote by
H'(Q, ¢) the space of functions v such that v € L*(Q, ¢) and Vv € L*(Q, ¢). Let M(Q, ¢) be the space
of Radon measures 7 on Q satisfying jg ¢ d|7| < 00, and let M*(Q, ¢p) be the positive cone of M(Q, ¢).
Denote by 91(0Q) the space of bounded Radon measures on 0Q and by 9" (0Q) the positive cone of
M(0Q).
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« Denote LX(Q, 1), 1 < k < 00, T € M*(Q), the weak L* space (or Marcinkiewicz space) with weight 7. The
subscript w is an abbreviation of “weak”. See Subsection 2.2 for more details.

«  We denote by A, the first eigenvalue of -L, and by ¢, the corresponding eigenfunction (see Subsec-
tion 1.4).

« For x > 1, we denote by k' the conjugate exponent.

- Throughout the paper, ¢, ¢1, ¢2, C, C1, C' denote positive constants which may vary from line to line. We
write C = C(a, b) to emphasize the dependence of C on the data a, b.

« The notation f ~ h means that there exist positive constants cy, ¢, such that c1h < f < ¢y h.

« Denote by xg the indicator function of a set E.

o For z € 0Q, denote by n, the outer unit normal vector at z.

2 Preliminaries

We recall that, throughout the paper, we assume that y € (0, %] and A, > 0.

2.1 Eigenvalue and Eigenfunction

We recall important facts of the eigenvalue A, of —L, and the associated eigenfunction ¢, which can be
foundin [13, 14]. If0 < u < %, then the minimizer ¢, € H(I,(Q) of (1.4) exists and satisfies ¢, ~ 6%, where a
is defined in (1.7). If pu = %, there is no minimizer of (1.4) in Hé(Q), but there exists a nonnegative function
p1e Hlloc(Q) suchthat @i ~ 6§ 7 and it satisfies -Lig1 = Au¢1 in Qin the sense of distributions. In addition,
we have 6‘%(p% € H(Q, §).

2.2 Green Kernel and Martin Kernel

Denote by Gl‘} and K;} the Green kernel and the Martin kernel of —L,, in Q respectively (see [17, 25]). The Green
operator and the Martin operator are defined as follows:

Gﬁ[‘r](x) = J Gﬁ(x, y)dt(y) forevery T € M(Q, %),
Q

IKf}[v](x) = J Kf}(x, z)dv(z) foreveryv e 9MM(0Q).
20
When there is no ambiguity, we will drop the superscript Q, i.e. we write G, K,, G, KK, instead of Gf}, Kf},
G, K.
By [14, Theorem 4.11], it holds

Gu(x, ) = min{lx - yI*™, 6(x)*6(y)*|x - y|>"N"2*} foreveryx,y € Q, x #. (2.1)

Since (1.5) holds, by [3] and [17, Proposition 2.29], the Martin kernel K, exists. Moreover, it holds (see [25,
(2.7), page 76] for u < Cy(Q) and [17, Theorem 2.30] for p = )

|2—N—2a

Ku(x,y) = 6(x)%|Ix -y forevery x € Q, y € 0Q. (2.2)

For estimates on the Green kernel and the Martin kernel of a more general Schrodinger operator, we refer
to [21].

Next we recall estimates of Green kernel and Martin kernel in weak L* spaces. Let 7 € 9*(Q). For x > 1,

k' =X andu e Ll (Q,7), weset

1

lullzx 7 := inf{c € [0, 00] : Jlul dr < C(J dr)x for any Borel set E ¢ Q}
E E
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and
L5(Q, 1) :={u e L (Q, 1) : lullig,r < oo}

L},(Q, 1) is called weak L* space (or Marcinkiewicz space with exponent k) with quasi-norm |- ||zx(q,7)-
See [29] for more details. Notice that, for every s > -1,

Ly (Q, 8% c L'(Q, 6%) foreveryr e [1, k). (2.3)
Moreover, for any u € L¥(Q, 6°) (s > -1),

6% dx < A" ullfy

{lul>A}

Q.69 forallA > 0. (2.4)

Proposition 2.1 ([15, Proposition 2.4]). The following statements hold.
(i) Letye (—ﬁ’;’(?z, I(I‘—f"z) There exists a constant ¢ = c¢(N, u, y, Q) such that
”G}A[T]”LWNIX%(Q,M) < cltllme,60y forall T € M(Q, 6%). (2.5)
(ii) Lety > —1. Then there exists a constant ¢ = c¢(N, p, y, Q) such that
K, V1547 0,0 < clVioneay forallv € IM(Q). (2.6)

Proposition 2.2 ([16, Proposition A]). The following statements hold.
(i) LetOe[0,alandy € [0, %). Then there exists a positive constant ¢ = c¢(N, u, 0, y, Q) such that
IVGLIITILF .50 < ClThonca,sn forall T € M(Q, 8%), @.7)
where VG [1](x) = [, VxGpu(x, y) dT(y).
(ii) Lety = 0. Then there exists a positive constant ¢ = c¢(N, u, y, Q) such that

N+
IV, VI3 .6 < CIVlionay forallv € M(OQ),

where VIK, [VI(x) = [, , VxKy(x, 2) dv(2).

2.3 Linear Equations

The Green kernel and the Martin kernel play an important role in the study of the boundary value problem
for the linear equation

-Lyu=1 inQ,
(2.8)

tr(u) = v.
Definition 2.3. Assume (7, v) € MM(Q, 6%) x M(0Q). We say that u is a weak solution of (2.8) if u € L1(Q, §%)
and
- I uLy,{ dx = J cdr- J K, [VIL,¢ dx forall { € X,(Q),
Q Q Q
where X,,(Q) is defined in (1.9).
Proposition 2.4 ([15, Proposition 2.11]). Assume that (1, v) € 9M(Q, 6%) x M(3Q). Then u is a weak solution
of (2.8) if and only if u = Gy [1] + Ky[v] in Q. Moreover, there exists a constant C = C(N, u, Q) > O such that
lullzi,s0) < CUITlon(,s0) + IVilam(aq))-

For D e Q, denote by GE and KE the Green kernel and the Poisson kernel of —L,, in D. Consider the problem

{—Lyu =¢ inD,

(2.9
u=n onoD.

A similar result has been established for (2.9).
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Proposition 2.5 ([17]). Forany (¢, n) € MM(D, 6p) x M(0D) (where &p = dist(-, D)), there exists a unique weak
solution u = uy 5 € L'(D, 8p) of (2.9), i.e.

_ I uLy,{ dx = I(d(p - J K2[qIL, ¢ dx forall{ € Xo(D),
D D D

where Xo(D) is defined similarly to X,,(Q) with u = 0 and Q = D. It holds

u=GJlol+Knl, (2.10)
and there exists a constant ¢ = c¢(N, u, D) > 0 such that |ullp1(p,s,) < c(l@llamca,s,) + IMllon(op))-
Finally, we will need the following classical properties of C*> domains.

Proposition 2.6 ([29]). There exists a positive constant g such that § € C? (54130). Moreover, for any x € Qup,,
there exists a unique &y € 0Q such that

(@) 6(x) = Ix - &l andng, = -V6(x) = 7%, where ng, denotes the outer unit normal vector at & € 0Q,

(b) x(s) := x +sV8(x) € Qp, and 6(x(s)) = [x(s) — &| = 6(x) + s forany 0 < s < 4P — 5(x).

3 Nonlinear Equations with Subcritical Absorption

In this section, we establish the existence of a positive solution of (PY). The approach is based on a com-
bination of the idea in [20], estimates on the Green kernel, the Martin kernel, their gradient and the Vitali
convergence theorem.

Proof of Theorem 1.3. We divide the proof into three steps.

Step 1. In this step, we assume that

M:= sup |g(s,t)| < +oo. (3.1)
seR,teRy

Let D cc Q be a smooth open domain, and consider the equation
- Lyv+g(v+Kylv], V(v + Ky[v])]) =0 inD. (3.2)
First we note that u; = 0 is a supersolution of (3.2) and u; = -K[v] is a solution of (3.2). Let

0 ifo<u,
T):=1u ifu<u<o, (3.3)

u, ifu<u,.

In this step, we use the idea in [20] in order to construct a solution v € W'*°(D) of the problem

—Lyv+g(v+Kyv], V(v + Ky[v)))) =0 inD, (3.4)
v=0 onoD, '
which satisfies
-Kylvlsv<0 forallxeD. (3.5)

Let dp q := dist(oD, 0Q) and u € WH1(D). By the standard elliptic theory, there exists a unique solution
of the problem

—Aw + (dp -~ u6)w = —g(v + Ky[V], V(v + Ky [V])]) + d;7oT(v) inD, 3.6
w=0 on oD. '

Recall that 6 = dist(-, 0Q).
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We define an operator A as follows: to each u € W1(D), we associate the unique solution A[u] of (3.6).
Furthermore, since
dl’fg - ;16()()’2 >(1- y)é(x)’2 forall x € D,

by standard elliptic estimates, there exists a constant C; = C1(N, y, dp,q, D) > 0 such that

sugIA[u](X)I < C1(M + [VIm(on)) =t A1.
X€E

Also, by (3.3) and standard elliptic estimates, there exists a positive constant C; = C2(N, y, dp,q, D) such that

SUII?WA[U](XN < Co(M + Vion)) = Aa.
X€

By using an argument similar to the proof of [16, Theorem B, Step 1], we can show that
A: WhL(D) - wh1(D)

is continuous and compact. Now set K := {£ € W-1(D) : [l€lwr.co(py < A1 + A2}. Then K is a closed, convex
subset of W1(D) and A (X) ¢ K. Thus we can apply the Schauder fixed point theorem to obtain the existence
ofafunction v € X such that A [v] = v. This means v is a weak solution of (3.6). By the standard elliptic theory,
we can easily deduce that v, u, € C2(D) n C(D). Moreover, it can be seen that v < 0.

Now we allege that v > u;, in D by employing an argument of contradiction. Suppose by contradiction
that there exists xo € D such that infycp(v(x) — u>(x)) = v(xg) — u2(xo) < 0. Then we have Vv(xq) = Vu,(xo),
=A(v = uz)(xo0) < 0, T[vl(xo) = T[u2](xo) = ua(xo). But

=MV - uz)(Xo0) = ~(dp7, — u6(xo0) ) (V(xo) — Uz(x0))
- g(v(x0) + Ky [V](xo), [Vv(xo0) + VK, [V](x0)])
+ g(ua(xo) + Ky [v](x0), [Vuz (xo) + VK, [v](x0)]) > O,

which is clearly a contradiction. Therefore, v > u, in D.
As a consequence, T(v) = v, and therefore v is a solution of (3.4).

Step 2. In this step, we still assume that (3.1) holds. Let {Q,} be a smooth exhaustion of Q, and let v,
be the solution of (3.4) in D = Q, (constructed in Step 1) satisfying (3.5). Then there exists a constant
C = C(N, u, Q) > 0 such that
Va0 < Gulxa,8(va + Kuv], IV(vh + Ku[VD])](x) < CME(x)*  forall x € Q.
This implies that there exists a subsequence, still denoted by {v,}, such thatv, — vin Wllo’f (Q) and v satisfies
—Lyv+g(v+ Ky v, V(v + Ku[v])) =0 inQ,
tr(v) = 0.

Furthermore, -KK,[v] <v <0 for all x € Q. Setting u = v+ K[v], then u is a solution of (P}) satisfying
0 <u<Ky[v]linQ.

Step 3. In this step, we drop condition (3.1). Set g, := min(g, n), and let u, be a nonnegative solution (the
existence of uy, is guaranteed in Step 2) of

{_Luun +8n(Un, [Vupl) =0 inQ,

tr(up) =v
satisfying
0<u, <Ky[v] inQ. (3.7)
Then u, satisfies
- J unLy§ dx + Jgn(u,,, [Vun)¢dx = - J Ky [v]Ly{dx forall { € X,(Q), (3.8)
Q Q Q
un + Gy [gn(un, [Vunl)] = ]Ku[V]' (3.9)
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Choosing ¢ = ¢, where ¢, is an eigenfunction associated to the first eigenvalue of -L,,, by (3.8), we have

A, j|un|<p,, dx + Jgn(un, Vit y dx < A, J K, (V] gy, dx. (3.10)
Q Q Q

Now, by (3.9) and Proposition 2.2, we obtain
IVunlizia,s0) < (N, pty Q)(Ign(n, IVunDllLi,60) + IVIanon))-
This, together with (3.10) and (2.6), implies
VunllL® @,60) < c(N, u, Q)lIVlan(oq)-

Similarly, we can show that
lunlz?@,60) < (N, p, Q)lIVlon(o)-

Next we prove that

gn(un, [Vunl) — g(u, |Vul) inL(Q, 6%). (3.11)
For A > 0 and any function w, set
AY = {xeQ:|wk)|> A}, a"(A) := J 6% dx,
AY
P
B i (x € 0 Vw00l > A%, bY() = [ 6%ax, (3.12)
BY
CY =AY NBY, () o= j 5% dx.
cy
Then, for A > 0 and n € N, put
Apa = A;", ap(A) =a"(A),
By =B)", by(d) =b"(}),
Cia = Cf{", cn(A) = (D).
For any Borel set E c Q,
jgn(un, [Vun|)8% dx = J 8n(un, [Vun )6 dx + J 8n(un, [Vun )6 dx
ENCy,2 ENAJ \NBya
v [ s Vubetdxs [ gaun IVunD™ dx
EnA",AmB;‘A EnA;VAmB;‘A
0
o o
<C J g(s,s)s 1 Puds + g(A, Aw) J 8% dx. (3.13)
) E

Note that the first term on the right-hand side of (3.13) tends to 0 as A — co. Therefore, for any € > 0, there
exists A > 0 such that the first term on the right-hand side of (3.13) is smaller than £. Fix such A, and put
e

2 max{g(A, A%), 1}

Then, by (3.13),

J 8%dx<n = Jgn(un, [Vun|)6% dx < €.

E E
Therefore, the sequence {g,(un, |Vuy|)} is equi-integrable in L1(Q, §%). Thus, by invoking the Vitali conver-
gence theorem, we derive (3.11).

From (3.7), we deduce that 0 < u, — uin L1(Q, 6%). Therefore, letting n — oo in (3.8), we deduce that u

is a weak solution of (PY). O
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4 Absorption g(u, |Vu|) = |u|P|Vu|9: Subcritical Case

In this section, we assume g(u, |Vu|) = |[u|?|Vu|? withp > 0, g > 0, p + ¢ > 1. We recall that (see Remark 1.4)
g satisfies (1.10) if and only if (1.11) holds. Moreover, g satisfies (1.21). Therefore, by Theorem 1.3, for any
v € M*(0Q), the problem

—Lyu+uPlvul?=0 inQ,
(4.1)
tr(v) =v
admits a positive weak solution.
Next we prove the following regularity result.
Proposition 4.1. Assumep >0and0< g < % If u is a nonnegative solution of
—Lyu+uflvul?=0 inQ, (4.2)

thenu € C%(Q).

Proof. Let D cc Qbeasmooth open domain. Since u is a nonnegative solution of (4.1), by (2.10), we can eas-
ily obtain 0 < u(x) < KK, [v](x) < Cp for all x € D. Consequently, |u[P|Vu|? < C%IVulq in D. Hence, by invoking
[16, Lemma 4.2], we can derive the desired result. O

4.1 Comparison Principle
Lemma 4.2. Let u € C2(Q) be a nonnegative solution of (4.2). If there exists xo € Q such that u(xo) = 0, then
u=0.
Proof. By Young’s inequality, [u|?|Vu|? < [u[P*? + |Vul|P*? in Q. As a consequence, u satisfies
= Lyu + [ufP™ + |VulP*? >0 in Q. (4.3)

Now set a(x) := [Vu(x)[P*9-2Vu(x) and b(x) := |[u(x)[P*9-1. Let B € (0, Bo) be small enough such that x, € Dg.
Since u € C2(Q), there exists a constant C g such thatsup, Dy |a(x)| + supye Dy b(x) < Cg.From (4.3), we deduce
~Au+a-Vu+bu> %u > 0in Dg. Since b(x) > 0, by the maximum principle, u cannot achieve a nonpositive
minimum in Dg. Thus the result follows straightforward. O

Next we state the comparison principle for (4.2).

Lemma 4.3. Letp > 0,q > 1 and D c Q. We assume that uy, u, € C*>(D) are respectively nonnegative subsolu-
tion and positive supersolution of (4.2) in D such that

u1(x) <1

lim su . (4.4)
Hanp uz(x)
Then uy < uy in D.
Proof. Suppose by contradiction that
m = sup up(x)
xeD U2(X)
By (4.4), we deduce that there exists xo € D such that
U (Xo) _ sup wx) _ m
Uz(X0)  xep Ua(x)
Let r > 0 be such that B(xo, r) ¢ D. Then we see that
~Am™'ug - uz) + (M~ u P Im Vg |9 - Wb [V, |9 < %(m‘lul -u) <0 in B(xo, %) (4.5)
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Now note that

(M tugPIm ™ Vug |9 - uh |Vl = (m™tug)PIm Vug |9 - (m ug)P [V |?

-1
+ (M ug)P|Vuo|? - ub|Vuy |1

= a(x)(m™'Vuy - Vuy) + b(x)(m tu; - uy), (4.6)
where - o] p
N | m~Vup|? - |Vu, 1
a(x) =(m ul)p‘ |m7*1Vu1 — VUZ|2 (m *Vui - Vuy)
and

(m~uy)P — ué’)
—FFF =] =0.
m-lug —up

b(x) := |Vu2|q(
Since uy, uy € C2(D), uz(x) > O for any x € D and g > 1, there exists a positive constant C > 0 such that

sup la()|+ sup b(x)<C.

XeB(xo, %) XeB(xo, %)
Combining (4.5) and (4.6), we have
“Amuy —ux) +a-v(m tuy —uy) + b(mu; —uy) <0 in B(xo, %)
Hence, by the maximum principle, m~'u; — u, cannot achieve a nonnegative maximum in B(xq, %). This is
a contradiction. Thus u; < u; in D. O
In order to prove the comparison principle for (4.1), we need the following result.
Lemma 4.4. [16, Lemma 4.5] Let T € MM(Q, 6%), and v > O satisfies
-Lyv<t inQ,
{ tr(v) = 0.
Then, for any 1 < x < qy, there exists a constant ¢ = c(N, Q, u) such that |Vv||rxq,se) < clTllon(q,59)-

Proof of Theorem 1.5. Since u; is a nonnegative solution of (4.1), |u;[?|Vu;|? € L}(Q, 6%), i = 1, 2. Moreovet,
from Propositions 2.1 and 2.2, we deduce that

luillzes @,60) + IVUillLar @60 < c1(luilP VUi |l o, 60 + IVillonaq))

forany1 <pi <py,1<qi<quandi=1,2.
Without loss of generality, we assume that v, # 0; thus, by Lemma 4.2, u, > 0 in Q. In addition, by
Proposition 4.1, u; € C2(Q) for i = 1, 2. Finally, by the representation formula, we have

ui + Gy[luiP|Vuil1] = Ky[vi], i=1,2.
Let 0 < € < 1. Then
(euy —u)s < (Gplluzl? Vuz|?] - Gy [lus [PIVua|?]), < Gul|luzalP|Vuz|? - leus [P [Vug |9]] =: v,

which implies tr((eu; — uz);) < tr(v) = 0. Hence tr((eu; — uz);) = 0.
Note that eu; is a subsolution of (4.2). Also, since u; € C2(Q) and u, > 0 in Q, it follows that, for small
enough 8 > 0,
u
Cp = sup — < co.
xeDg U2
Without loss of generality, we assume that Cg > 1. Set £g = c%; < 1. Then ggu; - u, < 0 in Dg. Moreover, in
view of the proof of Lemma 4.3, we derive that

epur —ux <0 inDg. (4.7)
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Put Eg := {x € Q : £guy — uy > 0}. Due to Kato’s inequality [29], we get
- Ly(gpuy — u), < (WbIVual? — (sur)PleVua |7y, < ((eur)P(IVu2l? - [€Vus )X, (4.8)

By (4.7), we derive that Eg c Qg.

Letx > 1and
N+a }( N+a

1, — _.
N+a-p(N+a-2) <q(N+a—1)

Note that, for this choice of x, we have

max{

K
mp <py and xq<qy.
Using (4.8), Lemma 4.4 and Holder’s inequality, we get

j|V(8ﬁu1 —Uy),[¥96% dx
Q xq
< c(j(sﬁul)ﬂ“wzw - lepVu )z, 6° d)

Q

xq
< of [ epunrieg vl 4 1Vualt )9 epus - 216" dx)
Ep
. q(-1) ~ q
<ol [epunmrstax) ([ (el vt + 1Vl DIV epus - ua)) "6 dx)
Ep Ep
. qx-1) a-1
< c(j(eﬁul)mﬂaa ax) (J(quﬂ"q + VU )6° dx) (J(w(.eﬁu1 - w))6% dx).  (4.9)

Ep Ep Ep
Since Eg c Qp, uy € L#1P(Q, %) and |Vu;| € L¥9(Q, %), we can choose B+ small enough such that

. q(x-1) -1 1
c( J (ep.uq)=1P 6" dx) ( J (IVu1|* + |Vu, |*9)6% dx) < T
Ep. Ep.
By the above inequality and (4.9), we obtain
V(eg,ur —uz)y =0 = (gp,u1 —U2)s = Cs

for some constant c. > 0, and since (gg,u; —uz2); =0 on 55,, we have ¢, =0, namely £g,u; < u; in Q. As
a consequence,

U1 () ui(x) ur(x) 4
- = = 1. 4.10
xeq U2(X) xeDg, uz(x) xedDg, us(x) Eﬁ- > ( )

This implies the existence of x, € dDg, such that

(ep.u1 —u2)(x:) = 0. (4.11)

Next we take 8 < B.; then g < £g,. On the other hand, we infer from (4.10) that eg > €4, and hence 5 = g, .

Therefore, (4.11) contradicts (4.7). The proof is complete. 0
Lemma 4.5. Letp >0,1<g< % and p + q > 1. If u is a nonnegative solution of (4.2), then

u(x) < C8(x) 757 + My, forallx € Q, (4.12)

Vu(x)| < C'6(x)’vi% forallx € Q, (4.13)

where Mg, := supp, u, C = C(N, jt, g, p, Bo, Mp,) and C' = C'(N, u, q, p, Bo, Mg,).

Proof. The proof is similar to that of [16, Lemma 4.6], and hence we omit it. O
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4.2 Isolated Singularities

In this section, we assume the origin 0 € 0Q and study the behavior near 0 of solutions of (4.2) which vanish
on 0Q \ {0}. We first establish pointwise a priori estimates for solutions with an isolated singularity at 0, as
well as their gradient.

Proposition 4.6. Assume0 € 0Q,p >0,q > 1,p + q > 1 and p and q satisfy (1.11). Let u be a positive solution

of (4.2) in Q such that
u(x)

xe0x W)
locally uniformly in 0Q \ {0}. Here W is defined in (1.17). Then there exists a constant C = C(N, u, g, p, Q) > 0
such that

=0 forall& € o0Q\{0}, (4.14)

u(0) < C6O% X 7% forallx € Q, (4.15)

IVu(0| < C80)% x| 775 % forallx € Q.
Proof. We split the proof into two steps.

Step 1. Let By be the constant in Proposition 2.6. Let x; € 0Q be such that |x;| > %,

n
0Q ¢ B(O, IZ—O) U iL:JlB(x,-, f—g) =: A forsomen e N.

Notice that there exists a constant £y = £(80) > O such that dist(aA 0Q) > &.
Let w; be the function constructed in Proposition A.1 in B(x1 s ) forR = fg, i=1,...,n. Then, by the
maximum principle (see [17, Propositions 2.13 and 2.14]), we have

u(x) < wj(x) forallxe B(xi, %), i=1,...,n

As a consequence, there is a constant Co = Co(N, U, g, p, Q, o) > 1 such that

n
. @)
u(x) < Co forallxeigB(xl, 3 )

Set
V() i= Cu Ixl - B")

where C; > 0 will be chosen later. We will show that v(x) > u(x) for every x € Q \ A. Indeed, by a direct
computation, we can show that there is a constant C; > 0 such that, forall x € Q \ A,

e (MR (e ’3°) e CRLINY

q+p p+q-1
2-9)1+p) Bo\ ek
> - m(l |* *) 5 (4.16)
g 2-q \? Bo _%
[Vv|? = Cl(m) (|X| - Z) s (4.17)
Hy < Caeg?(suplx)? (I - Poy e, “.18)

Gathering estimates (4.16)—(4.18) leads to, for C; = C1(N, u, p, g, Bo, Q) > 0 large enough,
2p+q
s (2-q)1+p) - 2 epraf_2-a )\
L v+vp|Vv|q>(|x| ﬁ") [ CEZDUEP) o 2 supix))? + C (7) ]
" prq-12 0 N U \p+g-1
>0 forallxe Q\A.
Moreover, we can choose C; = C1(Co, N, M4, D, Q, Bo) large enough such that lim sup,_,5(g\7z)(u - v) <0.
By Lemma 4.3, we deduce that u < v in Q \ A, which implies that u < C; in Dp, for some positive constant
Cy = C2(N, u, q,p, Q, Bo). Thus, by Lemma 4.5, there exists C3 = C5(Q, N, i, g, p, Bo) > 0 such that

u(x) < Cﬂ)’(x)’lﬂi%El forall x € Q.
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Step 2. For ¢ > 0, put
.
Telu](x) := e u(tx), xeQf:=¢1Q. (4.19)

Let £ € 0Q\ {0}, and put d = d(¢) := %I{I. We assume that d < 1. Denote ug := T4[u]. Then ugy is a solution
of (4.2)inQ4 = %Q. LetRg = "f—g, where S is the constant in Proposition 2.6. Then the solution Wy 3k Men-
tioned in Proposition A.1 satisfies ug4(y) < W, 2R (y) forally € Bt én Q4. Thus uy is bounded above in
B (§)n Q4 by a constant C > 0 depending only on N, u, p, g and the C? characteristic of Q¢ (see [29] for
the definition of the C? characteristic of Q). As d < 1, a C? characteristic of Q is also a C?> characteristic of
Q4; therefore, the constant C can be taken to be independent of . We note here that the constant Ry € (0, 1)
depends on the C? characteristic of Q. The rest of the proof can proceed similarly to the proof of [16, Propo-
sition E], and we omit it. O

4.3 Weak Singularities

Proof of Theorem 1.6. We use the same idea as in the proof of [16, Theorem F]. Let u = ug’k be the positive
solution of (1.13). By Theorem 1.3 and Lemma 4.2, 0 < u < kK (-, 0) in Q. Moreover,

u+ Gy [uP|Vul?] = kKy (-, 0). (4.20)
This and (2.2) imply that
u(x) < kKy(x,0) < ck8(x)*|x|>"N2%  forall x € Q. (4.21)
By proceeding as in the proof of (4.13), we obtain
[Vu(x)| < ck6(0)“ x> N-2*  forallx € Q. (4.22)
It follows from (2.1), (4.21) and (4.22) that

Gy [uP|Vul7)(x) < ckP*d j 8(y)PHEDIG (x, y)ly| >N 2OEHD gy, (4.23)
Q
Case 1: a +ap + (a — 1)g > 0. By the assumption and (2.1), we have
Gy[uPIVul?])(x) < ckP*15(x) jlx —yPrN2ejyja-(Nram2p-(Nra-a gy, (4.24)
Q
Since p and q satisfy (1.11), it follows that
J’lx _ ylz—N—Za|y|a—(N+a—2)p—(N+a—1)q dy < Clxl2—a—(N+a—2)p—(N—1+a)q. (4.25)
Q

Combining (4.24), (4.25) and (2.2) yields
Gy [uP|Vul9](x) < ckPHa|x|N+a-Wra-2p-(Nra-La g, (x 0).,

Asa consequence,
Gy[uP|Vu|?](x)
" _0. 4.26
M0 Ku(x, 0) (4.26)

Case2:-1+a<a+ap+(a—-1)g<0. By(4.23)and (2.1), we have
Gu[upwwq](x) < ckP+a J 6(y)“p+(“_l)qFM(x, y)|y|<2—N—2a)(p+q) dy,
Q

where
Fu(x,y) :=Ix - y12 N min{1, 8(x)*8(y)%|x — y| 2%} forallx,y € Q, x #y. (4.27)
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Let B € (0, Bo) be such that § € C? (QT;). We consider the cut-off function ¢ € C*® ((Tg) suchthat0 < ¢ <1,
$=1inQs and ¢ = 0in Q\ Q2. Then

I 6(y)ap+(a71)qFH (x, y)lylf(NJrsz—Z)(erq) dy

‘ = J 8(y) P VIE, (x, y)ly| N 2620 D p(y) dy
Q
¥ j 8(y)P+@DaF, (x, y)ly|-N+2-2C+0 (1 — (y)) dy. (4.28)
Q

We first deal with the first term on the right-hand side of (4.28). By the definition of ¢ and the inequality
(which follows from (4.27))
Fyu(x,y) < 600%[x - y*™V8,

we deduce that there exists C = C(N, u, p, q, Q, B) such that
[ syrevap, oy 0220 - g dy < coo. (4.29)
Q
Now we deal with the second term on the right-hand side of (4.28). Let B € (0, g) besuch that [x - y| >ro >0
foranyy € QE and some ry > 0. Let € > 0 be such that
(N+a-2)p+(N+a-1)g=N+a-¢,
and let € € (0, €) be such that ap + (a — 1)g + 1 — € > 0. Then, by (4.27), we have

B(y) P EDILE, (x, y)ly|"N2aDEHD as(y) < 500 rg N2 j ) Iyl M ER as(y).
%5 b
Note that, by the choice of §, N— 2 - N + 1 + (¢ — §) > —1, which implies
sup Ilyl’N*l*(E’é) dS(y) < C.
Be(&%)zﬁ

Combining the above estimates, we deduce

tim [ 80)7* @D, (x, y)lyl-N12e-2009 ds(y) =, (430)
B—0
Py

B

Now note that

- j VBV Fu(x, y)8(y) 2 Ha-DarL |y -N+2e-2040) ) dy

O V8(y) - (x-y) . 8()*8(y)™
~(N-2) J’ (li’(l §/|N 2] mln{l, |(X)_ yl(;’z }6(y)ap+(a—l)q+1Iyl—(N+2a—2)(p+q)¢(y) dy
/i
. S()*8(y)* _ Ny _
- [ veww, (min{1, 0 Yoty by 0D ) dy
Qp
On the other hand,

-Vé(y)Vy(min{1, §(x)“6(y)*|x - yl’z“}) < 2alx - y|"  min{1, (x)*6()%x - y|>*} a.e.in Q.
By collecting the above estimates, we obtain
- [ V8WITF, (e sy ety 0220 gy dy
< CB(0)" J|X — e |-V 2p-(Nra- g+ gy, 4.31)

Q
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It follows from integration by parts, (4.30) and (4.31) that

j 8(y) P+ DaF, (x, y)ly|-N+2a-DW+D g ) dy

Qp 1
j V(B(y) DTGy F, (x, y)ly |- N2E-DEHD gy dy

Qp
< C8(x)° J-lx — | N+28-2) | (Vv 2p-(Nva-Dgra gy,
!
+ C(S(X)a Jlx _ yl—(N-m—l)|y|—(N+a—2)p—(N+tx—1)q+1 d)/
Q
=: M(x) + N(x). (4.32)

- ap+(a-1)g+1

Since 0 < @ < 1, N > 3 and p and q satisfy (1.11), we infer from (2.2) that
max{M(x), N(x)} < Clx|N+a-Wra-2p-Wra-Da g, (x 0). (4.33)
Combining (4.23), (4.28), (4.29), (4.32) and (4.33) implies that there exists a positive constant
C=C(N,u,p,q,Q) >0
such that
Gy WP [Vul?](x) < Ck?|x|Na-(Nra-2p-(N+a-Da g, (x, 0) forall x € Q. (4.34)

Since p and q satisfy (1.11), we deduce (4.26) from (4.34).
Thus, from (4.26) and (4.20), we obtain (1.14). Finally, the monotonicity comes from the comparison
principle. |

4.4 Strong Singularities

Let S¥-1 be the unit sphere in RN and ]Rﬂy ={x=(x1,...,xy) = (X', xy) : xy > 0}. We denote by
x=(r,0) e R, xS¥1 withr=|xland o = r''x

the spherical coordinates in RY, and we recall the representation
Vu = u,e + %V’u, Au = Uy + ?u, + riZA’u,

where V' denotes the covariant derivative on S¥-1 identified with the tangential derivative and A’ is the
Laplace-Beltrami operator on S¥~1,
We look for a particular positive solution of
~Lyu+[uPvul?=0 inRY,
u=0 onoRY\ {0} =R\ {0},

under the separable form
_2a N-1
u(x) = u(r,0) =r 7i1w(o) (r,0) € (0,00) xS .
It follows from a straightforward computation that w > 0O satisfies

Ly - Eypw +J(w,V'iw)=0 inSV1,
{ u N.p.q + (4.35)

w=0 onos¥?,
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where 5 5
" -9q p+4q
Lyw:=Nw+——w, ¢ = 7(7—N),
" ey-02 M7 pig-1\prg-1
2-q9 2\? N
s, ::s”((i)s + ) (s, eR, xRY.
J5,0=((Sg0g) £+18°) G0

Let k, be the first eigenvalue of -£,, in Sf’l and ¢, the corresponding eigenfunction ¢, (0) = (ey - 0)*
for 0 € S¥1, where ey is the unit vector pointing toward the north pole.
Notice that the eigenvalue x,, is explicitly determined by

Ky=a(N+a-2),
and the corresponding eigenfunction ¢, (0) = (% |n-1 )* = (ew - 0)% solves

{_Lu‘i’u =Kupy inSYY,

(4.36)
¢ =0 on oS,

Notice that equation (4.36) admits a unique positive solution with supremum 1, and if u = 0, then a = 1,
which means that ¢(0) = ey - 0 is the first eigenfunction of —A’ in H3(S¥1).
We could have defined the first eigenvalue k), of the operator £, by
Jgv1 (IV'WI2 = p(en - 0)w?) dS
Is’j’l w2 dS

K,,:inf{ :weH(l)(Sﬁ”l), w#O}.
By [12, Theorem 6.1], the infimum exists since ¢o(0) = ey - ¢ is the first eigenfunction of -A’ in Hé(Si\H).
The minimizer ¢, belongs to Hy(SY ) onlyif 1 < u < 1.

By (4.36), the following expression holds:

IV o(0)|? = 1 - ¢o(0)> forallo e S¥1. (4.37)
1
Indeed, since (;b% = d)é , we have
101 3 N-1 1t 1 _3 1
-N'pg = =" IV pol” + ¢ =5Po" +x1g.
% 2 4
Taking into account that x1 — N1 = —1 from the above equalities, we obtain (4.37).

Denote
Yu(SYY) = {9 € Hiy (S"71) : g € HY SV, 3.

It is asserted below that condition (1.11) is sharp for the existence of a positive solution of (4.35).

Theorem 4.7. Assumep >0,q>0andp +q > 1.

(i) If (1.11) does not hold, then there exists no positive solution of (4.35).

(ii) If (1.11) holds and q > 1, then problem (4.35) admits a unique positive solution w € Y#(Sfy ~1). Moreover,
there exists a positive constant C = C(N, u, p, q) such that

1

€ — Ky \ pra1
w(o) < (%)P " pu(0) forallg e SV,

V' w(0)] < Cpu(0)T forallg e SN-1.
Proof. (i) By multiplying (4.35) by ¢,,, we obtain
(K — xp.g) J Wy do+ j J(@, V'), do = 0. (4.38)
s s

Note that the second term on the left-hand side of (4.38) is nonnegative. Thus, if (1.11) does not hold, or
equivalently €y, 4 < Ky, then no positive solution of (4.35) exists.
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(ii) The proof is split into two steps.

Step 1: Existence. Set
_(ENpg — K\
n= (PR )
Then the function @ = y; ¢y, is a supersolution of (4.35). Indeed, by (4.36) and (4.37),

LT - g @ + @, VD) = y1(iu — Exp) by + yﬁ”quﬁ((ﬁ) 2 +1V' 0, |2)
10— LB + PTG (((74)2 B az)gbé“ N a2¢é(a—1))%

p+q-1
> y1(ky — €N,p,g) PG + aqVTq‘Pgwq(ail)

> [y1(ky —€np,q) + a"yp“’]qbg =0

In the above estimates, we note that (1.11) implies 274

prg1 > A
Let ag € (a, 1) be such that
N+ ag

£ N+ ap—1
We note that ¢, = ¢g°, where o = + — (a0 - $)? < .
We allege that there exists a positive constant y, = y»(N, g, i, do) < y1 such that the function w = y> ¢y,
is a subsolution of (4.35). Indeed, since g > 1, by (4.36) and (4.37), we have

< qy.

~Luw - Ly p g + J(@, V' ©)
q
2

= alho 10 g 206, e 5

o7 prasi) #hvour)

— 2 g
(5rats) ol Joi <o,

q+p

(VZ(VO - W)+ Yq+p q)¢a0 -2 (VZ(Kyg EN,p, q) +Y,

provided y, is small enough. Notice that we can choose y, < y;.
For t € (0, 1), set S; := {0 € SN : ¢o(0) < t}, S¢ := SN2\ S;. In view of the proof of [20, Theorem 6.5],
there exists a solution w; € WP (5;) to (4.35) such that

w(0) < w(0) < w(o) forallo e S;. (4.39)

Therefore, by the standard elliptic theory, there exist a function W and a sequence ¢, \, O such that w;, — @
locally uniformly in Cl(Sf’l) and w satisfies - £, W — €y, p @ + J(@, V'w) =0in Sf’l. Furthermore, by (4.39),
we have w(0) < @(0) < w(o) forall o € V1.

Set 1i(x) = x|~ 5% @(0). Then i satisfies ~Lyt + @P|Vi|? = 0 in RY and

prq — Ky ﬁ 29 _,
- ,D, R - N
[a(x)| < (T) Xy |x| e forall x € R} .

Letxo = (x(’), 0) be such that |x6| =1.Then, in view of the proof of (4.13), there exists a constant C; = C(N, y, q)
such that |Vii(x)| < Clx}"\,’1 for all x € B(xo, %). This implies

IV'@(0)| < Co(0)*! forallo e SN, (4.40)

Step 2: Uniqueness. Let w; € Y,I(SN 1), i =1, 2, be two positive solutions of (4.35). Let xo = (x(, 0) be such
that |x0| = 1. Put u;(x) = |x|~ P 1w1 Then u; € Hl(B(xo, ),x ), and it satisfies —Lyu; + uf’qu [9=0in M,
which implies ~L,u; < 0in RY.

Since 0 < v; := xy"u; € H'(B(xo, %), x2 ), and it satisfies — le(X 2vv) < 0in RY, by [14, Theorem 2.12],
there exists a positive constant C; > 0 such that u;(x) < Cix}; for all x € B(xo, 2). Therefore, in view of the
proof of (4.40), there exists a positive constant C such that

wi(0) < Copo(0)®  foralloe SN2, i=1,2, (4.41)
IV'wi(0)| < Copo(0)*! forallo e S¥1,i=1,2. (4.42)
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Set by := infesq{c : cw1 > wy, 0 € S¢} < co. Without loss of generality, we may assume that b¢, > 1 for
some tq € (0, 1); thus, by (4.41), we have

1< b, < by forallt e (0, to).

In the sequel, we consider t € (0, to).

Put i := ¢p§ — 257, where € € (0, 1 - a) is a parameter that will be determined later. Then we have
1% < < ¢p3. Werecall that ¢4 = ¢, and ¢ = ¢, where yi; := 1 — (a + & — 1)2. From the definition of ,
it is easy to check that

- K
R R (T} (4.43)

Now let w; = b;lwz. We remark that w; is a subsolution of (4.35) and w; — w1 < 0in S;. Also, we have
~ Lu(we - ), < }—(%)pl<wt, Vo) +J(@1, V)| + Enpglor - 01l (4.44)
Since 1 < g < 2, the following inequality holds for any nonnegative number h1, hs, k1, k»:
(2D (2 kD) <RI nd T kT kD - Kl + Tha - ko). (4.45)

By applying (4.45) with h; = (piixl)wn hy = V'wil, ki = (p—i;fl)wl and k; = [V'w;| and keeping in mind

estimates (4.41) and (4.42), we obtain
w1 \P (e
() @i Voo + @, Vn) = €@ CoB D (@ anl + IV @ - (446)

Nowset V; := Y~ (w; — w1),. By (4.44), (4.46) and the definition of 1), we can easily deduce the existence
of a positive constant C = C(N, u, g, Co) such that

—div' @2V Vo) + YVe(-Luth) < C(g7 4V  y (we - wi)l + g TV EINY (L - w))).
Now, since PV, € Yy, (S{rv 1y and V(o) < 0 for any o € S, multiplying the above inequality by (V;), and inte-
grating over SV, we get

[v' Wy dsior+ [ wvaic-c,m dso
St St

<c([ e Wt dsio) + [ @ VNI WV dS@). (A7)
St St

By the definition of i and (4.43), we have

JIV’(VMZ!PZ ds(o) + j Y(V)2(-Lyutp) dS(o)

St Se

1 - N-1
>z j|v’<vf)+|2¢é“ ds(o) + LK [(V»iqbé“*“ ds(o) - == j(vni 2445(0).  (4.48)
St St St
2-a

Here we note that if € < 1 - &, then g < 2 < 57%2£. This leads to

2-a-e-q(1-a)>0 and 4-2a-¢e-2q(1-a)>0. (4.49)

By Young’s inequality, we deduce that

¢ [ i@ e V(W dS(o)

s 1 R “1)(a-
<3 J 29V (Vo). 12 dS(0) + Cj o 2@V (V)2 45(g), (4.50)

St St

where C is the constant in (4.47) and € = C(N, Usb,q).
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Gathering (4.47), (4.48) and (4.50) yields

1
5 j B2V (V,), 2 dS(0)

St —
< _% J PR (V)2 dS(0) + € J(qbgwq(a—l)m + ¢(2)ap+2<q—1)(a—1)+2a + p2)(V)2 dS(o)
St St
< J¢éa+s—2(”€; M + Cl(t2+ap—a—s—q(1—a) + t4+2ap—2a—s—2q(17a) + tZ—S))(Vt)gr ds(o),

St
where C; = C(N, u, p, q). By (4.49) and the above inequality, we can find a positive constant

1
ti= N, 12, Co) suchthat j G2V (V). 2 dS(0) < 0,
Sy
which implies (V¢,), = 0in Sy, since (V¢,); = 0on {0 € S¥! : ¢o(0) = t1}. Hence b;'w; < w; forallo € Sy,.
Thus we have proved that

b, = icl;lf{c i CWy > W)y, 0€ 3[1} = iI)l{{C 1 Cw, > Wy, O€ Sﬁ"l}.
This means that (w; - w¢,)(0) = O forany ¢ € S¥~* and
w1(00) — we, (00) =0  for some oy € §tl. (4.51)
But —£, (w1 - wy,) — €n,g(w1 — wy,) + J(w1, V'w1) - J(we,, V'wy,) > 0, which implies
AN (w1 - wy,) + (w1, V'wr) - J(we, Vo) + J(we, V'wr) - J(ws,, Vo) = 0.

By the above inequality, the fact that min(w1, w¢) > 0 in 5% and the mean value theorem, there exists A > 0
such that _
9J(s, &) - L=

aé,{ (Vw1 -V'w) + Mwy -w,) 20 inSy,
where s and E are functionsof o € 3'71 such that @ € L°°(§f71 ). By the maximum principle, w1 — w;, cannot
achieve a nonpositive minimum in Sy \ 354, which clearly contradicts (4.51).

The result follows by exchanging the role of w; and w,. O

N (w1 - wy,) +

5 Absorption g(u, |Vul|) = |u|P|Vu|9: Supercritical Case

Let us recall the following result in [16, 25].

Proposition 5.1. Letv € M*(0Q), and let o be the constant in Proposition 2.6. Then the following inequalities
hold:

_ . 1
sup po! jKy[vl dS < C(Bo, @ Wlsmooy K < 7

0<B<Bo 3
. 1
sup (Bllogp|>)": JKy[V] das < C(Bo, a, Dlvilama) ifu = e
0<B<Bo 5

Lemma 5.2. Assumev € M*(0Q),p 20,1 < q < 2, and let u € C*(Q) be a nonnegative solution of (4.1).
(i) Ifq + a+ 1, then there exists a constant B1 = B1(N, i, p, q, Q) > 0 such that

Jﬁ”"qu’”q dx < C(J&"‘u"qulq dx + 1), (5.1)
Q Q

where C depends only on N, p, p, q, Q and sups,, (I, [v])P*d.
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(i) If ¢ = a + 1, then, for any € > 0 small enough, there exists a constant 1 = B1(N, i, p, Q, €) > 0 such that

_[ S uPrarl gy < C(j 8%uP |Vu|** dx + 1), (5.2)
Q Q
where C depends only on N, u, p, Q, € and sups,, (Ky [v])pra+l,

Proof. Since u is a nonnegative solution of (4.1) we have uf |[Vul € L9(Q, 6%). Let 81 € (0, Bo), where fBy is the
constant in Proposition 2.6.
(i) First we assume that g > 1, ¢ # a + 1, and let y # —1. Then, for 8 € (0, 1),

J S'uPtidx = (y+1)! J V&Y IVeuPt dx

Dp\Dg, Dp\Dp,
=(y+ 1)‘1(— J SV IASUPT dx - (p + q) J SV IuPra-1ysvy dx
Dp\Dp, Dp\Dp,
+ J 57190 ypea gy 4 J §7+1.9% ypia dx)
ong, ong
Zpy Zg
<Cly+ 1|‘1( J S uPt dx + J S P91 \vy| dx
Dp\Dgy Dg\Dg,;
+ ,B’{“ sup(Ky [v))P* + J srHiypta dx).
Zp;
Zp

Observe that, forany y € (a - g, max{“'Tl'q, 2(a-q) +1}), we have |y + 1|7! < 2|a + 1 — g|*. Therefore, for
such y, we can choose 81 = f1(N, g, u, Q) such that
1
Cly+1I™" J " uPt dx < 2Cla+1- gt J &Y TuP+ dx < " j 8YuP*4 dx.
Dg\Dg, Dg\Dg, Dp\Dp,
Consequently, by Young’s inequality, we can find a constant C; = C1(N, y, p, g, Q) such that
Cly +1|™1 I &Y yPrat vy  dx = Cly + 171 J S 1P G 0V dx
Dp\Dp, Dp\Dp,
1
— §'uP* dx + Cy J &P |Vul? dx.
Dg\Dgy Dp\Dp,

<

By the above estimates, there is a positive constant C; = C»(N, ki, p, g, Q) such that
J §'uP* dx < Cz( J S P |\Vu|? dx + ﬁ’l'” szup(]K,,[v])q + J SViyp+a dx). (5.3)
Dy\Dp, Dy\Dp, h %
By (4.12), Proposition 5.1 and taking into account thaty + ¢ — 1 > @ — 1, we obtain
j S 1uPa gs < cprrat j wds < Cpra-t J K,[v]dS -0 asf 0.
Zp Zp s
Therefore, by letting  — 0 in (5.3), we obtain
J SYuP* dx < Cz( J 8 uP|Vu|? dx +/3){+1 sup(]KH[v])p“’). (5.4)
5,
Qp, Qpy h
By the dominated convergence theorem, we can send y — a — g in (5.4) to obtain
J 5% 9uP* dx < Cz( J SUP|Vul|? dx + B”f_q” sup(IKH[v])I’*q).
5,
Qpy Qpy .
This implies (5.1).
The proof of (5.2) follows by arguments similar to the proof of (5.1) (with y = € — 1) with some modifica-
tions, and we omit it. 0
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We recall below some notations concerning the Besov space (see e.g. [1, 33]). For 0 > 0, 1 < k < co, we
denote by W2*(R?) the Sobolev space over R?. If ¢ is not an integer, the Besov space B%*(R%) coincides
with WX (R9). When o is an integer, we denote Axyf = fix+y) + f(x —y) - 2f(x) and

A
BLA(RY) i= {f e LX(RY) ; o lxli’; e LX(R? x ]Rd)}
y x
with norm .
[Ax,y 1 *
W= (10 + | [ i axay)”
RIxRE
Then
B™X(RY) := {f e W™ IX(RY) : DIf € BVN(RY) forall 6 € N9, |6] = m - 1}
with norm

IDYA A %
s (e | ryTXj'dxdy).

10l=m=1" b4’ pa
These spaces are fundamental because they are stable under the real interpolation method developed by

Lions and Petree. For s € R, we defined the Bessel kernel of order s by Gs(§) = 51(1 + |- |2)‘§5(.{), where F
is the Fourier transform of moderate distributions in RY. The Bessel space Ls (R9) is defined by

Lox(RY) = {f = G5 » g : g € L*(RY)}

with norm ||flr,,, := lIgllx = IG_s * flr~. Itis known thatif 1 < x < coand s > 0, Ls x(R?) = WS*(R?) if s € N,
and Lg, «(R?) = BS¥(RY) if s ¢ N, always with equivalent norms. The Bessel capacity is defined for compact
subsets K ¢ RY by
d .
C(K) = inf{IfIf, , f € 8'(RY), f = xx}.
It is extended to open sets and then Borel sets by the fact that it is an outer measure.

Proof of Theorem 1.7. Let € > 0, and let u € C2(Q) be the solution of (4.1). Put = = 0Q. If

atl-g

n € L®0Q) n B i 0t (90,

we denote by H := H[n] the solution of

s

ﬁ+A;H:0 in (0, 00) x 092,
H(,-)=n onoQ.

Let h € C*°(R,) besuchthat0<h<1,h'<0,h=1o0n]|0, %“], h =0 on [fo, co]. The lifting we consider is
expressed by

H[n)(6%, o(x))h(8) ifx € Qg,,

R = 5.5
(n](x) {0 (5.5)

if x € Dﬁo ,
with x = (6, 0) = (6(x), o(x)).
Casel:g+a+1. Sete=0and{ = (p,lR[n](p“?)' , where ¢, is the eigenfunction associated to the first eigen-

value A, of -L, in Q (see Subsection 2.1). By proceeding as in the proof of [17, Lemma 3.8, (3.46)], we deduce
that there exists Co = Co(N, p, Q, [vlonsq)) such that

(+q)'
CO(J rldv) < JuPIVulq(dx+/\,1Ju(dx
EYo] Q Q
s o (Juragytoax)™ ([ L@ ax) "7, (5.:6)

Q o)

where .

R 4 _ 1
Lin] = @gr™ |V<Pu~VR[71]|+(P;14+“"’“” "1|AR[n]]).
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Following the arguments of the proof of [17, Lemma 3.9, (3.48)], we can obtain

’ 1
[ L0+ dx < eI oo 50 -
Q

We infer from (5.1) that
—4 ’ '
j W, ¢ dx< Clnl&y, J 5w dx < Py (1+ J w?|Vult6® dx),
Q Q Q

where the constant C depends on N, u, p, g and Q. Combining (5.6), (5.7) and (5.8), we obtain
(p+g)
Co(Jr[dv) sjup|Vu|q(dx+/1”Ju{dx
00 Q Q
w+9)'

1
5 P () -1 T
Ol ey (1 [ wP1Vu198% ) (IS s ot 30
Q

Let K ¢ 0Q be a compact set. Since (N +a -2)p+ (N+a-1)q = N + a, if
N-1
C]ioﬁ%,(mq)'([() =0,

then there exists a sequence {n,} in cg(ao) with the following properties:

(5.7)

(5.8)

(5.9)

0<nn<1, np=1inaneighborhoodofK and lim 7, =0in Bl’“%’(””),(a()). (5.10)

This implies that O < R[1,] < 1 and limy_,o, R[17n] = O a.e. in Q. Put {, = ¢, R[1,]?*?". Then

lim Jul’Wulq(n dx=0 and lim Ju(n dx =0. (5.11)
n—oo n—oo
Q 0

From (5.9)-(5.11), we obtain
v(K) < J Npdv — 0 asn — oco.
00
This implies that v(K) = 0. Thus v is absolutely continuous with respect to CI{‘L;% ()

Case2:g=a+1. LetO<e<a+1land{= go,,R[rl](P*“*l)'. Proceeding as in the proof of (5.6), we can prove

(p+a+1)’
CO(J ndv) < Jup|Vu|“*1(dx+AHJu(dx
20 Q Q

e et ,
+(p+a+ 1)’(1 up+a+1(p‘u a (dx)p 1 (jL[n](p+u+l) dx
Q Q

5

)(p+1+a)’

where

atl 1 a+

- _ ppoarle 1
L[n] _ (2(p]j(p+a+l) pra+l |V¢u . VR[)]H " (py*,z(pmn) pra+l |AR[7[]|) .

Using (5.2) and the ideas of the proof of (5.9), we can obtain the inequality

(p+a+1)"
CO(J’ ndv) < jMPIVu|“+1(dx+AHIu(dx
20 Q Q

(pra+1)

1
* C”””Lg&z)(l + j uP|Vu|*+! " dx)'”"”

Q

(p+a+1)'-1 L
X (”n”L““(aQ) ”)’I”Blfaulﬁfwl,(p+a+l)'(aQ))(p+a+1)! ,

where the constant C depends on N, u, p, Q and ¢.
The rest of the proof follows by using an argument similar to the first case.
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Proposition 5.3. Let u € C2(Q) be a positive solution of (1.19). IfuP|Vu| € LI(Q, 6%), then u possesses a bound-
ary trace v € MM+ (0Q), i.e. u is the solution of boundary value problem (4.1) with boundary trace v.

Proof. If v := Gy[uP|Vu|?], then v € LY(Q, 6% and u + v is a positive Ly-harmonic function. Hence we have
u+v e LY(Q, 8%, and there exists a measure v € 9" (0Q) such that u + v = Ky [v]. By [16, Proposition 2.2],
we obtain the result. |

Proof of Theorem 1.8. In view of the proof of [17, Proposition A.2], we can obtain the estimates

lu(0)| < C8(0) dist(x, K) 775  forallx € Q,

[Vu(x)| < C86(x)* dist(x, K)“vi;zl'“ forallx € Q,
where C depends on N, u, p, g, Q and sups, U

Case 1. Assume that
N-1
g+a+1 and C]f\—nu ﬂ;i;q’(erq)'(K) =0

Then there exists a sequence {1, } in Cé(aQ) satisfying (5.10). In particular, there exists a decreasing sequence
{On} of relatively open subsets of 0Q, containing K such that n, = 1 on Oy, and thus n, =1 on K, := On.
We set

fin=1-n, and (= ‘PyR[ﬁn]z(wq) ,
where R is defined by (5.5). Then O < 7j, < 1 and #j, = 0 on K. Therefore,

$n(0) < @y min{1, c8(x) 1N e NN WK for all x € Q.

Furthermore, )
IVR[7a]l < cmin{1, 6(x) 2 Ne 48D ?@isto Ky forall x € Q,
IAR[7a]] < cmin{1, 8(x) 4 Ne 40D *WistoK™y for all x € Q.
Proceeding as in the proof of [17, Theorem 3.10, (3.65)], we have
J(uL,,fn +uP|Vu|9E,) dx = 0. (5.12)
Q

Using the expression of L, n, we derive from (5.12) that

[ wrvueg, dx = [(-AupuRi 200
o o +4(p + @)/ RI12P* 1V, - VR[]
+2(p+q) R[ﬁ ] @*q’*%py(R[ﬁn]ARan + Q2 +q)' - DIVR[]1?))u dx
SC(JU”"‘I‘P;%fndx (J Lina)®*9" dx M),

Q
where

Lin] = “(”“’) 7 Vo - VR[nn]l + <P;4 ra [AR[7n]l + (Py Faw [VRIn]I?.
By proceeding as in the proof of [17, Theorem 3.10, (3.75)], we can prove

1
[ 119219, R U2 dx < Cltallyar it o ([ 8 R )"
Q Q

The rest of the proof is similar to the proof of [16, Theorem J], and we omit it.

Case 2. Assume that

g=a+1 and C*") - prarry () =0

1-at 5t

for € as in statement (ii). Then we can obtain the desired result by combining the ideas in Case 1 of this
theorem and in Case 2 of Theorem 1.7. O
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6 Nonlinear Equations with Subcritical Source
In this section, we prove Theorem 1.9. We first establish an existence result for the case when g is smooth
and bounded.

Lemma 6.1. Let v € I+ (0Q) with |[Vlsna) = 1 and g € CY(R x R,) N L®(R x R ). Assume (1.10) and (1.21)
are satisfied. Then there exists go > O depending on N, u, Q, Ag, k such that, for every p € (0, o), the problem
inQ,

(6.1)

=Lyv = g(v + oKy [V], [V(v + oKy [V])])
tr(v) =0

admits a positive weak solution v satisfying
IvIizP2 (@,s0) + IVVIL# (q,52) < to,
where to > 0 depends on N, u, Q, Ag, k, p, g. Here Mg is defined in (1.10) and k,p, Gareasin(1.21).

Proof. We shall use the Schauder fixed point theorem to show the existence of a positive weak solution of
(6.1). Define the operator S by
S(v) := Gy[g(v + oKy [V], IV(v + oK, [VDI)], ve whl(Q, 6%).

Fix 1 < k < min{p, §, qu},

Q1(v) = VI (0,6
Q2(v) := [|VVIL# (0,69
Q3(v) := Vllx(Q,8%)
Q4(v) := [VVliLx(Q,5%)

forv e L (Q, 6%),
for [Vv| € LY (Q, §%),
forv e L*(Q, 6%),
for |Vv| € L*(Q, 6%)

and

Q) := Q1(v) + Q2(v) + Q3(v) + Q4 (v).

Step 1: Estimate the L1(Q, §%)-norm of g(v + oKy [v], V(v + pKy[v])]). For A > 0 and any function w, we use

the notation as in (3.12). For the sake of simplicity, when w = v + pIK, [v], we drop the superscript v + oK [V]

in the above notations. For instance, we use the notations A, and a(A) instead of AX*L”KV[V] and a"+eXxlVI(Q).
Then, by (2.4), we have

a(d) < AP v + oKy [VIPs

Ly (Q,6%)°
=] q
b(A) < APH|V(v + glKM[V])IIL’i,,(Q’&,,),
_ . D, q
c(A) < 7P min{|lv + oK, [v] I .60y VOV QK;J[VJ)IIL,:;/“(Q,&Q)}.

With the above notations, we split
Ig(v + oKy [v], IV(V + oKy [VD)DllLr(q,60) < J g(v + oKy [V], V(v + oK, [V])])6* dx
Cy

¥ j 2 + QK [V], V(v + QK [VI))6® dx
A{NB;
+ J g(v + oKy [V], V(v + oKy, [V])]) 6% dx
A{NB{
[ e om0+ oK, D" dx
ANBf
=Ii+L+15+]I4. (6.2)
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First we estimate I3. Since |v + oK, [v]| < 1and [V(v + pK[v])| < 1in A{ nB{ and 1 < x < min{p, 4, q,},
we obtain
I < k(v + 0Ky VIl g g0y + IV(V + @KL VDI Lk, 509)8 (1, 1) (6.3)
Next I is estimated as follows:

I<- J g(A, A5 ) de(d) = g(1, 1)e(1) + j () dg(A, A%)
1 1

00

u

< pymin{[lv + g]K#[v]lllL’z,,(Q 5" V(v + Q]K,l[v])ll?g,l(Q m)} J g, Au )1 PrdA, (6.4)
1

We bound I from above as follows:

Iy <- Ig(/\, 1) da(d) < pulv + QKV[V]IIIL’IE,,(Q P J g, /\%)Aflfﬁu dA. (6.5)
1 1

Similarly, we can estimate I, as follows:

(e8]
N
L < plVv + @Ky VDI, o o0 Jg(/\,/w YA Pr da, (6.6)
1

By combining (6.2)-(6.6), we obtain (assuming p < 1)
Ig(v + oKy[v], V(v + 0Ky [VD)DllLi0,6n < C(Q1(MPH + Q)T + Q3 (W) + Q4()* + "), (6.7)
where C = C(N, i, Q, k, Ag).
Step 2: Estimate Q1, Q2, Q3, Q4 and Q. By (2.5), we have
Q1(S(vV)) < clig(v + oKy [v], V(v + oKy [VDD L1 (0,6 -
This and (6.7) imply that
Q1(S() < C(QLEP* + Q)™ + Q3 (V)" + Qu(V)* + 2"),
where C = C(N, i, Q, k, Ag). Next we deduce from (2.7) that
Q2(S(v) < cllg(v + oKy [v], V(v + oKy [VDD L1 (0, 6),
which in turn implies
Q2(S(V) < C(QLW)P* + Q)T + Q3 (V) + Qu(V)* + "),
where C = C(N, u, Q, k, Ag). By (2.3), (2.5) and (2.7), we can easily deduce that
Q3(S(v)) < clig(v + oKyu[v], V(v + oKy [V DI (0,6
Q4(S(v)) < cllg(v + oKy [v], V(v + oKy [VD D1 (0, 89)-

Thus,
Q3(S(M) + Q4(S(V) < C(Q1 (WP + Q2T + Q3(V)* + Qa (V)" + 0"),

where C(N, u, Q, k, Ag). Consequently,
Q) < C(Q1(MPH + QoM + Q3 (M) + Q4(V)* +0").

Therefore, if Q(v) < t, then
Q(S(v)) < C(tPr + t + 2t + 0¥).

Sincepy > g, > k > 1, there exists po > O dependingon N, u, Q, k, Ag such that, foranyp < (0, go), the equa-
tion C(tPr + t9x + 2t + ") = t admits a largest root to > 0 which depends on N, p, Q, A, k. Therefore,

Q) <to = Q(S(v)) < to. (6.8)
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Step 3. We apply the Schauder fixed point theorem to our setting. By a standard argument, we can show that
s: Wh(Q, %) — WbH1(Q, §%) is continuous and compact. Set

O :={& e WH(Q, 6% : Qu) < to}. (6.9)

Then O is a closed, convex subset of W1(Q, §%), and by (6.8), $(O) c O. Thus we can apply the Schauder
fixed point theorem to obtain the existence of a function v € O such that $(v) = v. This means that v is a non-
negative solution of (6.1), and hence it holds

- J vL,{dx = Jg(v + oKy [v], [V(v + oKy [v])){ dx  for every { € X, (Q). ]
Q Q

Proof of Theorem 1.9. Let {g,,} be a sequence of C! nonnegative functions defined on R? such that

gn(0,0)=2(0,0)=0, gn<gn1<g Supgp=n and Mmlg, - gl

(RxR,)=0+
RXR, loc +

We observe that Ay, < Ag < co, where A, is defined asin (1.10) with g replaced by g,,. Therefore, the constant
0o in Lemma 6.1 can be chosen to depend on Ag (and N, u, Q, k, , @), but independent of n. Similarly, the
constant ¢, in Lemma 6.1 can be chosen to depend on Ag (and also N, u, Q, k, p, 4), but independent of n.
By Lemma 6.1, for any g € (0, go) and n € N, there exists a solution v, € O (where O is defined in (6.9)) of

=Lyvn = gn(vn + 0Ky [V], [V(vy + 0Ky [V])]) in Q,
tr(vy) = 0.

Set up = vy + Ky [v]. Then tr(u,) = gvand

- J UpLy§dx = Jg,,(un, [Vup)¢dx - o J Ky[vIL,{ dx forevery { e X, (Q). (6.10)
Q Q Q

Since {v,} c O, the sequence {gn(vy + 0Ky [V], [V(vy + Ky [V])])} is uniformly bounded in LY(Q, 6%), and the
sequence {%vn} is uniformly bounded in LP*(G) for every compact subset G ¢ Q for some p; > 0. As a con-
sequence, {Avy} is uniformly bounded in L!(G). By a standard regularity result for elliptic equations, {v,}
is uniformly bounded in WP (G) for some p, > 1. Consequently, there exists a subsequence, still denoted
by {vn}, and a function v such that v, — v a.e. in Q and Vv,, — Vv a.e. in Q. Therefore, u, — u a.e. in Q,
where u = v + oKy [v] and gn(un, |Vun|) — g(u, [Vul) a.e. in Q.

We show that u, — uin L1(Q, §%). Since {v,} is uniformly bounded in L?(Q, §%), by (2.6), we derive that
{uy} is uniformly bounded in L?(Q, §%). Due to Hélder’s inequality, {uy} is equi-integrable in L*(Q, §%). We
invoke Vitali’s convergence theorem to derive that u, — u in L(Q, 6%).

Next proceeding as in the proof of (3.11), we obtain that g, (uy, |[Vun|) — g(u, |[Vu|) in L*(Q, §%). There-
fore, by sending n — oo in each term of (6.10), we obtain

- I ulLy§dx = Jg(u, [Vul){dx-p _[ Ky[vlLy,{ dx forevery { € X, (Q).
Q Q Q

This means u is a nonnegative weak solution of (P2"). Therefore,
u = Gylg(u, [Vul)] + pKy[v] inQ,

which implies that u > pKy [v] in Q. O

7 Nonlinear Equations with Supercritical Source

7.1 Capacities and Existence Results

In this subsection, we introduce the definition of some capacities and provide related results which will be
employed to prove Theorem 1.11 in the next subsection.
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ForO< @< <N,set

1
Ix - yIN-F max{|x - yl, 6(x), 6(y)}°
Nog,g[7](x) := J-Ng,l;(x, y)dt(y) forall 7 € M*(Q). (7.2)

Nopg(x,y) := forall (x,y) e Qx Q, x £, (7.1)

Q
Fora>-1,0<6<f < Nands > 1, define Cap],“\,“,S by

Capy,;,s(E) := inf{J 8¢ dx : ¢ =0, Ngpg[69¢] 2)(5} for any Borel set E ¢ Q.
Q
Here xg denotes the indicator function of E.
Let Z be a metric space and w € 9M*(Z). Let J: Z x Z — (0, oo] be a Borel positive kernel such that J is

symmetric and /! satisfies a quasi-metric inequality, i.e. there is a constant C > 1 such that, forall x, y, z, € Z,

1 - C( 1 . 1 )
Jx,y) = Nx,2)  J(z,y)
Under these conditions, one can define the quasi-metric d by
1
J(x,y)
and denote by B,(x) :={y € Z : d(x, y) < r} the open d-ball of radius r > 0 and center x. Note that this set can
be empty.
For w € M*(Z), we define the potentials J[w] and J[¢, w] by

Jw)(x) :zjﬂx,y)dw(y) and Jl¢, w](0 ::j1<x,y>¢<y>dw<y>.

Z Z

d(x,y) =

For t > 1, the capacity Cap;,‘f ¢ in Z is defined by
Cap{ (B) 1= inf{ [ ¢(0' dw() : ¢ >0, JIg, w] > xs| ~foranyBorel £ c Z.
Z

Proposition 7.1 ([19]). Letp > 1 and 7, w € M*(Z) such that

2r r
J&Z(X))dsscjwds, (7.3)
S S
0
[ W(Bs(y)) [ W(By(x))
——2ds<C| ——=d 7.4
yes;}()x)(! po s < J o s (7.4)

foranyr > 0, x € Z, where C > 0 is a constant. Then the following statements are equivalent.
(1) The equation u = J[u?, w] + oJ[t] has a solution for ¢ > 0 small.

(2) For any Borel set E C Z, it holds IE JItglP dw < CT(E), where T = XgT.

(3) For any Borel set E c Z, it holds T(E) < C Cap;,"’p,(E).

(4) The inequality J(J[1]?, w] < CJ[1] < oo holds w-a.e.

We point out below that Ny g defined in (7.2) satisfies all assumptions of J in Proposition 7.1.
Proposition 7.2 ([9, Lemma 2.2]). Nj,g is symmetric and satisfies the quasi-metric inequality.
Next we give sufficient conditions for (7.3), (7.4) to hold.

Proposition 7.3. Let w = §(x)%q(x) dx with a > 1. Then (7.3) and (7.4) hold.

Proof. If a > 0, then the statement follows from [9, Lemma 2.3]. We now treat the case -1 < a < 0. We claim
that, for any 0 < s < 8 diam(Q) and any x € Q, we have

w(Bs(x)) ~ max{§(x), s}9s". (7.5)

Indeed, in order to obtain (7.5), we consider four cases.
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Case 1: 4s < 8(x). Then 6(x) = 6(y) for any y € Bs(x), and the proof of (7.5) can be obtained easily.
Case 2:s > @. Then 6(y) < 5s; thus
J ()% dy > Cs®N > Cmax{§(x), s}9sV.
Bs()NQ

Case 3: @ < s < 46(x). Since Q is smooth, there exists r* > 0 such that

C r r*
I §(y)?dy < —1 rg"N forall rg < 3 and 6(x;) < & (7.6)
By, ()NQ
Set
P G
32diam(Q)
Then there exist x; € Bs(x),i=1,..., k, such that Bs(x) c U;(:I By, (x;). We note that k does depend neither
on x, nor on 6(x). Thus we have
k
[ swraysy [ soran
B,(0)NQ 1:13,0 (x)NQ
Now, by (7.6), we get
J 8(»)% dy < C6()*N < Cmax{6(x), s})sV  if 6(xi) < ’Z
By, (x)NQ
J 8(y)*dy < C(r*)48(x)N < Cmax{8(x), s}4sV  if 6(x;) = %
By, (x)NQ
and hence (7.5) follows.
Case 4:s > 46(x). Set s
roi=r"————.
32 diam(Q)
Then the proof of (7.5) follows due to an argument similar to Case 3.
The rest of the proof can proceed as in the proof of [9, Lemma 2.3], and we omit it. O

We recall below the definition of the capacity associated to Ng,g (see [19]).

Definition 7.4. Leta > -1,0< 0 <8 < Nand s > 1. For any Borel set E c Q, define Cap]‘{\w’S by

Capg,,, o(E) = inf{ j 89¢° dy : ¢ = 0, Nog[6%] = XE}.

Q

Clearly, for any Borel set E ¢ Q, we have
Capd, , o(F) = inf] j 57D dy s ¢ >0, Nogld] > xz].

Q

Furthermore, by [1, Theorem 2.5.1], we have
(Célpnaqf,v,,,s(E))é =inflw(E): w € 93?;;(5), INo,glw]ll s .50y < 1}

for any compact set E ¢ 0, where s’ is the conjugate exponent of s.
Thanks to Propositions 7.2 and 7.3, we can apply Proposition 7.1 to obtain the following result.

Proposition 7.5. Let T € 9*(Q), a > -1,0 < 0 < f < N, p > 1. Then the following statements are equivalent.
(1) For any Borel set E c Q, it holds T(E) < CCapH‘{]M‘p,(E).
(2) The inequality Ng g[6*INg g[7]P] < CNg g[T] < 0o holds a.e. in Q.
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Recall the capacity Capgg introduced in [9] which is used to deal with boundary measures. Let 6 € (0, N - 1),
and denote by By the Bessel kernel in R¥-! with order 6. For s > 1, define

Capg, s(F) := inf{ I 85dy:¢p=0,Bpx¢p 2)(;} for any Borel set F ¢ RV-1,
RN-1

Since Q is a bounded smooth domain in RY, there exist open sets O, ..., Op in RY, diffeomorphisms
T;: O; — B1(0) and compact sets Ky, . .., Ky in 0Q such that
(i) KicO;1<i<m,andoQ c ", K;,
(ii) Ti(0;n0oQ)=B1(0)N{xy =0}, T;i(0; n Q) = B1(0) N {xy > 0},
(iii) for any x € 0; N Q, there exists y € 0; N 0Q such that §(x) = [x - y|.
We then define the Cap§-capacity of a compact set F ¢ dQ by

m
Capd2(F) := Y Capa, s(Ti(F N Ky)),
i=1
where T;(F n K;) = T;{(F n K;) x {xy = O}.

The following result is obtained by the same argument as in the proof of [9, Proposition 2.9].

Proposition 7.6. Leta > -1,0 <0 <B < Nands > 1.Assumethat-1+s'(1+60-B) <a<-1+s'(N+6-p).
Then it holds
Capﬁ'qgvﬁ,s(E) ~ Cap%® (E) forany Borel E c 0Q.

B0+ 1,5

7.2 Case g(u, |Vu|) = |u|P|Vul|?

Proof of Theorem 1.11. We see that, under the assumption on p and g, from Proposition 7.5 and Propo-
sition 7.6, conditions (i) and (ii) are equivalent. Therefore, we will prove the existence of a solution by
assuming (ii). For u € Wlt’cl(Q), put
H[u](x) = Gy[lulP|Vul9](x) + Ky[evl(x) a.e.inQ.
From (2.1), (2.2) and (7.1), we have
Gu(x,y) < C18(X)“8(y)*Nag,2(x, ¥) < C16(x)*6(y)*Naa-1,1(x,y) forallx,y € Q, x #y, 7.7
Ku(x,y) < C16(X)* Nag-1,1(X, y) forallx € Q, y € 0Q, ’

and
[VxGu(x, )| € C18(0) 1 8(y)* Naa-1,1(x,y) forallx,y € Q, x £y,

[VxKyu(x, )| < C16(x)"“1N2a,1,1(x, y) forallx € Q, y € 0Q.
From (7.7) and (7.8), we obtain
[H[u]| < C16"Nq-1,1[6%ulP|Vul?] + C16*Nag-1,1[0V],
[VH[u]| < C16% ' Nag1,1[8%ulPIVul?] + €16 ' Nag1,1[0V].

(7.8)

Put
&= {ue Wol(Q) : Jul < 2C16 Nag-1,1[ov], [Vul < 2C1 8% 'Nog-1,1(0V]}-

loc
Then, by using (1.22), we deduce that there exists g = go(p, g, C1, C) > 0 such that if p € (0, go), then
H(E) c€&.

Define V the space of functions v € Wllo’cl(Q) with the norm

Vv = IV, s-aay + IVVIiLrsa(q, s0+a).-

We can see that & ¢ Vand € is convex and closed under the strong topology of V. Moreover, it can be justified
that H is a continuous and compact operator. Therefore, by invoking the Schauder fixed point theorem, we
conclude that there exists u € € such that H[u] = u. Therefore, u is a weak solution of problem (P?") satisfying
(1.23) with C' = 2C;. O
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A Barrier
In this section, we will provide a barrier which plays an important role. This barrier will have the same
properties as the barrier in [17, Proposition 6.1]. Let B¢ be the constant in Proposition 2.6.

Proposition A.1. Let Q c RN be a C? domain, 0 < p < %, q >0 and p +q > 1. Then, for any z € 0Q and
O<R< /13—"6, there exists a supersolution w := w, g of (4.2) in Q N Br(z) such that w € C(Q n Br(2)), w(x) — oo
when dist(x, K) — 0, for any compact subset K ¢ Q N 0Bg(z), and w vanishes on 0Q n Br(z). More precisely,

{C(RZ ~lx-z%)t8(x) forallye(1-a,a) ifO<p<sz,
w(x) =

' 1 .
C(R? - x - zI) 7 6(x)# (In Yam) > ifu=7.
where b is a constant such that b > max{Z;Z:‘{ +y, %2, 1} and c = c(N, u, p, 4, b, y).

Proof. The proofis similar to that of [17, Proposition 6.1] with some minor modifications, and hence we omit
it. O

B Caseg(u,|Vu|) = |ulP +|Vul|?

In this section, we assume that g(u, [Vul|) = |ulP + |[Vu|? withp > 1and 1 < g < 2. We will state main results for
this case without proving since the proofs are similar, even simpler, to those for the case g(u, [Vu|) = [uP|Vu|9.

B.1 Absorption Case

This subsection is devoted to the study of the equation
—Lyu+uf’ +|vul? =0 inQ. (B.1)

When g(u, |Vul|) = |ul? + |Vu|? with p, g > 1, then g satisfies (1.10) if p and g satisfy (1.12). Moreover, g
satisfies (1.21). Hence, if p and g satisfy (1.12), then, for any v € 9t*(0Q), the problem

—Lyu+ulf +Vul? =0 inQ,
(B.2)

tr(v) =v
admits a positive weak solution.

Theorem B.1. Assume p and q satisfy (1.12). Let v; € M*(0Q), i = 1, 2, and let u; be a nonnegative solution
of (B.2) withv = v;. If v < v, thenuy < up in Q.
Set
My.g = max{p, L}
p.q 2-¢

LemmaB.2. Letp > 1and 1 < q < . If u is a nonnegative solution of (B.1), then

u(x) < C6(x)7'"vv2lr1 forallx € Q,

1

IVu(o)| < C8() ™" forallx € Q.

Lemma B.3. Let p and q satisfy (1.12). Assume u is a positive solution of (B.1) in Q such that (4.14) holds
locally uniformly in 0Q \ {0}. Then there exists a constant C = C(N, u, p, q, Q) such that

u(x) < Cé(x)”‘lxl_"wvztr1 - forallx € Q,

a

IVu(o| < C80)% x| ™ forall x € Q.
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Theorem B.4. Assume g(u, |[Vul|) = [ulP + IVqu with p and q satisfying (1.12).

() Weak singularity. For any k > 0, let u « be the solution of (1.13). Then (1.14) holds. Furthermore, the
mapping k ug, « IS increasing.

(I1) Strong singularity. Put uf . = limj_.o ug‘ « Thenu§ _ is a solution of (1.15). Then there exists a constant
c=c(N,u,p,q, Q) > 0such that

-l o2
cTHBOO X < ug oo () < €800 x| T forallx € Q,
Q a-1) |- e —&
[VUg, o0 (0] < ()" x| e forallx € Q.
Moreover, .
th x| T ug o, (x) = @(0)
BX—V
X =geSh-1

IxI

locally uniformly on upper hemisphere Sﬁ’ 1 = RY n SN, Here @ is the unique positive solution of
Ly~ pqw +J(@,V'w)=0 inSN1,
{ w=0 ondsV,
where

7l 2 2
Lyw:i=Nw+ - —"—w, Enpg:= —(—+2—N),
i’ (ey - 0)? Pa Mp,q \Mp,q

(S RS

J(s,8) = qgp 4 ((mi)zsz + IEIZ)% ifp= % (s,8) e R, xRV,
p,q

qq,(s,f)eandRN,

, (5,8 eR, xRN,

sP ifp>

Theorem B.5. Letv € M*(0Q),pzpyorqu<q<2. Assumeproblem (B.2) admits a weak solution.
() Ifp = py, thenv is absolutely continuous with respect to C3 M
(ID) If gy < q < 2, then the following occurs.

(i) Ifq + a+ 1, then v is absolutely continuous with respect to CcR), @ e

(ii) Ifq = a + 1, then, for any € € (0, min{a + 1, ¥=D% _ (1 — )}yl v lS absolutely continuous with respect

a+1
RN-1
to C£+1 a, a+1

e

Pt

Theorem B.6. Assumep > p, or qy < q < 2. Let K c 0Q be compact such that one of the following holds:
X y(K) =0 ifp =y,

Cﬁ%ﬁ’ia‘q,(K):O ifgu<q<2andq+a+1,

- N-1
C?flia,qr(K) =0 ifg=a+1 forsomeee (O, min{a+1,% —(1—a)}).
Then any nonnegative solution u € C2(Q) n C(Q \ K) of equation (B.1) satisfying (1.20) is identically zero.

B.2 Source Case

Theorem B.7. Assume g(u, |Vul) = |ulP + [Vul? with p > 1 and 3215 < q < 128, Assume one of the following
conditions holds.
(i) There exists a constant C > O such that, for every Borel set E c 0Q,
V(E) < Cmin{Capff’M%’Pr(E), Cape‘%%,qr(E)}.
(ii) There exists a positive constant C > 0 such that
Nog2[6“P* YNy »[VIP] < CNag o[Vl <00 ae.inQ,

Nog-1,1[6@ VI Nye11[V]7] < CNag-1,1[V] < 00 a.e.in Q.
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Then there exists go = o(N, 4, p, g, C, Q) > 0 such that if p € (0, po), then problem (P2") admits a weak solu-
tion u satisfying (1.23).
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